1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification. If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/Allocator.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include "llvm/Transforms/Utils/Local.h"
36
37 using namespace llvm;
38 using namespace PatternMatch;
39
40 static cl::opt<bool>
41 ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
42 cl::desc("Treat error-reporting calls as cold"));
43
44 static cl::opt<bool>
45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
46 cl::init(false),
47 cl::desc("Enable unsafe double to float "
48 "shrinking for math lib calls"));
49
50
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54
ignoreCallingConv(LibFunc::Func Func)55 static bool ignoreCallingConv(LibFunc::Func Func) {
56 return Func == LibFunc::abs || Func == LibFunc::labs ||
57 Func == LibFunc::llabs || Func == LibFunc::strlen;
58 }
59
60 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
61 /// value is equal or not-equal to zero.
isOnlyUsedInZeroEqualityComparison(Value * V)62 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
63 for (User *U : V->users()) {
64 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
65 if (IC->isEquality())
66 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
67 if (C->isNullValue())
68 continue;
69 // Unknown instruction.
70 return false;
71 }
72 return true;
73 }
74
75 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
76 /// comparisons with With.
isOnlyUsedInEqualityComparison(Value * V,Value * With)77 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
78 for (User *U : V->users()) {
79 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
80 if (IC->isEquality() && IC->getOperand(1) == With)
81 continue;
82 // Unknown instruction.
83 return false;
84 }
85 return true;
86 }
87
callHasFloatingPointArgument(const CallInst * CI)88 static bool callHasFloatingPointArgument(const CallInst *CI) {
89 return std::any_of(CI->op_begin(), CI->op_end(), [](const Use &OI) {
90 return OI->getType()->isFloatingPointTy();
91 });
92 }
93
94 /// \brief Check whether the overloaded unary floating point function
95 /// corresponding to \a Ty is available.
hasUnaryFloatFn(const TargetLibraryInfo * TLI,Type * Ty,LibFunc::Func DoubleFn,LibFunc::Func FloatFn,LibFunc::Func LongDoubleFn)96 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
97 LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
98 LibFunc::Func LongDoubleFn) {
99 switch (Ty->getTypeID()) {
100 case Type::FloatTyID:
101 return TLI->has(FloatFn);
102 case Type::DoubleTyID:
103 return TLI->has(DoubleFn);
104 default:
105 return TLI->has(LongDoubleFn);
106 }
107 }
108
109 /// \brief Check whether we can use unsafe floating point math for
110 /// the function passed as input.
canUseUnsafeFPMath(Function * F)111 static bool canUseUnsafeFPMath(Function *F) {
112
113 // FIXME: For finer-grain optimization, we need intrinsics to have the same
114 // fast-math flag decorations that are applied to FP instructions. For now,
115 // we have to rely on the function-level unsafe-fp-math attribute to do this
116 // optimization because there's no other way to express that the call can be
117 // relaxed.
118 if (F->hasFnAttribute("unsafe-fp-math")) {
119 Attribute Attr = F->getFnAttribute("unsafe-fp-math");
120 if (Attr.getValueAsString() == "true")
121 return true;
122 }
123 return false;
124 }
125
126 /// \brief Returns whether \p F matches the signature expected for the
127 /// string/memory copying library function \p Func.
128 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
129 /// Their fortified (_chk) counterparts are also accepted.
checkStringCopyLibFuncSignature(Function * F,LibFunc::Func Func)130 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
131 const DataLayout &DL = F->getParent()->getDataLayout();
132 FunctionType *FT = F->getFunctionType();
133 LLVMContext &Context = F->getContext();
134 Type *PCharTy = Type::getInt8PtrTy(Context);
135 Type *SizeTTy = DL.getIntPtrType(Context);
136 unsigned NumParams = FT->getNumParams();
137
138 // All string libfuncs return the same type as the first parameter.
139 if (FT->getReturnType() != FT->getParamType(0))
140 return false;
141
142 switch (Func) {
143 default:
144 llvm_unreachable("Can't check signature for non-string-copy libfunc.");
145 case LibFunc::stpncpy_chk:
146 case LibFunc::strncpy_chk:
147 --NumParams; // fallthrough
148 case LibFunc::stpncpy:
149 case LibFunc::strncpy: {
150 if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
151 FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
152 return false;
153 break;
154 }
155 case LibFunc::strcpy_chk:
156 case LibFunc::stpcpy_chk:
157 --NumParams; // fallthrough
158 case LibFunc::stpcpy:
159 case LibFunc::strcpy: {
160 if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
161 FT->getParamType(0) != PCharTy)
162 return false;
163 break;
164 }
165 case LibFunc::memmove_chk:
166 case LibFunc::memcpy_chk:
167 --NumParams; // fallthrough
168 case LibFunc::memmove:
169 case LibFunc::memcpy: {
170 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
171 !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
172 return false;
173 break;
174 }
175 case LibFunc::memset_chk:
176 --NumParams; // fallthrough
177 case LibFunc::memset: {
178 if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
179 !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
180 return false;
181 break;
182 }
183 }
184 // If this is a fortified libcall, the last parameter is a size_t.
185 if (NumParams == FT->getNumParams() - 1)
186 return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
187 return true;
188 }
189
190 //===----------------------------------------------------------------------===//
191 // String and Memory Library Call Optimizations
192 //===----------------------------------------------------------------------===//
193
optimizeStrCat(CallInst * CI,IRBuilder<> & B)194 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
195 Function *Callee = CI->getCalledFunction();
196 // Verify the "strcat" function prototype.
197 FunctionType *FT = Callee->getFunctionType();
198 if (FT->getNumParams() != 2||
199 FT->getReturnType() != B.getInt8PtrTy() ||
200 FT->getParamType(0) != FT->getReturnType() ||
201 FT->getParamType(1) != FT->getReturnType())
202 return nullptr;
203
204 // Extract some information from the instruction
205 Value *Dst = CI->getArgOperand(0);
206 Value *Src = CI->getArgOperand(1);
207
208 // See if we can get the length of the input string.
209 uint64_t Len = GetStringLength(Src);
210 if (Len == 0)
211 return nullptr;
212 --Len; // Unbias length.
213
214 // Handle the simple, do-nothing case: strcat(x, "") -> x
215 if (Len == 0)
216 return Dst;
217
218 return emitStrLenMemCpy(Src, Dst, Len, B);
219 }
220
emitStrLenMemCpy(Value * Src,Value * Dst,uint64_t Len,IRBuilder<> & B)221 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
222 IRBuilder<> &B) {
223 // We need to find the end of the destination string. That's where the
224 // memory is to be moved to. We just generate a call to strlen.
225 Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
226 if (!DstLen)
227 return nullptr;
228
229 // Now that we have the destination's length, we must index into the
230 // destination's pointer to get the actual memcpy destination (end of
231 // the string .. we're concatenating).
232 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
233
234 // We have enough information to now generate the memcpy call to do the
235 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
236 B.CreateMemCpy(CpyDst, Src,
237 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
238 1);
239 return Dst;
240 }
241
optimizeStrNCat(CallInst * CI,IRBuilder<> & B)242 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
243 Function *Callee = CI->getCalledFunction();
244 // Verify the "strncat" function prototype.
245 FunctionType *FT = Callee->getFunctionType();
246 if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
247 FT->getParamType(0) != FT->getReturnType() ||
248 FT->getParamType(1) != FT->getReturnType() ||
249 !FT->getParamType(2)->isIntegerTy())
250 return nullptr;
251
252 // Extract some information from the instruction
253 Value *Dst = CI->getArgOperand(0);
254 Value *Src = CI->getArgOperand(1);
255 uint64_t Len;
256
257 // We don't do anything if length is not constant
258 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
259 Len = LengthArg->getZExtValue();
260 else
261 return nullptr;
262
263 // See if we can get the length of the input string.
264 uint64_t SrcLen = GetStringLength(Src);
265 if (SrcLen == 0)
266 return nullptr;
267 --SrcLen; // Unbias length.
268
269 // Handle the simple, do-nothing cases:
270 // strncat(x, "", c) -> x
271 // strncat(x, c, 0) -> x
272 if (SrcLen == 0 || Len == 0)
273 return Dst;
274
275 // We don't optimize this case
276 if (Len < SrcLen)
277 return nullptr;
278
279 // strncat(x, s, c) -> strcat(x, s)
280 // s is constant so the strcat can be optimized further
281 return emitStrLenMemCpy(Src, Dst, SrcLen, B);
282 }
283
optimizeStrChr(CallInst * CI,IRBuilder<> & B)284 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
285 Function *Callee = CI->getCalledFunction();
286 // Verify the "strchr" function prototype.
