1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/Analysis/ScalarEvolution.h"
16 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/IR/ValueHandle.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Transforms/Utils/LoopUtils.h"
23
24 using namespace llvm;
25 using namespace llvm::PatternMatch;
26
27 #define DEBUG_TYPE "loop-utils"
28
areAllUsesIn(Instruction * I,SmallPtrSetImpl<Instruction * > & Set)29 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
30 SmallPtrSetImpl<Instruction *> &Set) {
31 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
32 if (!Set.count(dyn_cast<Instruction>(*Use)))
33 return false;
34 return true;
35 }
36
isIntegerRecurrenceKind(RecurrenceKind Kind)37 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
38 switch (Kind) {
39 default:
40 break;
41 case RK_IntegerAdd:
42 case RK_IntegerMult:
43 case RK_IntegerOr:
44 case RK_IntegerAnd:
45 case RK_IntegerXor:
46 case RK_IntegerMinMax:
47 return true;
48 }
49 return false;
50 }
51
isFloatingPointRecurrenceKind(RecurrenceKind Kind)52 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
53 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
54 }
55
isArithmeticRecurrenceKind(RecurrenceKind Kind)56 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
57 switch (Kind) {
58 default:
59 break;
60 case RK_IntegerAdd:
61 case RK_IntegerMult:
62 case RK_FloatAdd:
63 case RK_FloatMult:
64 return true;
65 }
66 return false;
67 }
68
69 Instruction *
lookThroughAnd(PHINode * Phi,Type * & RT,SmallPtrSetImpl<Instruction * > & Visited,SmallPtrSetImpl<Instruction * > & CI)70 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
71 SmallPtrSetImpl<Instruction *> &Visited,
72 SmallPtrSetImpl<Instruction *> &CI) {
73 if (!Phi->hasOneUse())
74 return Phi;
75
76 const APInt *M = nullptr;
77 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
78
79 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
80 // with a new integer type of the corresponding bit width.
81 if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
82 m_And(m_APInt(M), m_Instruction(I))))) {
83 int32_t Bits = (*M + 1).exactLogBase2();
84 if (Bits > 0) {
85 RT = IntegerType::get(Phi->getContext(), Bits);
86 Visited.insert(Phi);
87 CI.insert(J);
88 return J;
89 }
90 }
91 return Phi;
92 }
93
getSourceExtensionKind(Instruction * Start,Instruction * Exit,Type * RT,bool & IsSigned,SmallPtrSetImpl<Instruction * > & Visited,SmallPtrSetImpl<Instruction * > & CI)94 bool RecurrenceDescriptor::getSourceExtensionKind(
95 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
96 SmallPtrSetImpl<Instruction *> &Visited,
97 SmallPtrSetImpl<Instruction *> &CI) {
98
99 SmallVector<Instruction *, 8> Worklist;
100 bool FoundOneOperand = false;
101 unsigned DstSize = RT->getPrimitiveSizeInBits();
102 Worklist.push_back(Exit);
103
104 // Traverse the instructions in the reduction expression, beginning with the
105 // exit value.
106 while (!Worklist.empty()) {
107 Instruction *I = Worklist.pop_back_val();
108 for (Use &U : I->operands()) {
109
110 // Terminate the traversal if the operand is not an instruction, or we
111 // reach the starting value.
112 Instruction *J = dyn_cast<Instruction>(U.get());
113 if (!J || J == Start)
114 continue;
115
116 // Otherwise, investigate the operation if it is also in the expression.
117 if (Visited.count(J)) {
118 Worklist.push_back(J);
119 continue;
120 }
121
122 // If the operand is not in Visited, it is not a reduction operation, but
123 // it does feed into one. Make sure it is either a single-use sign- or
124 // zero-extend instruction.
125 CastInst *Cast = dyn_cast<CastInst>(J);
126 bool IsSExtInst = isa<SExtInst>(J);
127 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
128 return false;
129
130 // Ensure the source type of the extend is no larger than the reduction
131 // type. It is not necessary for the types to be identical.
