1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform manipulations on basic blocks, and
11 // instructions contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/CFG.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include <algorithm>
32 using namespace llvm;
33
34 /// DeleteDeadBlock - Delete the specified block, which must have no
35 /// predecessors.
DeleteDeadBlock(BasicBlock * BB)36 void llvm::DeleteDeadBlock(BasicBlock *BB) {
37 assert((pred_begin(BB) == pred_end(BB) ||
38 // Can delete self loop.
39 BB->getSinglePredecessor() == BB) && "Block is not dead!");
40 TerminatorInst *BBTerm = BB->getTerminator();
41
42 // Loop through all of our successors and make sure they know that one
43 // of their predecessors is going away.
44 for (BasicBlock *Succ : BBTerm->successors())
45 Succ->removePredecessor(BB);
46
47 // Zap all the instructions in the block.
48 while (!BB->empty()) {
49 Instruction &I = BB->back();
50 // If this instruction is used, replace uses with an arbitrary value.
51 // Because control flow can't get here, we don't care what we replace the
52 // value with. Note that since this block is unreachable, and all values
53 // contained within it must dominate their uses, that all uses will
54 // eventually be removed (they are themselves dead).
55 if (!I.use_empty())
56 I.replaceAllUsesWith(UndefValue::get(I.getType()));
57 BB->getInstList().pop_back();
58 }
59
60 // Zap the block!
61 BB->eraseFromParent();
62 }
63
64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor. If there are
65 /// any single-entry PHI nodes in it, fold them away. This handles the case
66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
67 /// when the block has exactly one predecessor.
FoldSingleEntryPHINodes(BasicBlock * BB,MemoryDependenceAnalysis * MemDep)68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
69 MemoryDependenceAnalysis *MemDep) {
70 if (!isa<PHINode>(BB->begin())) return;
71
72 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
73 if (PN->getIncomingValue(0) != PN)
74 PN->replaceAllUsesWith(PN->getIncomingValue(0));
75 else
76 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
77
78 if (MemDep)
79 MemDep->removeInstruction(PN); // Memdep updates AA itself.
80
81 PN->eraseFromParent();
82 }
83 }
84
85
86 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
87 /// is dead. Also recursively delete any operands that become dead as
88 /// a result. This includes tracing the def-use list from the PHI to see if
89 /// it is ultimately unused or if it reaches an unused cycle.
DeleteDeadPHIs(BasicBlock * BB,const TargetLibraryInfo * TLI)90 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
91 // Recursively deleting a PHI may cause multiple PHIs to be deleted
92 // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
93 SmallVector<WeakVH, 8> PHIs;
94 for (BasicBlock::iterator I = BB->begin();
95 PHINode *PN = dyn_cast<PHINode>(I); ++I)
96 PHIs.push_back(PN);
97
98 bool Changed = false;
99 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
100 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
101 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
102
103 return Changed;
104 }
105
106 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
107 /// if possible. The return value indicates success or failure.
MergeBlockIntoPredecessor(BasicBlock * BB,DominatorTree * DT,LoopInfo * LI,MemoryDependenceAnalysis * MemDep)108 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
109 LoopInfo *LI,
110 MemoryDependenceAnalysis *MemDep) {
111 // Don't merge away blocks who have their address taken.
112 if (BB->hasAddressTaken()) return false;
113
114 // Can't merge if there are multiple predecessors, or no predecessors.
115 BasicBlock *PredBB = BB->getUniquePredecessor();
116 if (!PredBB) return false;
117
118 // Don't break self-loops.
119 if (PredBB == BB) return false;
120 // Don't break unwinding instructions.
121 if (PredBB->getTerminator()->isExceptional())
122 return false;
123
124 succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
125 BasicBlock *OnlySucc = BB;
126 for (; SI != SE; ++SI)
127 if (*SI != OnlySucc) {
128 OnlySucc = nullptr; // There are multiple distinct successors!
129 break;
130 }
131
132 // Can't merge if there are multiple successors.
133 if (!OnlySucc) return false;
134
135 // Can't merge if there is PHI loop.
136 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
137 if (PHINode *PN = dyn_cast<PHINode>(BI)) {
138 for (Value *IncValue : PN->incoming_values())
139 if (IncValue == PN)
140 return false;
141 } else
142 break;
143 }
144
145 // Begin by getting rid of unneeded PHIs.