287 FunctionType *FT = Callee->getFunctionType();
288 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
289 FT->getParamType(0) != FT->getReturnType() ||
290 !FT->getParamType(1)->isIntegerTy(32))
291 return nullptr;
292
293 Value *SrcStr = CI->getArgOperand(0);
294
295 // If the second operand is non-constant, see if we can compute the length
296 // of the input string and turn this into memchr.
297 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
298 if (!CharC) {
299 uint64_t Len = GetStringLength(SrcStr);
300 if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
301 return nullptr;
302
303 return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
304 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
305 B, DL, TLI);
306 }
307
308 // Otherwise, the character is a constant, see if the first argument is
309 // a string literal. If so, we can constant fold.
310 StringRef Str;
311 if (!getConstantStringInfo(SrcStr, Str)) {
312 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
313 return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
314 return nullptr;
315 }
316
317 // Compute the offset, make sure to handle the case when we're searching for
318 // zero (a weird way to spell strlen).
319 size_t I = (0xFF & CharC->getSExtValue()) == 0
320 ? Str.size()
321 : Str.find(CharC->getSExtValue());
322 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
323 return Constant::getNullValue(CI->getType());
324
325 // strchr(s+n,c) -> gep(s+n+i,c)
326 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
327 }
328
optimizeStrRChr(CallInst * CI,IRBuilder<> & B)329 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
330 Function *Callee = CI->getCalledFunction();
331 // Verify the "strrchr" function prototype.
332 FunctionType *FT = Callee->getFunctionType();
333 if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
334 FT->getParamType(0) != FT->getReturnType() ||
335 !FT->getParamType(1)->isIntegerTy(32))
336 return nullptr;
337
338 Value *SrcStr = CI->getArgOperand(0);
339 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
340
341 // Cannot fold anything if we're not looking for a constant.
342 if (!CharC)
343 return nullptr;
344
345 StringRef Str;
346 if (!getConstantStringInfo(SrcStr, Str)) {
347 // strrchr(s, 0) -> strchr(s, 0)
348 if (CharC->isZero())
349 return EmitStrChr(SrcStr, '\0', B, TLI);
350 return nullptr;
351 }
352
353 // Compute the offset.
354 size_t I = (0xFF & CharC->getSExtValue()) == 0
355 ? Str.size()
356 : Str.rfind(CharC->getSExtValue());
357 if (I == StringRef::npos) // Didn't find the char. Return null.
358 return Constant::getNullValue(CI->getType());
359
360 // strrchr(s+n,c) -> gep(s+n+i,c)
361 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
362 }
363
optimizeStrCmp(CallInst * CI,IRBuilder<> & B)364 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
365 Function *Callee = CI->getCalledFunction();
366 // Verify the "strcmp" function prototype.
367 FunctionType *FT = Callee->getFunctionType();
368 if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
369 FT->getParamType(0) != FT->getParamType(1) ||
370 FT->getParamType(0) != B.getInt8PtrTy())
371 return nullptr;
372
373 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
374 if (Str1P == Str2P) // strcmp(x,x) -> 0
375 return ConstantInt::get(CI->getType(), 0);
376
377 StringRef Str1, Str2;
378 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
379 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
380
381 // strcmp(x, y) -> cnst (if both x and y are constant strings)
382 if (HasStr1 && HasStr2)
383 return ConstantInt::get(CI->getType(), Str1.compare(Str2));
384
385 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
386 return B.CreateNeg(
387 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
388
389 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
390 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
391
392 // strcmp(P, "x") -> memcmp(P, "x", 2)
393 uint64_t Len1 = GetStringLength(Str1P);
394 uint64_t Len2 = GetStringLength(Str2P);
395 if (Len1 && Len2) {
396 return EmitMemCmp(Str1P, Str2P,
397 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
398 std::min(Len1, Len2)),
399 B, DL, TLI);
400 }
401
402 return nullptr;
403 }
404
optimizeStrNCmp(CallInst * CI,IRBuilder<> & B)405 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
406 Function *Callee = CI->getCalledFunction();
407 // Verify the "strncmp" function prototype.
408 FunctionType *FT = Callee->getFunctionType();
409 if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
410 FT->getParamType(0) != FT->getParamType(1) ||
411 FT->getParamType(0) != B.getInt8PtrTy() ||
412 !FT->getParamType(2)->isIntegerTy())
413 return nullptr;
414
415 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
416 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
417 return ConstantInt::get(CI->getType(), 0);
418
419 // Get the length argument if it is constant.
420 uint64_t Length;
421 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
422 Length = LengthArg->getZExtValue();
423 else
424 return nullptr;
425
426 if (Length == 0) // strncmp(x,y,0) -> 0
427 return ConstantInt::get(CI->getType(), 0);
428
429 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
430 return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
431
432 StringRef Str1, Str2;
433 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
434 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
435
436 // strncmp(x, y) -> cnst (if both x and y are constant strings)
437 if (HasStr1 && HasStr2) {
438 StringRef SubStr1 = Str1.substr(0, Length);
439 StringRef SubStr2 = Str2.substr(0, Length);
440 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
441 }
442
443 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
444 return B.CreateNeg(
445 B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
446
447 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
448 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
449
450 return nullptr;
451 }
452
optimizeStrCpy(CallInst * CI,IRBuilder<> & B)453 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
454 Function *Callee = CI->getCalledFunction();
455
456 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
457 return nullptr;
458
459 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
460 if (Dst == Src) // strcpy(x,x) -> x
461 return Src;
462
463 // See if we can get the length of the input string.
464 uint64_t Len = GetStringLength(Src);
465 if (Len == 0)
466 return nullptr;
467
468 // We have enough information to now generate the memcpy call to do the
469 // copy for us. Make a memcpy to copy the nul byte with align = 1.
470 B.CreateMemCpy(Dst, Src,
471 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
472 return Dst;
473 }
474
optimizeStpCpy(CallInst * CI,IRBuilder<> & B)475 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
476 Function *Callee = CI->getCalledFunction();
477 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
478 return nullptr;
479
480 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
481 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
482 Value *StrLen = EmitStrLen(Src, B, DL, TLI);
483 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
484 }
485
486 // See if we can get the length of the input string.
487 uint64_t Len = GetStringLength(Src);
488 if (Len == 0)
489 return nullptr;
490
491 Type *PT = Callee->getFunctionType()->getParamType(0);
492 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
493 Value *DstEnd =
494 B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
495
496 // We have enough information to now generate the memcpy call to do the
497 // copy for us. Make a memcpy to copy the nul byte with align = 1.
498 B.CreateMemCpy(Dst, Src, LenV, 1);
499 return DstEnd;
500 }
501
optimizeStrNCpy(CallInst * CI,IRBuilder<> & B)502 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
503 Function *Callee = CI->getCalledFunction();
504 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
505 return nullptr;
506
507 Value *Dst = CI->getArgOperand(0);
508 Value *Src = CI->getArgOperand(1);
509 Value *LenOp = CI->getArgOperand(2);
510
511 // See if we can get the length of the input string.