132 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
133 if (SrcSize > DstSize)
134 return false;
135
136 // Furthermore, ensure that all such extends are of the same kind.
137 if (FoundOneOperand) {
138 if (IsSigned != IsSExtInst)
139 return false;
140 } else {
141 FoundOneOperand = true;
142 IsSigned = IsSExtInst;
143 }
144
145 // Lastly, if the source type of the extend matches the reduction type,
146 // add the extend to CI so that we can avoid accounting for it in the
147 // cost model.
148 if (SrcSize == DstSize)
149 CI.insert(Cast);
150 }
151 }
152 return true;
153 }
154
AddReductionVar(PHINode * Phi,RecurrenceKind Kind,Loop * TheLoop,bool HasFunNoNaNAttr,RecurrenceDescriptor & RedDes)155 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
156 Loop *TheLoop, bool HasFunNoNaNAttr,
157 RecurrenceDescriptor &RedDes) {
158 if (Phi->getNumIncomingValues() != 2)
159 return false;
160
161 // Reduction variables are only found in the loop header block.
162 if (Phi->getParent() != TheLoop->getHeader())
163 return false;
164
165 // Obtain the reduction start value from the value that comes from the loop
166 // preheader.
167 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
168
169 // ExitInstruction is the single value which is used outside the loop.
170 // We only allow for a single reduction value to be used outside the loop.
171 // This includes users of the reduction, variables (which form a cycle
172 // which ends in the phi node).
173 Instruction *ExitInstruction = nullptr;
174 // Indicates that we found a reduction operation in our scan.
175 bool FoundReduxOp = false;
176
177 // We start with the PHI node and scan for all of the users of this
178 // instruction. All users must be instructions that can be used as reduction
179 // variables (such as ADD). We must have a single out-of-block user. The cycle
180 // must include the original PHI.
181 bool FoundStartPHI = false;
182
183 // To recognize min/max patterns formed by a icmp select sequence, we store
184 // the number of instruction we saw from the recognized min/max pattern,
185 // to make sure we only see exactly the two instructions.
186 unsigned NumCmpSelectPatternInst = 0;
187 InstDesc ReduxDesc(false, nullptr);
188
189 // Data used for determining if the recurrence has been type-promoted.
190 Type *RecurrenceType = Phi->getType();
191 SmallPtrSet<Instruction *, 4> CastInsts;
192 Instruction *Start = Phi;
193 bool IsSigned = false;
194
195 SmallPtrSet<Instruction *, 8> VisitedInsts;
196 SmallVector<Instruction *, 8> Worklist;
197
198 // Return early if the recurrence kind does not match the type of Phi. If the
199 // recurrence kind is arithmetic, we attempt to look through AND operations
200 // resulting from the type promotion performed by InstCombine. Vector
201 // operations are not limited to the legal integer widths, so we may be able
202 // to evaluate the reduction in the narrower width.
203 if (RecurrenceType->isFloatingPointTy()) {
204 if (!isFloatingPointRecurrenceKind(Kind))
205 return false;
206 } else {
207 if (!isIntegerRecurrenceKind(Kind))
208 return false;
209 if (isArithmeticRecurrenceKind(Kind))
210 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
211 }
212
213 Worklist.push_back(Start);
214 VisitedInsts.insert(Start);
215
216 // A value in the reduction can be used:
217 // - By the reduction:
218 // - Reduction operation:
219 // - One use of reduction value (safe).
220 // - Multiple use of reduction value (not safe).
221 // - PHI:
222 // - All uses of the PHI must be the reduction (safe).
223 // - Otherwise, not safe.
224 // - By one instruction outside of the loop (safe).
225 // - By further instructions outside of the loop (not safe).
226 // - By an instruction that is not part of the reduction (not safe).
227 // This is either:
228 // * An instruction type other than PHI or the reduction operation.
229 // * A PHI in the header other than the initial PHI.
230 while (!Worklist.empty()) {
231 Instruction *Cur = Worklist.back();
232 Worklist.pop_back();
233
234 // No Users.