146 if (isa<PHINode>(BB->front()))
147 FoldSingleEntryPHINodes(BB, MemDep);
148
149 // Delete the unconditional branch from the predecessor...
150 PredBB->getInstList().pop_back();
151
152 // Make all PHI nodes that referred to BB now refer to Pred as their
153 // source...
154 BB->replaceAllUsesWith(PredBB);
155
156 // Move all definitions in the successor to the predecessor...
157 PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
158
159 // Inherit predecessors name if it exists.
160 if (!PredBB->hasName())
161 PredBB->takeName(BB);
162
163 // Finally, erase the old block and update dominator info.
164 if (DT)
165 if (DomTreeNode *DTN = DT->getNode(BB)) {
166 DomTreeNode *PredDTN = DT->getNode(PredBB);
167 SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
168 for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
169 DE = Children.end();
170 DI != DE; ++DI)
171 DT->changeImmediateDominator(*DI, PredDTN);
172
173 DT->eraseNode(BB);
174 }
175
176 if (LI)
177 LI->removeBlock(BB);
178
179 if (MemDep)
180 MemDep->invalidateCachedPredecessors();
181
182 BB->eraseFromParent();
183 return true;
184 }
185
186 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
187 /// with a value, then remove and delete the original instruction.
188 ///
ReplaceInstWithValue(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Value * V)189 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
190 BasicBlock::iterator &BI, Value *V) {
191 Instruction &I = *BI;
192 // Replaces all of the uses of the instruction with uses of the value
193 I.replaceAllUsesWith(V);
194
195 // Make sure to propagate a name if there is one already.
196 if (I.hasName() && !V->hasName())
197 V->takeName(&I);
198
199 // Delete the unnecessary instruction now...
200 BI = BIL.erase(BI);
201 }
202
203
204 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
205 /// instruction specified by I. The original instruction is deleted and BI is
206 /// updated to point to the new instruction.
207 ///
ReplaceInstWithInst(BasicBlock::InstListType & BIL,BasicBlock::iterator & BI,Instruction * I)208 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
209 BasicBlock::iterator &BI, Instruction *I) {
210 assert(I->getParent() == nullptr &&
211 "ReplaceInstWithInst: Instruction already inserted into basic block!");
212
213 // Copy debug location to newly added instruction, if it wasn't already set
214 // by the caller.
215 if (!I->getDebugLoc())
216 I->setDebugLoc(BI->getDebugLoc());
217
218 // Insert the new instruction into the basic block...
219 BasicBlock::iterator New = BIL.insert(BI, I);
220
221 // Replace all uses of the old instruction, and delete it.
222 ReplaceInstWithValue(BIL, BI, I);
223
224 // Move BI back to point to the newly inserted instruction
225 BI = New;
226 }
227
228 /// ReplaceInstWithInst - Replace the instruction specified by From with the
229 /// instruction specified by To.
230 ///
ReplaceInstWithInst(Instruction * From,Instruction * To)231 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
232 BasicBlock::iterator BI(From);
233 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
234 }
235
236 /// SplitEdge - Split the edge connecting specified block. Pass P must
237 /// not be NULL.
SplitEdge(BasicBlock * BB,BasicBlock * Succ,DominatorTree * DT,LoopInfo * LI)238 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
239 LoopInfo *LI) {
240 unsigned SuccNum = GetSuccessorNumber(BB, Succ);
241
242 // If this is a critical edge, let SplitCriticalEdge do it.
243 TerminatorInst *LatchTerm = BB->getTerminator();
244 if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
245 .setPreserveLCSSA()))
246 return LatchTerm->getSuccessor(SuccNum);
247
248 // If the edge isn't critical, then BB has a single successor or Succ has a
249 // single pred. Split the block.
250 if (BasicBlock *SP = Succ->getSinglePredecessor()) {
251 // If the successor only has a single pred, split the top of the successor
252 // block.
253 assert(SP == BB && "CFG broken");
254 SP = nullptr;
255 return SplitBlock(Succ, &Succ->front(), DT, LI);
256 }
257
258 // Otherwise, if BB has a single successor, split it at the bottom of the
259 // block.