512 uint64_t SrcLen = GetStringLength(Src);
513 if (SrcLen == 0)
514 return nullptr;
515 --SrcLen;
516
517 if (SrcLen == 0) {
518 // strncpy(x, "", y) -> memset(x, '\0', y, 1)
519 B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
520 return Dst;
521 }
522
523 uint64_t Len;
524 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
525 Len = LengthArg->getZExtValue();
526 else
527 return nullptr;
528
529 if (Len == 0)
530 return Dst; // strncpy(x, y, 0) -> x
531
532 // Let strncpy handle the zero padding
533 if (Len > SrcLen + 1)
534 return nullptr;
535
536 Type *PT = Callee->getFunctionType()->getParamType(0);
537 // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
538 B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
539
540 return Dst;
541 }
542
optimizeStrLen(CallInst * CI,IRBuilder<> & B)543 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
544 Function *Callee = CI->getCalledFunction();
545 FunctionType *FT = Callee->getFunctionType();
546 if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
547 !FT->getReturnType()->isIntegerTy())
548 return nullptr;
549
550 Value *Src = CI->getArgOperand(0);
551
552 // Constant folding: strlen("xyz") -> 3
553 if (uint64_t Len = GetStringLength(Src))
554 return ConstantInt::get(CI->getType(), Len - 1);
555
556 // strlen(x?"foo":"bars") --> x ? 3 : 4
557 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
558 uint64_t LenTrue = GetStringLength(SI->getTrueValue());
559 uint64_t LenFalse = GetStringLength(SI->getFalseValue());
560 if (LenTrue && LenFalse) {
561 Function *Caller = CI->getParent()->getParent();
562 emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
563 SI->getDebugLoc(),
564 "folded strlen(select) to select of constants");
565 return B.CreateSelect(SI->getCondition(),
566 ConstantInt::get(CI->getType(), LenTrue - 1),
567 ConstantInt::get(CI->getType(), LenFalse - 1));
568 }
569 }
570
571 // strlen(x) != 0 --> *x != 0
572 // strlen(x) == 0 --> *x == 0
573 if (isOnlyUsedInZeroEqualityComparison(CI))
574 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
575
576 return nullptr;
577 }
578
optimizeStrPBrk(CallInst * CI,IRBuilder<> & B)579 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
580 Function *Callee = CI->getCalledFunction();
581 FunctionType *FT = Callee->getFunctionType();
582 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
583 FT->getParamType(1) != FT->getParamType(0) ||
584 FT->getReturnType() != FT->getParamType(0))
585 return nullptr;
586
587 StringRef S1, S2;
588 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
589 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
590
591 // strpbrk(s, "") -> nullptr
592 // strpbrk("", s) -> nullptr
593 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
594 return Constant::getNullValue(CI->getType());
595
596 // Constant folding.
597 if (HasS1 && HasS2) {
598 size_t I = S1.find_first_of(S2);
599 if (I == StringRef::npos) // No match.
600 return Constant::getNullValue(CI->getType());
601
602 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk");
603 }
604
605 // strpbrk(s, "a") -> strchr(s, 'a')
606 if (HasS2 && S2.size() == 1)
607 return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
608
609 return nullptr;
610 }
611
optimizeStrTo(CallInst * CI,IRBuilder<> & B)612 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
613 Function *Callee = CI->getCalledFunction();
614 FunctionType *FT = Callee->getFunctionType();
615 if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
616 !FT->getParamType(0)->isPointerTy() ||
617 !FT->getParamType(1)->isPointerTy())
618 return nullptr;
619
620 Value *EndPtr = CI->getArgOperand(1);
621 if (isa<ConstantPointerNull>(EndPtr)) {
622 // With a null EndPtr, this function won't capture the main argument.
623 // It would be readonly too, except that it still may write to errno.
624 CI->addAttribute(1, Attribute::NoCapture);
625 }
626
627 return nullptr;
628 }
629
optimizeStrSpn(CallInst * CI,IRBuilder<> & B)630 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
631 Function *Callee = CI->getCalledFunction();
632 FunctionType *FT = Callee->getFunctionType();
633 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
634 FT->getParamType(1) != FT->getParamType(0) ||
635 !FT->getReturnType()->isIntegerTy())
636 return nullptr;
637
638 StringRef S1, S2;
639 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
640 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
641
642 // strspn(s, "") -> 0
643 // strspn("", s) -> 0
644 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
645 return Constant::getNullValue(CI->getType());
646
647 // Constant folding.
648 if (HasS1 && HasS2) {
649 size_t Pos = S1.find_first_not_of(S2);
650 if (Pos == StringRef::npos)
651 Pos = S1.size();
652 return ConstantInt::get(CI->getType(), Pos);
653 }
654
655 return nullptr;
656 }
657
optimizeStrCSpn(CallInst * CI,IRBuilder<> & B)658 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
659 Function *Callee = CI->getCalledFunction();
660 FunctionType *FT = Callee->getFunctionType();
661 if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
662 FT->getParamType(1) != FT->getParamType(0) ||
663 !FT->getReturnType()->isIntegerTy())
664 return nullptr;
665
666 StringRef S1, S2;
667 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
668 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
669
670 // strcspn("", s) -> 0
671 if (HasS1 && S1.empty())
672 return Constant::getNullValue(CI->getType());
673
674 // Constant folding.
675 if (HasS1 && HasS2) {
676 size_t Pos = S1.find_first_of(S2);
677 if (Pos == StringRef::npos)
678 Pos = S1.size();
679 return ConstantInt::get(CI->getType(), Pos);
680 }
681
682 // strcspn(s, "") -> strlen(s)
683 if (HasS2 && S2.empty())
684 return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
685
686 return nullptr;
687 }
688
optimizeStrStr(CallInst * CI,IRBuilder<> & B)689 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
690 Function *Callee = CI->getCalledFunction();
691 FunctionType *FT = Callee->getFunctionType();
692 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
693 !FT->getParamType(1)->isPointerTy() ||
694 !FT->getReturnType()->isPointerTy())
695 return nullptr;
696
697 // fold strstr(x, x) -> x.
698 if (CI->getArgOperand(0) == CI->getArgOperand(1))
699 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
700
701 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
702 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
703 Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
704 if (!StrLen)
705 return nullptr;
706 Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
707 StrLen, B, DL, TLI);
708 if (!StrNCmp)
709 return nullptr;
710 for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
711 ICmpInst *Old = cast<ICmpInst>(*UI++);
712 Value *Cmp =
713 B.CreateICmp(Old->getPredicate(), StrNCmp,
714 ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
715 replaceAllUsesWith(Old, Cmp);
716 }
717 return CI;
718 }
719
720 // See if either input string is a constant string.
721 StringRef SearchStr, ToFindStr;
722 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
723 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
724
725 // fold strstr(x, "") -> x.
726 if (HasStr2 && ToFindStr.empty())
727 return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
728
729 // If both strings are known, constant fold it.
730 if (HasStr1 && HasStr2) {
731 size_t Offset = SearchStr.find(ToFindStr);
732
733 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
734 return Constant::getNullValue(CI->getType());
735
736 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
737 Value *Result = CastToCStr(CI->getArgOperand(0), B);
738 Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
739 return B.CreateBitCast(Result, CI->getType());
740 }
741
742 // fold strstr(x, "y") -> strchr(x, 'y').
743 if (HasStr2 && ToFindStr.size() == 1) {
744 Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
745 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
746 }
747 return nullptr;
748 }
749
optimizeMemChr(CallInst * CI,IRBuilder<> & B)750 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
751 Function *Callee = CI->getCalledFunction();
752 FunctionType *FT = Callee->getFunctionType();
753 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
754 !FT->getParamType(1)->isIntegerTy(32) ||
755 !FT->getParamType(2)->isIntegerTy() ||
756 !FT->getReturnType()->isPointerTy())
757 return nullptr;
758
759 Value *SrcStr = CI->getArgOperand(0);
760 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
761 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
762
763 // memchr(x, y, 0) -> null
764 if (LenC && LenC->isNullValue())
765 return Constant::getNullValue(CI->getType());
766
767 // From now on we need at least constant length and string.
768 StringRef Str;
769 if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
770 return nullptr;
771
772 // Truncate the string to LenC. If Str is smaller than LenC we will still only
773 // scan the string, as reading past the end of it is undefined and we can just
774 // return null if we don't find the char.
775 Str = Str.substr(0, LenC->getZExtValue());
776
777 // If the char is variable but the input str and length are not we can turn
778 // this memchr call into a simple bit field test. Of course this only works
779 // when the return value is only checked against null.
780 //
781 // It would be really nice to reuse switch lowering here but we can't change
782 // the CFG at this point.
783 //
784 // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
785 // after bounds check.
786 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
787 unsigned char Max =
788 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
789 reinterpret_cast<const unsigned char *>(Str.end()));
790
791 // Make sure the bit field we're about to create fits in a register on the
792 // target.
793 // FIXME: On a 64 bit architecture this prevents us from using the
794 // interesting range of alpha ascii chars. We could do better by emitting
795 // two bitfields or shifting the range by 64 if no lower chars are used.
796 if (!DL.fitsInLegalInteger(Max + 1))
797 return nullptr;
798
799 // For the bit field use a power-of-2 type with at least 8 bits to avoid
800 // creating unnecessary illegal types.