235 // If the instruction has no users then this is a broken chain and can't be
236 // a reduction variable.
237 if (Cur->use_empty())
238 return false;
239
240 bool IsAPhi = isa<PHINode>(Cur);
241
242 // A header PHI use other than the original PHI.
243 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
244 return false;
245
246 // Reductions of instructions such as Div, and Sub is only possible if the
247 // LHS is the reduction variable.
248 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
249 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
250 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
251 return false;
252
253 // Any reduction instruction must be of one of the allowed kinds. We ignore
254 // the starting value (the Phi or an AND instruction if the Phi has been
255 // type-promoted).
256 if (Cur != Start) {
257 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
258 if (!ReduxDesc.isRecurrence())
259 return false;
260 }
261
262 // A reduction operation must only have one use of the reduction value.
263 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
264 hasMultipleUsesOf(Cur, VisitedInsts))
265 return false;
266
267 // All inputs to a PHI node must be a reduction value.
268 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
269 return false;
270
271 if (Kind == RK_IntegerMinMax &&
272 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
273 ++NumCmpSelectPatternInst;
274 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
275 ++NumCmpSelectPatternInst;
276
277 // Check whether we found a reduction operator.
278 FoundReduxOp |= !IsAPhi && Cur != Start;
279
280 // Process users of current instruction. Push non-PHI nodes after PHI nodes
281 // onto the stack. This way we are going to have seen all inputs to PHI
282 // nodes once we get to them.
283 SmallVector<Instruction *, 8> NonPHIs;
284 SmallVector<Instruction *, 8> PHIs;
285 for (User *U : Cur->users()) {
286 Instruction *UI = cast<Instruction>(U);
287
288 // Check if we found the exit user.
289 BasicBlock *Parent = UI->getParent();
290 if (!TheLoop->contains(Parent)) {
291 // Exit if you find multiple outside users or if the header phi node is
292 // being used. In this case the user uses the value of the previous
293 // iteration, in which case we would loose "VF-1" iterations of the
294 // reduction operation if we vectorize.
295 if (ExitInstruction != nullptr || Cur == Phi)
296 return false;
297
298 // The instruction used by an outside user must be the last instruction
299 // before we feed back to the reduction phi. Otherwise, we loose VF-1
300 // operations on the value.
301 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
302 return false;
303
304 ExitInstruction = Cur;
305 continue;
306 }
307
308 // Process instructions only once (termination). Each reduction cycle
309 // value must only be used once, except by phi nodes and min/max
310 // reductions which are represented as a cmp followed by a select.
311 InstDesc IgnoredVal(false, nullptr);
312 if (VisitedInsts.insert(UI).second) {
313 if (isa<PHINode>(UI))
314 PHIs.push_back(UI);
315 else
316 NonPHIs.push_back(UI);
317 } else if (!isa<PHINode>(UI) &&
318 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
319 !isa<SelectInst>(UI)) ||
320 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
321 return false;
322
323 // Remember that we completed the cycle.
324 if (UI == Phi)
325 FoundStartPHI = true;
326 }
327 Worklist.append(PHIs.begin(), PHIs.end());
328 Worklist.append(NonPHIs.begin(), NonPHIs.end());
329 }
330
331 // This means we have seen one but not the other instruction of the
332 // pattern or more than just a select and cmp.
333 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
334 NumCmpSelectPatternInst != 2)
335 return false;
336
337 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
338 return false;
339
340 // If we think Phi may have been type-promoted, we also need to ensure that
341 // all source operands of the reduction are either SExtInsts or ZEstInsts. If
342 // so, we will be able to evaluate the reduction in the narrower bit width.
343 if (Start != Phi)
344 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
345 IsSigned, VisitedInsts, CastInsts))
346 return false;
347
348 // We found a reduction var if we have reached the original phi node and we
349 // only have a single instruction with out-of-loop users.
350
351 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
352 // is saved as part of the RecurrenceDescriptor.
353
354 // Save the description of this reduction variable.