260 assert(BB->getTerminator()->getNumSuccessors() == 1 &&
261 "Should have a single succ!");
262 return SplitBlock(BB, BB->getTerminator(), DT, LI);
263 }
264
265 unsigned
SplitAllCriticalEdges(Function & F,const CriticalEdgeSplittingOptions & Options)266 llvm::SplitAllCriticalEdges(Function &F,
267 const CriticalEdgeSplittingOptions &Options) {
268 unsigned NumBroken = 0;
269 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
270 TerminatorInst *TI = I->getTerminator();
271 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
272 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
273 if (SplitCriticalEdge(TI, i, Options))
274 ++NumBroken;
275 }
276 return NumBroken;
277 }
278
279 /// SplitBlock - Split the specified block at the specified instruction - every
280 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
281 /// to a new block. The two blocks are joined by an unconditional branch and
282 /// the loop info is updated.
283 ///
SplitBlock(BasicBlock * Old,Instruction * SplitPt,DominatorTree * DT,LoopInfo * LI)284 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
285 DominatorTree *DT, LoopInfo *LI) {
286 BasicBlock::iterator SplitIt = SplitPt->getIterator();
287 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
288 ++SplitIt;
289 BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
290
291 // The new block lives in whichever loop the old one did. This preserves
292 // LCSSA as well, because we force the split point to be after any PHI nodes.
293 if (LI)
294 if (Loop *L = LI->getLoopFor(Old))
295 L->addBasicBlockToLoop(New, *LI);
296
297 if (DT)
298 // Old dominates New. New node dominates all other nodes dominated by Old.
299 if (DomTreeNode *OldNode = DT->getNode(Old)) {
300 std::vector<DomTreeNode *> Children;
301 for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
302 I != E; ++I)
303 Children.push_back(*I);
304
305 DomTreeNode *NewNode = DT->addNewBlock(New, Old);
306 for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
307 E = Children.end(); I != E; ++I)
308 DT->changeImmediateDominator(*I, NewNode);
309 }
310
311 return New;
312 }
313
314 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
315 /// analysis information.
UpdateAnalysisInformation(BasicBlock * OldBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA,bool & HasLoopExit)316 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
317 ArrayRef<BasicBlock *> Preds,
318 DominatorTree *DT, LoopInfo *LI,
319 bool PreserveLCSSA, bool &HasLoopExit) {
320 // Update dominator tree if available.
321 if (DT)
322 DT->splitBlock(NewBB);
323
324 // The rest of the logic is only relevant for updating the loop structures.
325 if (!LI)
326 return;
327
328 Loop *L = LI->getLoopFor(OldBB);
329
330 // If we need to preserve loop analyses, collect some information about how
331 // this split will affect loops.
332 bool IsLoopEntry = !!L;
333 bool SplitMakesNewLoopHeader = false;
334 for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
335 i != e; ++i) {
336 BasicBlock *Pred = *i;
337
338 // If we need to preserve LCSSA, determine if any of the preds is a loop
339 // exit.
340 if (PreserveLCSSA)
341 if (Loop *PL = LI->getLoopFor(Pred))
342 if (!PL->contains(OldBB))
343 HasLoopExit = true;
344
345 // If we need to preserve LoopInfo, note whether any of the preds crosses
346 // an interesting loop boundary.
347 if (!L)
348 continue;
349 if (L->contains(Pred))
350 IsLoopEntry = false;
351 else
352 SplitMakesNewLoopHeader = true;
353 }
354
355 // Unless we have a loop for OldBB, nothing else to do here.
356 if (!L)
357 return;
358
359 if (IsLoopEntry) {
360 // Add the new block to the nearest enclosing loop (and not an adjacent
361 // loop). To find this, examine each of the predecessors and determine which
362 // loops enclose them, and select the most-nested loop which contains the
363 // loop containing the block being split.
364 Loop *InnermostPredLoop = nullptr;
365 for (ArrayRef<BasicBlock*>::iterator
366 i = Preds.begin(), e = Preds.end(); i != e; ++i) {
367 BasicBlock *Pred = *i;
368 if (Loop *PredLoop = LI->getLoopFor(Pred)) {
369 // Seek a loop which actually contains the block being split (to avoid
370 // adjacent loops).
371 while (PredLoop && !PredLoop->contains(OldBB))
372 PredLoop = PredLoop->getParentLoop();
373
374 // Select the most-nested of these loops which contains the block.
375 if (PredLoop && PredLoop->contains(OldBB) &&
376 (!InnermostPredLoop ||
377 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
378 InnermostPredLoop = PredLoop;
379 }
380 }
381
382 if (InnermostPredLoop)
383 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
384 } else {
385 L->addBasicBlockToLoop(NewBB, *LI);
386 if (SplitMakesNewLoopHeader)
387 L->moveToHeader(NewBB);
388 }
389 }
390
391 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
392 /// from NewBB. This also updates AliasAnalysis, if available.