801 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
802
803 // Now build the bit field.
804 APInt Bitfield(Width, 0);
805 for (char C : Str)
806 Bitfield.setBit((unsigned char)C);
807 Value *BitfieldC = B.getInt(Bitfield);
808
809 // First check that the bit field access is within bounds.
810 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
811 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
812 "memchr.bounds");
813
814 // Create code that checks if the given bit is set in the field.
815 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
816 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
817
818 // Finally merge both checks and cast to pointer type. The inttoptr
819 // implicitly zexts the i1 to intptr type.
820 return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
821 }
822
823 // Check if all arguments are constants. If so, we can constant fold.
824 if (!CharC)
825 return nullptr;
826
827 // Compute the offset.
828 size_t I = Str.find(CharC->getSExtValue() & 0xFF);
829 if (I == StringRef::npos) // Didn't find the char. memchr returns null.
830 return Constant::getNullValue(CI->getType());
831
832 // memchr(s+n,c,l) -> gep(s+n+i,c)
833 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
834 }
835
optimizeMemCmp(CallInst * CI,IRBuilder<> & B)836 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
837 Function *Callee = CI->getCalledFunction();
838 FunctionType *FT = Callee->getFunctionType();
839 if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
840 !FT->getParamType(1)->isPointerTy() ||
841 !FT->getReturnType()->isIntegerTy(32))
842 return nullptr;
843
844 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
845
846 if (LHS == RHS) // memcmp(s,s,x) -> 0
847 return Constant::getNullValue(CI->getType());
848
849 // Make sure we have a constant length.
850 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
851 if (!LenC)
852 return nullptr;
853 uint64_t Len = LenC->getZExtValue();
854
855 if (Len == 0) // memcmp(s1,s2,0) -> 0
856 return Constant::getNullValue(CI->getType());
857
858 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
859 if (Len == 1) {
860 Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
861 CI->getType(), "lhsv");
862 Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
863 CI->getType(), "rhsv");
864 return B.CreateSub(LHSV, RHSV, "chardiff");
865 }
866
867 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
868 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
869
870 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
871 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
872
873 if (getKnownAlignment(LHS, DL, CI) >= PrefAlignment &&
874 getKnownAlignment(RHS, DL, CI) >= PrefAlignment) {
875
876 Type *LHSPtrTy =
877 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
878 Type *RHSPtrTy =
879 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
880
881 Value *LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy, "lhsc"), "lhsv");
882 Value *RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy, "rhsc"), "rhsv");
883
884 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
885 }
886 }
887
888 // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
889 StringRef LHSStr, RHSStr;
890 if (getConstantStringInfo(LHS, LHSStr) &&
891 getConstantStringInfo(RHS, RHSStr)) {
892 // Make sure we're not reading out-of-bounds memory.
893 if (Len > LHSStr.size() || Len > RHSStr.size())
894 return nullptr;
895 // Fold the memcmp and normalize the result. This way we get consistent
896 // results across multiple platforms.
897 uint64_t Ret = 0;
898 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
899 if (Cmp < 0)
900 Ret = -1;
901 else if (Cmp > 0)
902 Ret = 1;
903 return ConstantInt::get(CI->getType(), Ret);
904 }
905
906 return nullptr;
907 }
908
optimizeMemCpy(CallInst * CI,IRBuilder<> & B)909 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
910 Function *Callee = CI->getCalledFunction();
911
912 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
913 return nullptr;
914
915 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
916 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
917 CI->getArgOperand(2), 1);
918 return CI->getArgOperand(0);
919 }
920
optimizeMemMove(CallInst * CI,IRBuilder<> & B)921 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
922 Function *Callee = CI->getCalledFunction();
923
924 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
925 return nullptr;
926
927 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
928 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
929 CI->getArgOperand(2), 1);
930 return CI->getArgOperand(0);
931 }
932
optimizeMemSet(CallInst * CI,IRBuilder<> & B)933 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
934 Function *Callee = CI->getCalledFunction();
935
936 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
937 return nullptr;
938
939 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
940 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
941 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
942 return CI->getArgOperand(0);
943 }
944
945 //===----------------------------------------------------------------------===//
946 // Math Library Optimizations
947 //===----------------------------------------------------------------------===//
948
949 /// Return a variant of Val with float type.
950 /// Currently this works in two cases: If Val is an FPExtension of a float
951 /// value to something bigger, simply return the operand.
952 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
953 /// loss of precision do so.
valueHasFloatPrecision(Value * Val)954 static Value *valueHasFloatPrecision(Value *Val) {
955 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
956 Value *Op = Cast->getOperand(0);
957 if (Op->getType()->isFloatTy())
958 return Op;
959 }
960 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
961 APFloat F = Const->getValueAPF();
962 bool losesInfo;
963 (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
964 &losesInfo);
965 if (!losesInfo)
966 return ConstantFP::get(Const->getContext(), F);
967 }
968 return nullptr;
969 }
970
971 //===----------------------------------------------------------------------===//
972 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
973
optimizeUnaryDoubleFP(CallInst * CI,IRBuilder<> & B,bool CheckRetType)974 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
975 bool CheckRetType) {
976 Function *Callee = CI->getCalledFunction();
977 FunctionType *FT = Callee->getFunctionType();
978 if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
979 !FT->getParamType(0)->isDoubleTy())
980 return nullptr;
981
982 if (CheckRetType) {
983 // Check if all the uses for function like 'sin' are converted to float.
984 for (User *U : CI->users()) {
985 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
986 if (!Cast || !Cast->getType()->isFloatTy())
987 return nullptr;
988 }
989 }
990
991 // If this is something like 'floor((double)floatval)', convert to floorf.
992 Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
993 if (V == nullptr)
994 return nullptr;
995
996 // floor((double)floatval) -> (double)floorf(floatval)
997 if (Callee->isIntrinsic()) {
998 Module *M = CI->getModule();
999 Intrinsic::ID IID = Callee->getIntrinsicID();
1000 Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1001 V = B.CreateCall(F, V);
1002 } else {
1003 // The call is a library call rather than an intrinsic.
1004 V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
1005 }
1006
1007 return B.CreateFPExt(V, B.getDoubleTy());
1008 }
1009
1010 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
optimizeBinaryDoubleFP(CallInst * CI,IRBuilder<> & B)1011 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
1012 Function *Callee = CI->getCalledFunction();
1013 FunctionType *FT = Callee->getFunctionType();
1014 // Just make sure this has 2 arguments of the same FP type, which match the
1015 // result type.
1016 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1017 FT->getParamType(0) != FT->getParamType(1) ||
1018 !FT->getParamType(0)->isFloatingPointTy())
1019 return nullptr;
1020
1021 // If this is something like 'fmin((double)floatval1, (double)floatval2)',
1022 // or fmin(1.0, (double)floatval), then we convert it to fminf.
1023 Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1024 if (V1 == nullptr)
1025 return nullptr;
1026 Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1027 if (V2 == nullptr)
1028 return nullptr;
1029
1030 // fmin((double)floatval1, (double)floatval2)
1031 // -> (double)fminf(floatval1, floatval2)
1032 // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1033 Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1034 Callee->getAttributes());
1035 return B.CreateFPExt(V, B.getDoubleTy());
1036 }
1037
optimizeCos(CallInst * CI,IRBuilder<> & B)1038 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1039 Function *Callee = CI->getCalledFunction();
1040 Value *Ret = nullptr;
1041 StringRef Name = Callee->getName();
1042 if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
1043 Ret = optimizeUnaryDoubleFP(CI, B, true);
1044
1045 FunctionType *FT = Callee->getFunctionType();
1046 // Just make sure this has 1 argument of FP type, which matches the
1047 // result type.
1048 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1049 !FT->getParamType(0)->isFloatingPointTy())
1050 return Ret;
1051
1052 // cos(-x) -> cos(x)
1053 Value *Op1 = CI->getArgOperand(0);
1054 if (BinaryOperator::isFNeg(Op1)) {
1055 BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1056 return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1057 }
1058 return Ret;
1059 }
1060
getPow(Value * InnerChain[33],unsigned Exp,IRBuilder<> & B)1061 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1062 // Multiplications calculated using Addition Chains.
1063 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1064
1065 assert(Exp != 0 && "Incorrect exponent 0 not handled");
1066
1067 if (InnerChain[Exp])
1068 return InnerChain[Exp];
1069
1070 static const unsigned AddChain[33][2] = {
1071 {0, 0}, // Unused.