355 RecurrenceDescriptor RD(
356 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
357 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
358 RedDes = RD;
359
360 return true;
361 }
362
363 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
364 /// pattern corresponding to a min(X, Y) or max(X, Y).
365 RecurrenceDescriptor::InstDesc
isMinMaxSelectCmpPattern(Instruction * I,InstDesc & Prev)366 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
367
368 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
369 "Expect a select instruction");
370 Instruction *Cmp = nullptr;
371 SelectInst *Select = nullptr;
372
373 // We must handle the select(cmp()) as a single instruction. Advance to the
374 // select.
375 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
376 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
377 return InstDesc(false, I);
378 return InstDesc(Select, Prev.getMinMaxKind());
379 }
380
381 // Only handle single use cases for now.
382 if (!(Select = dyn_cast<SelectInst>(I)))
383 return InstDesc(false, I);
384 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
385 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
386 return InstDesc(false, I);
387 if (!Cmp->hasOneUse())
388 return InstDesc(false, I);
389
390 Value *CmpLeft;
391 Value *CmpRight;
392
393 // Look for a min/max pattern.
394 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
395 return InstDesc(Select, MRK_UIntMin);
396 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
397 return InstDesc(Select, MRK_UIntMax);
398 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
399 return InstDesc(Select, MRK_SIntMax);
400 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
401 return InstDesc(Select, MRK_SIntMin);
402 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
403 return InstDesc(Select, MRK_FloatMin);
404 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
405 return InstDesc(Select, MRK_FloatMax);
406 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
407 return InstDesc(Select, MRK_FloatMin);
408 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
409 return InstDesc(Select, MRK_FloatMax);
410
411 return InstDesc(false, I);
412 }
413
414 RecurrenceDescriptor::InstDesc
isRecurrenceInstr(Instruction * I,RecurrenceKind Kind,InstDesc & Prev,bool HasFunNoNaNAttr)415 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
416 InstDesc &Prev, bool HasFunNoNaNAttr) {
417 bool FP = I->getType()->isFloatingPointTy();
418 Instruction *UAI = Prev.getUnsafeAlgebraInst();
419 if (!UAI && FP && !I->hasUnsafeAlgebra())
420 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
421
422 switch (I->getOpcode()) {
423 default:
424 return InstDesc(false, I);
425 case Instruction::PHI:
426 return InstDesc(I, Prev.getMinMaxKind());
427 case Instruction::Sub:
428 case Instruction::Add:
429 return InstDesc(Kind == RK_IntegerAdd, I);
430 case Instruction::Mul:
431 return InstDesc(Kind == RK_IntegerMult, I);
432 case Instruction::And:
433 return InstDesc(Kind == RK_IntegerAnd, I);
434 case Instruction::Or:
435 return InstDesc(Kind == RK_IntegerOr, I);
436 case Instruction::Xor:
437 return InstDesc(Kind == RK_IntegerXor, I);
438 case Instruction::FMul:
439 return InstDesc(Kind == RK_FloatMult, I, UAI);
440 case Instruction::FSub:
441 case Instruction::FAdd:
442 return InstDesc(Kind == RK_FloatAdd, I, UAI);
443 case Instruction::FCmp:
444 case Instruction::ICmp:
445 case Instruction::Select:
446 if (Kind != RK_IntegerMinMax &&
447 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
448 return InstDesc(false, I);
449 return isMinMaxSelectCmpPattern(I, Prev);
450 }
451 }
452
hasMultipleUsesOf(Instruction * I,SmallPtrSetImpl<Instruction * > & Insts)453 bool RecurrenceDescriptor::hasMultipleUsesOf(
454 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
455 unsigned NumUses = 0;
456 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
457 ++Use) {
458 if (Insts.count(dyn_cast<Instruction>(*Use)))
459 ++NumUses;
460 if (NumUses > 1)
461 return true;
462 }
463
464 return false;
465 }
isReductionPHI(PHINode * Phi,Loop * TheLoop,RecurrenceDescriptor & RedDes)466 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
467 RecurrenceDescriptor &RedDes) {
468
469 bool HasFunNoNaNAttr = false;
470 BasicBlock *Header = TheLoop->getHeader();
471 Function &F = *Header->getParent();
472 if (F.hasFnAttribute("no-nans-fp-math"))
473 HasFunNoNaNAttr =
474 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
475
476 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
477 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
478 return true;
479 }
480 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
481 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
482 return true;
483 }
484 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
485 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
486 return true;
487 }
488 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
489 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
490 return true;
491 }
492 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
493 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
494 return true;
495 }
496 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
497 RedDes)) {
498 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
499 return true;
500 }
501 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
502 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
503 return true;
504 }
505 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
506 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
507 return true;
508 }
509 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
510 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
511 return true;
512 }
513 // Not a reduction of known type.