UpdatePHINodes(BasicBlock * OrigBB,BasicBlock * NewBB,ArrayRef<BasicBlock * > Preds,BranchInst * BI,bool HasLoopExit)393 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
394 ArrayRef<BasicBlock *> Preds, BranchInst *BI,
395 bool HasLoopExit) {
396 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
397 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
398 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
399 PHINode *PN = cast<PHINode>(I++);
400
401 // Check to see if all of the values coming in are the same. If so, we
402 // don't need to create a new PHI node, unless it's needed for LCSSA.
403 Value *InVal = nullptr;
404 if (!HasLoopExit) {
405 InVal = PN->getIncomingValueForBlock(Preds[0]);
406 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
407 if (!PredSet.count(PN->getIncomingBlock(i)))
408 continue;
409 if (!InVal)
410 InVal = PN->getIncomingValue(i);
411 else if (InVal != PN->getIncomingValue(i)) {
412 InVal = nullptr;
413 break;
414 }
415 }
416 }
417
418 if (InVal) {
419 // If all incoming values for the new PHI would be the same, just don't
420 // make a new PHI. Instead, just remove the incoming values from the old
421 // PHI.
422
423 // NOTE! This loop walks backwards for a reason! First off, this minimizes
424 // the cost of removal if we end up removing a large number of values, and
425 // second off, this ensures that the indices for the incoming values
426 // aren't invalidated when we remove one.
427 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
428 if (PredSet.count(PN->getIncomingBlock(i)))
429 PN->removeIncomingValue(i, false);
430
431 // Add an incoming value to the PHI node in the loop for the preheader
432 // edge.
433 PN->addIncoming(InVal, NewBB);
434 continue;
435 }
436
437 // If the values coming into the block are not the same, we need a new
438 // PHI.
439 // Create the new PHI node, insert it into NewBB at the end of the block
440 PHINode *NewPHI =
441 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
442
443 // NOTE! This loop walks backwards for a reason! First off, this minimizes
444 // the cost of removal if we end up removing a large number of values, and
445 // second off, this ensures that the indices for the incoming values aren't
446 // invalidated when we remove one.
447 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
448 BasicBlock *IncomingBB = PN->getIncomingBlock(i);
449 if (PredSet.count(IncomingBB)) {
450 Value *V = PN->removeIncomingValue(i, false);
451 NewPHI->addIncoming(V, IncomingBB);
452 }
453 }
454
455 PN->addIncoming(NewPHI, NewBB);
456 }
457 }
458
459 /// SplitBlockPredecessors - This method introduces at least one new basic block
460 /// into the function and moves some of the predecessors of BB to be
461 /// predecessors of the new block. The new predecessors are indicated by the
462 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
463 /// block to which predecessors from Preds are now pointing.
464 ///
465 /// If BB is a landingpad block then additional basicblock might be introduced.
466 /// It will have suffix of 'Suffix'+".split_lp".
467 /// See SplitLandingPadPredecessors for more details on this case.
468 ///
469 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
470 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
471 /// preserve LoopSimplify (because it's complicated to handle the case where one
472 /// of the edges being split is an exit of a loop with other exits).
473 ///
SplitBlockPredecessors(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)474 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
475 ArrayRef<BasicBlock *> Preds,
476 const char *Suffix, DominatorTree *DT,
477 LoopInfo *LI, bool PreserveLCSSA) {
478 // Do not attempt to split that which cannot be split.
479 if (!BB->canSplitPredecessors())
480 return nullptr;
481
482 // For the landingpads we need to act a bit differently.
483 // Delegate this work to the SplitLandingPadPredecessors.
484 if (BB->isLandingPad()) {
485 SmallVector<BasicBlock*, 2> NewBBs;
486 std::string NewName = std::string(Suffix) + ".split-lp";
487
488 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
489 LI, PreserveLCSSA);
490 return NewBBs[0];
491 }
492
493 // Create new basic block, insert right before the original block.
494 BasicBlock *NewBB = BasicBlock::Create(
495 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
496
497 // The new block unconditionally branches to the old block.
498 BranchInst *BI = BranchInst::Create(BB, NewBB);
499 BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
500
501 // Move the edges from Preds to point to NewBB instead of BB.