1072 {0, 0}, // Unused (base case = pow1).
1073 {1, 1}, // Unused (pre-computed).
1074 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
1075 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
1076 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
1077 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1078 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1079 };
1080
1081 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1082 getPow(InnerChain, AddChain[Exp][1], B));
1083 return InnerChain[Exp];
1084 }
1085
optimizePow(CallInst * CI,IRBuilder<> & B)1086 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1087 Function *Callee = CI->getCalledFunction();
1088 Value *Ret = nullptr;
1089 StringRef Name = Callee->getName();
1090 if (UnsafeFPShrink && Name == "pow" && hasFloatVersion(Name))
1091 Ret = optimizeUnaryDoubleFP(CI, B, true);
1092
1093 FunctionType *FT = Callee->getFunctionType();
1094 // Just make sure this has 2 arguments of the same FP type, which match the
1095 // result type.
1096 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1097 FT->getParamType(0) != FT->getParamType(1) ||
1098 !FT->getParamType(0)->isFloatingPointTy())
1099 return Ret;
1100
1101 Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1102 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1103 // pow(1.0, x) -> 1.0
1104 if (Op1C->isExactlyValue(1.0))
1105 return Op1C;
1106 // pow(2.0, x) -> exp2(x)
1107 if (Op1C->isExactlyValue(2.0) &&
1108 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
1109 LibFunc::exp2l))
1110 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp2), B,
1111 Callee->getAttributes());
1112 // pow(10.0, x) -> exp10(x)
1113 if (Op1C->isExactlyValue(10.0) &&
1114 hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1115 LibFunc::exp10l))
1116 return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1117 Callee->getAttributes());
1118 }
1119
1120 bool unsafeFPMath = canUseUnsafeFPMath(CI->getParent()->getParent());
1121
1122 // pow(exp(x), y) -> exp(x*y)
1123 // pow(exp2(x), y) -> exp2(x * y)
1124 // We enable these only under fast-math. Besides rounding
1125 // differences the transformation changes overflow and
1126 // underflow behavior quite dramatically.
1127 // Example: x = 1000, y = 0.001.
1128 // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
1129 if (unsafeFPMath) {
1130 if (auto *OpC = dyn_cast<CallInst>(Op1)) {
1131 IRBuilder<>::FastMathFlagGuard Guard(B);
1132 FastMathFlags FMF;
1133 FMF.setUnsafeAlgebra();
1134 B.SetFastMathFlags(FMF);
1135
1136 LibFunc::Func Func;
1137 Function *OpCCallee = OpC->getCalledFunction();
1138 if (OpCCallee && TLI->getLibFunc(OpCCallee->getName(), Func) &&
1139 TLI->has(Func) && (Func == LibFunc::exp || Func == LibFunc::exp2))
1140 return EmitUnaryFloatFnCall(
1141 B.CreateFMul(OpC->getArgOperand(0), Op2, "mul"),
1142 OpCCallee->getName(), B, OpCCallee->getAttributes());
1143 }
1144 }
1145
1146 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1147 if (!Op2C)
1148 return Ret;
1149
1150 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1151 return ConstantFP::get(CI->getType(), 1.0);
1152
1153 if (Op2C->isExactlyValue(0.5) &&
1154 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1155 LibFunc::sqrtl) &&
1156 hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
1157 LibFunc::fabsl)) {
1158
1159 // In -ffast-math, pow(x, 0.5) -> sqrt(x).
1160 if (unsafeFPMath)
1161 return EmitUnaryFloatFnCall(Op1, TLI->getName(LibFunc::sqrt), B,
1162 Callee->getAttributes());
1163
1164 // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1165 // This is faster than calling pow, and still handles negative zero
1166 // and negative infinity correctly.
1167 // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1168 Value *Inf = ConstantFP::getInfinity(CI->getType());
1169 Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1170 Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1171 Value *FAbs =
1172 EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
1173 Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1174 Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1175 return Sel;
1176 }
1177
1178 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1179 return Op1;
1180 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1181 return B.CreateFMul(Op1, Op1, "pow2");
1182 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1183 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1184
1185 // In -ffast-math, generate repeated fmul instead of generating pow(x, n).
1186 if (unsafeFPMath) {
1187 APFloat V = abs(Op2C->getValueAPF());
1188 // We limit to a max of 7 fmul(s). Thus max exponent is 32.
1189 // This transformation applies to integer exponents only.
1190 if (V.compare(APFloat(V.getSemantics(), 32.0)) == APFloat::cmpGreaterThan ||
1191 !V.isInteger())
1192 return nullptr;
1193
1194 // We will memoize intermediate products of the Addition Chain.
1195 Value *InnerChain[33] = {nullptr};
1196 InnerChain[1] = Op1;
1197 InnerChain[2] = B.CreateFMul(Op1, Op1);
1198
1199 // We cannot readily convert a non-double type (like float) to a double.
1200 // So we first convert V to something which could be converted to double.
1201 bool ignored;
1202 V.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &ignored);
1203 Value *FMul = getPow(InnerChain, V.convertToDouble(), B);
1204 // For negative exponents simply compute the reciprocal.
1205 if (Op2C->isNegative())
1206 FMul = B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), FMul);
1207 return FMul;
1208 }
1209
1210 return nullptr;
1211 }
1212
optimizeExp2(CallInst * CI,IRBuilder<> & B)1213 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1214 Function *Callee = CI->getCalledFunction();
1215 Function *Caller = CI->getParent()->getParent();
1216 Value *Ret = nullptr;
1217 StringRef Name = Callee->getName();
1218 if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
1219 Ret = optimizeUnaryDoubleFP(CI, B, true);
1220
1221 FunctionType *FT = Callee->getFunctionType();
1222 // Just make sure this has 1 argument of FP type, which matches the
1223 // result type.
1224 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1225 !FT->getParamType(0)->isFloatingPointTy())
1226 return Ret;
1227
1228 Value *Op = CI->getArgOperand(0);
1229 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
1230 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
1231 LibFunc::Func LdExp = LibFunc::ldexpl;
1232 if (Op->getType()->isFloatTy())
1233 LdExp = LibFunc::ldexpf;
1234 else if (Op->getType()->isDoubleTy())
1235 LdExp = LibFunc::ldexp;
1236
1237 if (TLI->has(LdExp)) {
1238 Value *LdExpArg = nullptr;
1239 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1240 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1241 LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1242 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1243 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1244 LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1245 }
1246
1247 if (LdExpArg) {
1248 Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1249 if (!Op->getType()->isFloatTy())
1250 One = ConstantExpr::getFPExtend(One, Op->getType());
1251
1252 Module *M = Caller->getParent();
1253 Value *Callee =
1254 M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1255 Op->getType(), B.getInt32Ty(), nullptr);
1256 CallInst *CI = B.CreateCall(Callee, {One, LdExpArg});
1257 if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1258 CI->setCallingConv(F->getCallingConv());
1259
1260 return CI;
1261 }
1262 }
1263 return Ret;
1264 }
1265
optimizeFabs(CallInst * CI,IRBuilder<> & B)1266 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
1267 Function *Callee = CI->getCalledFunction();
1268 Value *Ret = nullptr;
1269 StringRef Name = Callee->getName();
1270 if (Name == "fabs" && hasFloatVersion(Name))
1271 Ret = optimizeUnaryDoubleFP(CI, B, false);
1272
1273 FunctionType *FT = Callee->getFunctionType();
1274 // Make sure this has 1 argument of FP type which matches the result type.
1275 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1276 !FT->getParamType(0)->isFloatingPointTy())
1277 return Ret;
1278
1279 Value *Op = CI->getArgOperand(0);
1280 if (Instruction *I = dyn_cast<Instruction>(Op)) {
1281 // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
1282 if (I->getOpcode() == Instruction::FMul)
1283 if (I->getOperand(0) == I->getOperand(1))
1284 return Op;
1285 }
1286 return Ret;
1287 }
1288
optimizeFMinFMax(CallInst * CI,IRBuilder<> & B)1289 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1290 // If we can shrink the call to a float function rather than a double
1291 // function, do that first.