514 return false;
515 }
516
517 /// This function returns the identity element (or neutral element) for
518 /// the operation K.
getRecurrenceIdentity(RecurrenceKind K,Type * Tp)519 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
520 Type *Tp) {
521 switch (K) {
522 case RK_IntegerXor:
523 case RK_IntegerAdd:
524 case RK_IntegerOr:
525 // Adding, Xoring, Oring zero to a number does not change it.
526 return ConstantInt::get(Tp, 0);
527 case RK_IntegerMult:
528 // Multiplying a number by 1 does not change it.
529 return ConstantInt::get(Tp, 1);
530 case RK_IntegerAnd:
531 // AND-ing a number with an all-1 value does not change it.
532 return ConstantInt::get(Tp, -1, true);
533 case RK_FloatMult:
534 // Multiplying a number by 1 does not change it.
535 return ConstantFP::get(Tp, 1.0L);
536 case RK_FloatAdd:
537 // Adding zero to a number does not change it.
538 return ConstantFP::get(Tp, 0.0L);
539 default:
540 llvm_unreachable("Unknown recurrence kind");
541 }
542 }
543
544 /// This function translates the recurrence kind to an LLVM binary operator.
getRecurrenceBinOp(RecurrenceKind Kind)545 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
546 switch (Kind) {
547 case RK_IntegerAdd:
548 return Instruction::Add;
549 case RK_IntegerMult:
550 return Instruction::Mul;
551 case RK_IntegerOr:
552 return Instruction::Or;
553 case RK_IntegerAnd:
554 return Instruction::And;
555 case RK_IntegerXor:
556 return Instruction::Xor;
557 case RK_FloatMult:
558 return Instruction::FMul;
559 case RK_FloatAdd:
560 return Instruction::FAdd;
561 case RK_IntegerMinMax:
562 return Instruction::ICmp;
563 case RK_FloatMinMax:
564 return Instruction::FCmp;
565 default:
566 llvm_unreachable("Unknown recurrence operation");
567 }
568 }
569
createMinMaxOp(IRBuilder<> & Builder,MinMaxRecurrenceKind RK,Value * Left,Value * Right)570 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
571 MinMaxRecurrenceKind RK,
572 Value *Left, Value *Right) {
573 CmpInst::Predicate P = CmpInst::ICMP_NE;
574 switch (RK) {
575 default:
576 llvm_unreachable("Unknown min/max recurrence kind");
577 case MRK_UIntMin:
578 P = CmpInst::ICMP_ULT;
579 break;
580 case MRK_UIntMax:
581 P = CmpInst::ICMP_UGT;
582 break;
583 case MRK_SIntMin:
584 P = CmpInst::ICMP_SLT;
585 break;
586 case MRK_SIntMax:
587 P = CmpInst::ICMP_SGT;
588 break;
589 case MRK_FloatMin:
590 P = CmpInst::FCMP_OLT;
591 break;
592 case MRK_FloatMax:
593 P = CmpInst::FCMP_OGT;
594 break;
595 }
596
597 // We only match FP sequences with unsafe algebra, so we can unconditionally
598 // set it on any generated instructions.