502 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
503 // This is slightly more strict than necessary; the minimum requirement
504 // is that there be no more than one indirectbr branching to BB. And
505 // all BlockAddress uses would need to be updated.
506 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
507 "Cannot split an edge from an IndirectBrInst");
508 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
509 }
510
511 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
512 // node becomes an incoming value for BB's phi node. However, if the Preds
513 // list is empty, we need to insert dummy entries into the PHI nodes in BB to
514 // account for the newly created predecessor.
515 if (Preds.size() == 0) {
516 // Insert dummy values as the incoming value.
517 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
518 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
519 return NewBB;
520 }
521
522 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
523 bool HasLoopExit = false;
524 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
525 HasLoopExit);
526
527 // Update the PHI nodes in BB with the values coming from NewBB.
528 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
529 return NewBB;
530 }
531
532 /// SplitLandingPadPredecessors - This method transforms the landing pad,
533 /// OrigBB, by introducing two new basic blocks into the function. One of those
534 /// new basic blocks gets the predecessors listed in Preds. The other basic
535 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
536 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
537 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
538 ///
539 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
540 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
541 /// it does not preserve LoopSimplify (because it's complicated to handle the
542 /// case where one of the edges being split is an exit of a loop with other
543 /// exits).
544 ///
SplitLandingPadPredecessors(BasicBlock * OrigBB,ArrayRef<BasicBlock * > Preds,const char * Suffix1,const char * Suffix2,SmallVectorImpl<BasicBlock * > & NewBBs,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)545 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
546 ArrayRef<BasicBlock *> Preds,
547 const char *Suffix1, const char *Suffix2,
548 SmallVectorImpl<BasicBlock *> &NewBBs,
549 DominatorTree *DT, LoopInfo *LI,
550 bool PreserveLCSSA) {
551 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
552
553 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
554 // it right before the original block.
555 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
556 OrigBB->getName() + Suffix1,
557 OrigBB->getParent(), OrigBB);
558 NewBBs.push_back(NewBB1);
559
560 // The new block unconditionally branches to the old block.
561 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
562 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
563
564 // Move the edges from Preds to point to NewBB1 instead of OrigBB.
565 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
566 // This is slightly more strict than necessary; the minimum requirement
567 // is that there be no more than one indirectbr branching to BB. And
568 // all BlockAddress uses would need to be updated.
569 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
570 "Cannot split an edge from an IndirectBrInst");
571 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
572 }
573
574 bool HasLoopExit = false;
575 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
576 HasLoopExit);
577
578 // Update the PHI nodes in OrigBB with the values coming from NewBB1.
579 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
580
581 // Move the remaining edges from OrigBB to point to NewBB2.
582 SmallVector<BasicBlock*, 8> NewBB2Preds;
583 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
584 i != e; ) {
585 BasicBlock *Pred = *i++;
586 if (Pred == NewBB1) continue;
587 assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
588 "Cannot split an edge from an IndirectBrInst");
589 NewBB2Preds.push_back(Pred);
590 e = pred_end(OrigBB);
591 }
592
593 BasicBlock *NewBB2 = nullptr;
594 if (!NewBB2Preds.empty()) {
595 // Create another basic block for the rest of OrigBB's predecessors.
596 NewBB2 = BasicBlock::Create(OrigBB->getContext(),
597 OrigBB->getName() + Suffix2,
598 OrigBB->getParent(), OrigBB);
599 NewBBs.push_back(NewBB2);
600
601 // The new block unconditionally branches to the old block.
602 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
603 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
604
605 // Move the remaining edges from OrigBB to point to NewBB2.
606 for (SmallVectorImpl<BasicBlock*>::iterator
607 i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
608 (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
609
610 // Update DominatorTree, LoopInfo, and LCCSA analysis information.
611 HasLoopExit = false;
612 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
613 PreserveLCSSA, HasLoopExit);
614
615 // Update the PHI nodes in OrigBB with the values coming from NewBB2.
616 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
617 }
618
619 LandingPadInst *LPad = OrigBB->getLandingPadInst();
620 Instruction *Clone1 = LPad->clone();
621 Clone1->setName(Twine("lpad") + Suffix1);
622 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
623
624 if (NewBB2) {
625 Instruction *Clone2 = LPad->clone();
626 Clone2->setName(Twine("lpad") + Suffix2);
627 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
628
629 // Create a PHI node for the two cloned landingpad instructions.