1292 Function *Callee = CI->getCalledFunction();
1293 StringRef Name = Callee->getName();
1294 if ((Name == "fmin" && hasFloatVersion(Name)) ||
1295 (Name == "fmax" && hasFloatVersion(Name))) {
1296 Value *Ret = optimizeBinaryDoubleFP(CI, B);
1297 if (Ret)
1298 return Ret;
1299 }
1300
1301 // Make sure this has 2 arguments of FP type which match the result type.
1302 FunctionType *FT = Callee->getFunctionType();
1303 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1304 FT->getParamType(0) != FT->getParamType(1) ||
1305 !FT->getParamType(0)->isFloatingPointTy())
1306 return nullptr;
1307
1308 IRBuilder<>::FastMathFlagGuard Guard(B);
1309 FastMathFlags FMF;
1310 Function *F = CI->getParent()->getParent();
1311 if (canUseUnsafeFPMath(F)) {
1312 // Unsafe algebra sets all fast-math-flags to true.
1313 FMF.setUnsafeAlgebra();
1314 } else {
1315 // At a minimum, no-nans-fp-math must be true.
1316 Attribute Attr = F->getFnAttribute("no-nans-fp-math");
1317 if (Attr.getValueAsString() != "true")
1318 return nullptr;
1319 // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1320 // "Ideally, fmax would be sensitive to the sign of zero, for example
1321 // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
1322 // might be impractical."
1323 FMF.setNoSignedZeros();
1324 FMF.setNoNaNs();
1325 }
1326 B.SetFastMathFlags(FMF);
1327
1328 // We have a relaxed floating-point environment. We can ignore NaN-handling
1329 // and transform to a compare and select. We do not have to consider errno or
1330 // exceptions, because fmin/fmax do not have those.
1331 Value *Op0 = CI->getArgOperand(0);
1332 Value *Op1 = CI->getArgOperand(1);
1333 Value *Cmp = Callee->getName().startswith("fmin") ?
1334 B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1335 return B.CreateSelect(Cmp, Op0, Op1);
1336 }
1337
optimizeLog(CallInst * CI,IRBuilder<> & B)1338 Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
1339 Function *Callee = CI->getCalledFunction();
1340 Value *Ret = nullptr;
1341 StringRef Name = Callee->getName();
1342 if (UnsafeFPShrink && hasFloatVersion(Name))
1343 Ret = optimizeUnaryDoubleFP(CI, B, true);
1344 FunctionType *FT = Callee->getFunctionType();
1345
1346 // Just make sure this has 1 argument of FP type, which matches the
1347 // result type.
1348 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1349 !FT->getParamType(0)->isFloatingPointTy())
1350 return Ret;
1351
1352 if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
1353 return Ret;
1354 Value *Op1 = CI->getArgOperand(0);
1355 auto *OpC = dyn_cast<CallInst>(Op1);
1356 if (!OpC)
1357 return Ret;
1358
1359 // log(pow(x,y)) -> y*log(x)
1360 // This is only applicable to log, log2, log10.
1361 if (Name != "log" && Name != "log2" && Name != "log10")
1362 return Ret;
1363
1364 IRBuilder<>::FastMathFlagGuard Guard(B);
1365 FastMathFlags FMF;
1366 FMF.setUnsafeAlgebra();
1367 B.SetFastMathFlags(FMF);
1368
1369 LibFunc::Func Func;
1370 Function *F = OpC->getCalledFunction();
1371 if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1372 Func == LibFunc::pow) || F->getIntrinsicID() == Intrinsic::pow))
1373 return B.CreateFMul(OpC->getArgOperand(1),
1374 EmitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
1375 Callee->getAttributes()), "mul");
1376
1377 // log(exp2(y)) -> y*log(2)
1378 if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
1379 TLI->has(Func) && Func == LibFunc::exp2)
1380 return B.CreateFMul(
1381 OpC->getArgOperand(0),
1382 EmitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
1383 Callee->getName(), B, Callee->getAttributes()),
1384 "logmul");
1385 return Ret;
1386 }
1387
optimizeSqrt(CallInst * CI,IRBuilder<> & B)1388 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1389 Function *Callee = CI->getCalledFunction();
1390
1391 Value *Ret = nullptr;
1392 if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
1393 Callee->getIntrinsicID() == Intrinsic::sqrt))
1394 Ret = optimizeUnaryDoubleFP(CI, B, true);
1395 if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
1396 return Ret;
1397
1398 Value *Op = CI->getArgOperand(0);
1399 if (Instruction *I = dyn_cast<Instruction>(Op)) {
1400 if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
1401 // We're looking for a repeated factor in a multiplication tree,
1402 // so we can do this fold: sqrt(x * x) -> fabs(x);
1403 // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
1404 Value *Op0 = I->getOperand(0);
1405 Value *Op1 = I->getOperand(1);
1406 Value *RepeatOp = nullptr;
1407 Value *OtherOp = nullptr;
1408 if (Op0 == Op1) {
1409 // Simple match: the operands of the multiply are identical.
1410 RepeatOp = Op0;
1411 } else {
1412 // Look for a more complicated pattern: one of the operands is itself
1413 // a multiply, so search for a common factor in that multiply.
1414 // Note: We don't bother looking any deeper than this first level or for
1415 // variations of this pattern because instcombine's visitFMUL and/or the
1416 // reassociation pass should give us this form.
1417 Value *OtherMul0, *OtherMul1;
1418 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1419 // Pattern: sqrt((x * y) * z)
1420 if (OtherMul0 == OtherMul1) {
1421 // Matched: sqrt((x * x) * z)
1422 RepeatOp = OtherMul0;
1423 OtherOp = Op1;
1424 }
1425 }
1426 }
1427 if (RepeatOp) {
1428 // Fast math flags for any created instructions should match the sqrt
1429 // and multiply.
1430 // FIXME: We're not checking the sqrt because it doesn't have
1431 // fast-math-flags (see earlier comment).
1432 IRBuilder<>::FastMathFlagGuard Guard(B);
1433 B.SetFastMathFlags(I->getFastMathFlags());
1434 // If we found a repeated factor, hoist it out of the square root and
1435 // replace it with the fabs of that factor.
1436 Module *M = Callee->getParent();
1437 Type *ArgType = Op->getType();
1438 Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1439 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1440 if (OtherOp) {
1441 // If we found a non-repeated factor, we still need to get its square
1442 // root. We then multiply that by the value that was simplified out
1443 // of the square root calculation.
1444 Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1445 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1446 return B.CreateFMul(FabsCall, SqrtCall);
1447 }
1448 return FabsCall;
1449 }
1450 }
1451 }
1452 return Ret;
1453 }
1454
optimizeTan(CallInst * CI,IRBuilder<> & B)1455 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
1456 Function *Callee = CI->getCalledFunction();
1457 Value *Ret = nullptr;
1458 StringRef Name = Callee->getName();
1459 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
1460 Ret = optimizeUnaryDoubleFP(CI, B, true);
1461 FunctionType *FT = Callee->getFunctionType();
1462
1463 // Just make sure this has 1 argument of FP type, which matches the
1464 // result type.
1465 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1466 !FT->getParamType(0)->isFloatingPointTy())
1467 return Ret;
1468
1469 if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
1470 return Ret;
1471 Value *Op1 = CI->getArgOperand(0);
1472 auto *OpC = dyn_cast<CallInst>(Op1);
1473 if (!OpC)
1474 return Ret;
1475
1476 // tan(atan(x)) -> x
1477 // tanf(atanf(x)) -> x
1478 // tanl(atanl(x)) -> x
1479 LibFunc::Func Func;
1480 Function *F = OpC->getCalledFunction();
1481 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
1482 ((Func == LibFunc::atan && Callee->getName() == "tan") ||
1483 (Func == LibFunc::atanf && Callee->getName() == "tanf") ||
1484 (Func == LibFunc::atanl && Callee->getName() == "tanl")))
1485 Ret = OpC->getArgOperand(0);
1486 return Ret;
1487 }
1488
1489 static bool isTrigLibCall(CallInst *CI);
1490 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1491 bool UseFloat, Value *&Sin, Value *&Cos,
1492 Value *&SinCos);
1493
optimizeSinCosPi(CallInst * CI,IRBuilder<> & B)1494 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1495
1496 // Make sure the prototype is as expected, otherwise the rest of the
1497 // function is probably invalid and likely to abort.