599 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
600 FastMathFlags FMF;
601 FMF.setUnsafeAlgebra();
602 Builder.SetFastMathFlags(FMF);
603
604 Value *Cmp;
605 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
606 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
607 else
608 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
609
610 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
611 return Select;
612 }
613
InductionDescriptor(Value * Start,InductionKind K,ConstantInt * Step)614 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
615 ConstantInt *Step)
616 : StartValue(Start), IK(K), StepValue(Step) {
617 assert(IK != IK_NoInduction && "Not an induction");
618 assert(StartValue && "StartValue is null");
619 assert(StepValue && !StepValue->isZero() && "StepValue is zero");
620 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
621 "StartValue is not a pointer for pointer induction");
622 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
623 "StartValue is not an integer for integer induction");
624 assert(StepValue->getType()->isIntegerTy() &&
625 "StepValue is not an integer");
626 }
627
getConsecutiveDirection() const628 int InductionDescriptor::getConsecutiveDirection() const {
629 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
630 return StepValue->getSExtValue();
631 return 0;
632 }
633
transform(IRBuilder<> & B,Value * Index) const634 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const {
635 switch (IK) {
636 case IK_IntInduction:
637 assert(Index->getType() == StartValue->getType() &&
638 "Index type does not match StartValue type");
639 if (StepValue->isMinusOne())
640 return B.CreateSub(StartValue, Index);
641 if (!StepValue->isOne())
642 Index = B.CreateMul(Index, StepValue);
643 return B.CreateAdd(StartValue, Index);
644
645 case IK_PtrInduction:
646 assert(Index->getType() == StepValue->getType() &&
647 "Index type does not match StepValue type");
648 if (StepValue->isMinusOne())
649 Index = B.CreateNeg(Index);
650 else if (!StepValue->isOne())
651 Index = B.CreateMul(Index, StepValue);
652 return B.CreateGEP(nullptr, StartValue, Index);
653
654 case IK_NoInduction:
655 return nullptr;
656 }
657 llvm_unreachable("invalid enum");
658 }
659
isInductionPHI(PHINode * Phi,ScalarEvolution * SE,InductionDescriptor & D)660 bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
661 InductionDescriptor &D) {
662 Type *PhiTy = Phi->getType();
663 // We only handle integer and pointer inductions variables.
664 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
665 return false;
666
667 // Check that the PHI is consecutive.
668 const SCEV *PhiScev = SE->getSCEV(Phi);
669 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
670 if (!AR) {
671 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
672 return false;
673 }
674
675 assert(AR->getLoop()->getHeader() == Phi->getParent() &&
676 "PHI is an AddRec for a different loop?!");
677 Value *StartValue =
678 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
679 const SCEV *Step = AR->getStepRecurrence(*SE);
680 // Calculate the pointer stride and check if it is consecutive.
681 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
682 if (!C)
683 return false;
684
685 ConstantInt *CV = C->getValue();
686 if (PhiTy->isIntegerTy()) {
687 D = InductionDescriptor(StartValue, IK_IntInduction, CV);
688 return true;
689 }
690
691 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
692 Type *PointerElementType = PhiTy->getPointerElementType();
693 // The pointer stride cannot be determined if the pointer element type is not
694 // sized.
695 if (!PointerElementType->isSized())
696 return false;
697
698 const DataLayout &DL = Phi->getModule()->getDataLayout();
699 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
700 if (!Size)
701 return false;
702
703 int64_t CVSize = CV->getSExtValue();
704 if (CVSize % Size)
705 return false;
706 auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
707
708 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
709 return true;
710 }
711
712 /// \brief Returns the instructions that use values defined in the loop.
findDefsUsedOutsideOfLoop(Loop * L)713 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
714 SmallVector<Instruction *, 8> UsedOutside;
715
716 for (auto *Block : L->getBlocks())
717 // FIXME: I believe that this could use copy_if if the Inst reference could
718 // be adapted into a pointer.
719 for (auto &Inst : *Block) {
720 auto Users = Inst.users();
721 if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
722 auto *Use = cast<Instruction>(U);
723 return !L->contains(Use->getParent());
724 }))
725 UsedOutside.push_back(&Inst);
726 }
727
728 return UsedOutside;
729 }
730