630 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
631 PN->addIncoming(Clone1, NewBB1);
632 PN->addIncoming(Clone2, NewBB2);
633 LPad->replaceAllUsesWith(PN);
634 LPad->eraseFromParent();
635 } else {
636 // There is no second clone. Just replace the landing pad with the first
637 // clone.
638 LPad->replaceAllUsesWith(Clone1);
639 LPad->eraseFromParent();
640 }
641 }
642
643 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
644 /// instruction into a predecessor which ends in an unconditional branch. If
645 /// the return instruction returns a value defined by a PHI, propagate the
646 /// right value into the return. It returns the new return instruction in the
647 /// predecessor.
FoldReturnIntoUncondBranch(ReturnInst * RI,BasicBlock * BB,BasicBlock * Pred)648 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
649 BasicBlock *Pred) {
650 Instruction *UncondBranch = Pred->getTerminator();
651 // Clone the return and add it to the end of the predecessor.
652 Instruction *NewRet = RI->clone();
653 Pred->getInstList().push_back(NewRet);
654
655 // If the return instruction returns a value, and if the value was a
656 // PHI node in "BB", propagate the right value into the return.
657 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
658 i != e; ++i) {
659 Value *V = *i;
660 Instruction *NewBC = nullptr;
661 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
662 // Return value might be bitcasted. Clone and insert it before the
663 // return instruction.
664 V = BCI->getOperand(0);
665 NewBC = BCI->clone();
666 Pred->getInstList().insert(NewRet->getIterator(), NewBC);
667 *i = NewBC;
668 }
669 if (PHINode *PN = dyn_cast<PHINode>(V)) {
670 if (PN->getParent() == BB) {
671 if (NewBC)
672 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
673 else
674 *i = PN->getIncomingValueForBlock(Pred);
675 }
676 }
677 }
678
679 // Update any PHI nodes in the returning block to realize that we no
680 // longer branch to them.
681 BB->removePredecessor(Pred);
682 UncondBranch->eraseFromParent();
683 return cast<ReturnInst>(NewRet);
684 }
685
686 /// SplitBlockAndInsertIfThen - Split the containing block at the
687 /// specified instruction - everything before and including SplitBefore stays
688 /// in the old basic block, and everything after SplitBefore is moved to a
689 /// new block. The two blocks are connected by a conditional branch
690 /// (with value of Cmp being the condition).
691 /// Before:
692 /// Head
693 /// SplitBefore
694 /// Tail
695 /// After:
696 /// Head
697 /// if (Cond)
698 /// ThenBlock
699 /// SplitBefore
700 /// Tail
701 ///
702 /// If Unreachable is true, then ThenBlock ends with
703 /// UnreachableInst, otherwise it branches to Tail.
704 /// Returns the NewBasicBlock's terminator.
705
SplitBlockAndInsertIfThen(Value * Cond,Instruction * SplitBefore,bool Unreachable,MDNode * BranchWeights,DominatorTree * DT)706 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
707 Instruction *SplitBefore,
708 bool Unreachable,
709 MDNode *BranchWeights,
710 DominatorTree *DT) {
711 BasicBlock *Head = SplitBefore->getParent();
712 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
713 TerminatorInst *HeadOldTerm = Head->getTerminator();
714 LLVMContext &C = Head->getContext();
715 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
716 TerminatorInst *CheckTerm;
717 if (Unreachable)
718 CheckTerm = new UnreachableInst(C, ThenBlock);
719 else
720 CheckTerm = BranchInst::Create(Tail, ThenBlock);
721 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
722 BranchInst *HeadNewTerm =
723 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
724 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
725 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
726
727 if (DT) {
728 if (DomTreeNode *OldNode = DT->getNode(Head)) {
729 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
730
731 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
732 for (auto Child : Children)
733 DT->changeImmediateDominator(Child, NewNode);
734
735 // Head dominates ThenBlock.
736 DT->addNewBlock(ThenBlock, Head);
737 }
738 }
739
740 return CheckTerm;
741 }
742
743 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
744 /// but also creates the ElseBlock.