1498 if (!isTrigLibCall(CI))
1499 return nullptr;
1500
1501 Value *Arg = CI->getArgOperand(0);
1502 SmallVector<CallInst *, 1> SinCalls;
1503 SmallVector<CallInst *, 1> CosCalls;
1504 SmallVector<CallInst *, 1> SinCosCalls;
1505
1506 bool IsFloat = Arg->getType()->isFloatTy();
1507
1508 // Look for all compatible sinpi, cospi and sincospi calls with the same
1509 // argument. If there are enough (in some sense) we can make the
1510 // substitution.
1511 for (User *U : Arg->users())
1512 classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
1513 SinCosCalls);
1514
1515 // It's only worthwhile if both sinpi and cospi are actually used.
1516 if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1517 return nullptr;
1518
1519 Value *Sin, *Cos, *SinCos;
1520 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1521
1522 replaceTrigInsts(SinCalls, Sin);
1523 replaceTrigInsts(CosCalls, Cos);
1524 replaceTrigInsts(SinCosCalls, SinCos);
1525
1526 return nullptr;
1527 }
1528
isTrigLibCall(CallInst * CI)1529 static bool isTrigLibCall(CallInst *CI) {
1530 Function *Callee = CI->getCalledFunction();
1531 FunctionType *FT = Callee->getFunctionType();
1532
1533 // We can only hope to do anything useful if we can ignore things like errno
1534 // and floating-point exceptions.
1535 bool AttributesSafe =
1536 CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
1537
1538 // Other than that we need float(float) or double(double)
1539 return AttributesSafe && FT->getNumParams() == 1 &&
1540 FT->getReturnType() == FT->getParamType(0) &&
1541 (FT->getParamType(0)->isFloatTy() ||
1542 FT->getParamType(0)->isDoubleTy());
1543 }
1544
1545 void
classifyArgUse(Value * Val,BasicBlock * BB,bool IsFloat,SmallVectorImpl<CallInst * > & SinCalls,SmallVectorImpl<CallInst * > & CosCalls,SmallVectorImpl<CallInst * > & SinCosCalls)1546 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
1547 SmallVectorImpl<CallInst *> &SinCalls,
1548 SmallVectorImpl<CallInst *> &CosCalls,
1549 SmallVectorImpl<CallInst *> &SinCosCalls) {
1550 CallInst *CI = dyn_cast<CallInst>(Val);
1551
1552 if (!CI)
1553 return;
1554
1555 Function *Callee = CI->getCalledFunction();
1556 LibFunc::Func Func;
1557 if (!Callee || !TLI->getLibFunc(Callee->getName(), Func) || !TLI->has(Func) ||
1558 !isTrigLibCall(CI))
1559 return;
1560
1561 if (IsFloat) {
1562 if (Func == LibFunc::sinpif)
1563 SinCalls.push_back(CI);
1564 else if (Func == LibFunc::cospif)
1565 CosCalls.push_back(CI);
1566 else if (Func == LibFunc::sincospif_stret)
1567 SinCosCalls.push_back(CI);
1568 } else {
1569 if (Func == LibFunc::sinpi)
1570 SinCalls.push_back(CI);
1571 else if (Func == LibFunc::cospi)
1572 CosCalls.push_back(CI);
1573 else if (Func == LibFunc::sincospi_stret)
1574 SinCosCalls.push_back(CI);
1575 }
1576 }
1577
replaceTrigInsts(SmallVectorImpl<CallInst * > & Calls,Value * Res)1578 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
1579 Value *Res) {
1580 for (CallInst *C : Calls)
1581 replaceAllUsesWith(C, Res);
1582 }
1583
insertSinCosCall(IRBuilder<> & B,Function * OrigCallee,Value * Arg,bool UseFloat,Value * & Sin,Value * & Cos,Value * & SinCos)1584 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1585 bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
1586 Type *ArgTy = Arg->getType();
1587 Type *ResTy;
1588 StringRef Name;
1589
1590 Triple T(OrigCallee->getParent()->getTargetTriple());
1591 if (UseFloat) {
1592 Name = "__sincospif_stret";
1593
1594 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1595 // x86_64 can't use {float, float} since that would be returned in both
1596 // xmm0 and xmm1, which isn't what a real struct would do.
1597 ResTy = T.getArch() == Triple::x86_64
1598 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1599 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1600 } else {
1601 Name = "__sincospi_stret";
1602 ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1603 }
1604
1605 Module *M = OrigCallee->getParent();
1606 Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1607 ResTy, ArgTy, nullptr);
1608
1609 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1610 // If the argument is an instruction, it must dominate all uses so put our
1611 // sincos call there.
1612 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1613 } else {
1614 // Otherwise (e.g. for a constant) the beginning of the function is as
1615 // good a place as any.
1616 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1617 B.SetInsertPoint(&EntryBB, EntryBB.begin());
1618 }
1619
1620 SinCos = B.CreateCall(Callee, Arg, "sincospi");
1621
1622 if (SinCos->getType()->isStructTy()) {
1623 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1624 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1625 } else {
1626 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1627 "sinpi");
1628 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1629 "cospi");
1630 }
1631 }
1632
1633 //===----------------------------------------------------------------------===//
1634 // Integer Library Call Optimizations
1635 //===----------------------------------------------------------------------===//
1636
checkIntUnaryReturnAndParam(Function * Callee)1637 static bool checkIntUnaryReturnAndParam(Function *Callee) {
1638 FunctionType *FT = Callee->getFunctionType();
1639 return FT->getNumParams() == 1 && FT->getReturnType()->isIntegerTy(32) &&
1640 FT->getParamType(0)->isIntegerTy();
1641 }
1642
optimizeFFS(CallInst * CI,IRBuilder<> & B)1643 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1644 Function *Callee = CI->getCalledFunction();
1645 if (!checkIntUnaryReturnAndParam(Callee))
1646 return nullptr;
1647 Value *Op = CI->getArgOperand(0);
1648
1649 // Constant fold.
1650 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1651 if (CI->isZero()) // ffs(0) -> 0.
1652 return B.getInt32(0);
1653 // ffs(c) -> cttz(c)+1
1654 return B.getInt32(CI->getValue().countTrailingZeros() + 1);
1655 }
1656
1657 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1658 Type *ArgType = Op->getType();
1659 Value *F =
1660 Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
1661 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1662 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1663 V = B.CreateIntCast(V, B.getInt32Ty(), false);
1664
1665 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1666 return B.CreateSelect(Cond, V, B.getInt32(0));
1667 }
1668
optimizeAbs(CallInst * CI,IRBuilder<> & B)1669 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1670 Function *Callee = CI->getCalledFunction();
1671 FunctionType *FT = Callee->getFunctionType();
1672 // We require integer(integer) where the types agree.
1673 if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1674 FT->getParamType(0) != FT->getReturnType())
1675 return nullptr;
1676
1677 // abs(x) -> x >s -1 ? x : -x
1678 Value *Op = CI->getArgOperand(0);
1679 Value *Pos =
1680 B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1681 Value *Neg = B.CreateNeg(Op, "neg");
1682 return B.CreateSelect(Pos, Op, Neg);
1683 }
1684
optimizeIsDigit(CallInst * CI,IRBuilder<> & B)1685 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1686 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
1687 return nullptr;
1688
1689 // isdigit(c) -> (c-'0') <u 10
1690 Value *Op = CI->getArgOperand(0);
1691 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1692 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1693 return B.CreateZExt(Op, CI->getType());
1694 }
1695
optimizeIsAscii(CallInst * CI,IRBuilder<> & B)1696 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1697 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
1698 return nullptr;
1699
1700 // isascii(c) -> c <u 128
1701 Value *Op = CI->getArgOperand(0);
1702 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1703 return B.CreateZExt(Op, CI->getType());
1704 }
1705
optimizeToAscii(CallInst * CI,IRBuilder<> & B)1706 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1707 if (!checkIntUnaryReturnAndParam(CI->getCalledFunction()))
1708 return nullptr;
1709
1710 // toascii(c) -> c & 0x7f
1711 return B.CreateAnd(CI->getArgOperand(0),
1712 ConstantInt::get(CI->getType(), 0x7F));
1713 }
1714
1715 //===----------------------------------------------------------------------===//
1716 // Formatting and IO Library Call Optimizations
1717 //===----------------------------------------------------------------------===//
1718
1719 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1720
optimizeErrorReporting(CallInst * CI,IRBuilder<> & B,int StreamArg)1721 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1722 int StreamArg) {
1723 // Error reporting calls should be cold, mark them as such.