745 /// Before:
746 /// Head
747 /// SplitBefore
748 /// Tail
749 /// After:
750 /// Head
751 /// if (Cond)
752 /// ThenBlock
753 /// else
754 /// ElseBlock
755 /// SplitBefore
756 /// Tail
SplitBlockAndInsertIfThenElse(Value * Cond,Instruction * SplitBefore,TerminatorInst ** ThenTerm,TerminatorInst ** ElseTerm,MDNode * BranchWeights)757 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
758 TerminatorInst **ThenTerm,
759 TerminatorInst **ElseTerm,
760 MDNode *BranchWeights) {
761 BasicBlock *Head = SplitBefore->getParent();
762 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
763 TerminatorInst *HeadOldTerm = Head->getTerminator();
764 LLVMContext &C = Head->getContext();
765 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
766 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
767 *ThenTerm = BranchInst::Create(Tail, ThenBlock);
768 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
769 *ElseTerm = BranchInst::Create(Tail, ElseBlock);
770 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
771 BranchInst *HeadNewTerm =
772 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
773 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
774 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
775 }
776
777
778 /// GetIfCondition - Given a basic block (BB) with two predecessors,
779 /// check to see if the merge at this block is due
780 /// to an "if condition". If so, return the boolean condition that determines
781 /// which entry into BB will be taken. Also, return by references the block
782 /// that will be entered from if the condition is true, and the block that will
783 /// be entered if the condition is false.
784 ///
785 /// This does no checking to see if the true/false blocks have large or unsavory
786 /// instructions in them.
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)787 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
788 BasicBlock *&IfFalse) {
789 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
790 BasicBlock *Pred1 = nullptr;
791 BasicBlock *Pred2 = nullptr;
792
793 if (SomePHI) {
794 if (SomePHI->getNumIncomingValues() != 2)
795 return nullptr;
796 Pred1 = SomePHI->getIncomingBlock(0);
797 Pred2 = SomePHI->getIncomingBlock(1);
798 } else {
799 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
800 if (PI == PE) // No predecessor
801 return nullptr;
802 Pred1 = *PI++;
803 if (PI == PE) // Only one predecessor
804 return nullptr;
805 Pred2 = *PI++;
806 if (PI != PE) // More than two predecessors
807 return nullptr;
808 }
809
810 // We can only handle branches. Other control flow will be lowered to
811 // branches if possible anyway.
812 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
813 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
814 if (!Pred1Br || !Pred2Br)
815 return nullptr;
816
817 // Eliminate code duplication by ensuring that Pred1Br is conditional if
818 // either are.
819 if (Pred2Br->isConditional()) {
820 // If both branches are conditional, we don't have an "if statement". In
821 // reality, we could transform this case, but since the condition will be
822 // required anyway, we stand no chance of eliminating it, so the xform is
823 // probably not profitable.
824 if (Pred1Br->isConditional())
825 return nullptr;
826
827 std::swap(Pred1, Pred2);
828 std::swap(Pred1Br, Pred2Br);
829 }
830
831 if (Pred1Br->isConditional()) {
832 // The only thing we have to watch out for here is to make sure that Pred2
833 // doesn't have incoming edges from other blocks. If it does, the condition
834 // doesn't dominate BB.
835 if (!Pred2->getSinglePredecessor())
836 return nullptr;
837
838 // If we found a conditional branch predecessor, make sure that it branches
839 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
840 if (Pred1Br->getSuccessor(0) == BB &&
841 Pred1Br->getSuccessor(1) == Pred2) {
842 IfTrue = Pred1;
843 IfFalse = Pred2;
844 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
845 Pred1Br->getSuccessor(1) == BB) {
846 IfTrue = Pred2;
847 IfFalse = Pred1;
848 } else {
849 // We know that one arm of the conditional goes to BB, so the other must
850 // go somewhere unrelated, and this must not be an "if statement".
851 return nullptr;
852 }
853
854 return Pred1Br->getCondition();
855 }
856
857 // Ok, if we got here, both predecessors end with an unconditional branch to
858 // BB. Don't panic! If both blocks only have a single (identical)
859 // predecessor, and THAT is a conditional branch, then we're all ok!
860 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
861 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
862 return nullptr;
863
864 // Otherwise, if this is a conditional branch, then we can use it!
865 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
866 if (!BI) return nullptr;
867
868 assert(BI->isConditional() && "Two successors but not conditional?");
869 if (BI->getSuccessor(0) == Pred1) {
870 IfTrue = Pred1;
871 IfFalse = Pred2;
872 } else {
873 IfTrue = Pred2;
874 IfFalse = Pred1;
875 }
876 return BI->getCondition();
877 }
878