1724 // This applies even to non-builtin calls: it is only a hint and applies to
1725 // functions that the frontend might not understand as builtins.
1726
1727 // This heuristic was suggested in:
1728 // Improving Static Branch Prediction in a Compiler
1729 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1730 // Proceedings of PACT'98, Oct. 1998, IEEE
1731 Function *Callee = CI->getCalledFunction();
1732
1733 if (!CI->hasFnAttr(Attribute::Cold) &&
1734 isReportingError(Callee, CI, StreamArg)) {
1735 CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1736 }
1737
1738 return nullptr;
1739 }
1740
isReportingError(Function * Callee,CallInst * CI,int StreamArg)1741 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1742 if (!ColdErrorCalls || !Callee || !Callee->isDeclaration())
1743 return false;
1744
1745 if (StreamArg < 0)
1746 return true;
1747
1748 // These functions might be considered cold, but only if their stream
1749 // argument is stderr.
1750
1751 if (StreamArg >= (int)CI->getNumArgOperands())
1752 return false;
1753 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1754 if (!LI)
1755 return false;
1756 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1757 if (!GV || !GV->isDeclaration())
1758 return false;
1759 return GV->getName() == "stderr";
1760 }
1761
optimizePrintFString(CallInst * CI,IRBuilder<> & B)1762 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1763 // Check for a fixed format string.
1764 StringRef FormatStr;
1765 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1766 return nullptr;
1767
1768 // Empty format string -> noop.
1769 if (FormatStr.empty()) // Tolerate printf's declared void.
1770 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1771
1772 // Do not do any of the following transformations if the printf return value
1773 // is used, in general the printf return value is not compatible with either
1774 // putchar() or puts().
1775 if (!CI->use_empty())
1776 return nullptr;
1777
1778 // printf("x") -> putchar('x'), even for '%'.
1779 if (FormatStr.size() == 1) {
1780 Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1781 if (CI->use_empty() || !Res)
1782 return Res;
1783 return B.CreateIntCast(Res, CI->getType(), true);
1784 }
1785
1786 // printf("foo\n") --> puts("foo")
1787 if (FormatStr[FormatStr.size() - 1] == '\n' &&
1788 FormatStr.find('%') == StringRef::npos) { // No format characters.
1789 // Create a string literal with no \n on it. We expect the constant merge
1790 // pass to be run after this pass, to merge duplicate strings.
1791 FormatStr = FormatStr.drop_back();
1792 Value *GV = B.CreateGlobalString(FormatStr, "str");
1793 Value *NewCI = EmitPutS(GV, B, TLI);
1794 return (CI->use_empty() || !NewCI)
1795 ? NewCI
1796 : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
1797 }
1798
1799 // Optimize specific format strings.
1800 // printf("%c", chr) --> putchar(chr)
1801 if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1802 CI->getArgOperand(1)->getType()->isIntegerTy()) {
1803 Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
1804
1805 if (CI->use_empty() || !Res)
1806 return Res;
1807 return B.CreateIntCast(Res, CI->getType(), true);
1808 }
1809
1810 // printf("%s\n", str) --> puts(str)
1811 if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1812 CI->getArgOperand(1)->getType()->isPointerTy()) {
1813 return EmitPutS(CI->getArgOperand(1), B, TLI);
1814 }
1815 return nullptr;
1816 }
1817
optimizePrintF(CallInst * CI,IRBuilder<> & B)1818 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1819
1820 Function *Callee = CI->getCalledFunction();
1821 // Require one fixed pointer argument and an integer/void result.
1822 FunctionType *FT = Callee->getFunctionType();
1823 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1824 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
1825 return nullptr;
1826
1827 if (Value *V = optimizePrintFString(CI, B)) {
1828 return V;
1829 }
1830
1831 // printf(format, ...) -> iprintf(format, ...) if no floating point
1832 // arguments.
1833 if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1834 Module *M = B.GetInsertBlock()->getParent()->getParent();
1835 Constant *IPrintFFn =
1836 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1837 CallInst *New = cast<CallInst>(CI->clone());
1838 New->setCalledFunction(IPrintFFn);
1839 B.Insert(New);
1840 return New;
1841 }
1842 return nullptr;
1843 }
1844
optimizeSPrintFString(CallInst * CI,IRBuilder<> & B)1845 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1846 // Check for a fixed format string.
1847 StringRef FormatStr;
1848 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1849 return nullptr;
1850
1851 // If we just have a format string (nothing else crazy) transform it.
1852 if (CI->getNumArgOperands() == 2) {
1853 // Make sure there's no % in the constant array. We could try to handle
1854 // %% -> % in the future if we cared.
1855 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1856 if (FormatStr[i] == '%')
1857 return nullptr; // we found a format specifier, bail out.
1858
1859 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1860 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1861 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1862 FormatStr.size() + 1),
1863 1); // Copy the null byte.
1864 return ConstantInt::get(CI->getType(), FormatStr.size());
1865 }
1866
1867 // The remaining optimizations require the format string to be "%s" or "%c"
1868 // and have an extra operand.
1869 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1870 CI->getNumArgOperands() < 3)
1871 return nullptr;
1872
1873 // Decode the second character of the format string.
1874 if (FormatStr[1] == 'c') {
1875 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1876 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1877 return nullptr;
1878 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1879 Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
1880 B.CreateStore(V, Ptr);
1881 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1882 B.CreateStore(B.getInt8(0), Ptr);
1883
1884 return ConstantInt::get(CI->getType(), 1);
1885 }
1886
1887 if (FormatStr[1] == 's') {
1888 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1889 if (!CI->getArgOperand(2)->getType()->isPointerTy())
1890 return nullptr;
1891
1892 Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
1893 if (!Len)
1894 return nullptr;
1895 Value *IncLen =
1896 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1897 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1898
1899 // The sprintf result is the unincremented number of bytes in the string.
1900 return B.CreateIntCast(Len, CI->getType(), false);
1901 }
1902 return nullptr;
1903 }
1904
optimizeSPrintF(CallInst * CI,IRBuilder<> & B)1905 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1906 Function *Callee = CI->getCalledFunction();
1907 // Require two fixed pointer arguments and an integer result.
1908 FunctionType *FT = Callee->getFunctionType();
1909 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1910 !FT->getParamType(1)->isPointerTy() ||
1911 !FT->getReturnType()->isIntegerTy())
1912 return nullptr;
1913
1914 if (Value *V = optimizeSPrintFString(CI, B)) {
1915 return V;
1916 }
1917
1918 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1919 // point arguments.
1920 if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1921 Module *M = B.GetInsertBlock()->getParent()->getParent();
1922 Constant *SIPrintFFn =
1923 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1924 CallInst *New = cast<CallInst>(CI->clone());
1925 New->setCalledFunction(SIPrintFFn);
1926 B.Insert(New);
1927 return New;
1928 }
1929 return nullptr;
1930 }
1931
optimizeFPrintFString(CallInst * CI,IRBuilder<> & B)1932 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1933 optimizeErrorReporting(CI, B, 0);
1934
1935 // All the optimizations depend on the format string.
1936 StringRef FormatStr;
1937 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1938 return nullptr;
1939
1940 // Do not do any of the following transformations if the fprintf return
1941 // value is used, in general the fprintf return value is not compatible
1942 // with fwrite(), fputc() or fputs().
1943 if (!CI->use_empty())
1944 return nullptr;
1945
1946 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1947 if (CI->getNumArgOperands() == 2) {
1948 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1949 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1950 return nullptr; // We found a format specifier.
1951
1952 return EmitFWrite(
1953 CI->getArgOperand(1),
1954 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1955 CI->getArgOperand(0), B, DL, TLI);
1956 }
1957
1958 // The remaining optimizations require the format string to be "%s" or "%c"
1959 // and have an extra operand.
1960 if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1961 CI->getNumArgOperands() < 3)
1962 return nullptr;
1963
1964 // Decode the second character of the format string.
1965 if (FormatStr[1] == 'c') {
1966 // fprintf(F, "%c", chr) --> fputc(chr, F)
1967 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1968 return nullptr;
1969 return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1970 }
1971
1972 if (FormatStr[1] == 's') {
1973 // fprintf(F, "%s", str) --> fputs(str, F)
1974 if (!CI->getArgOperand(2)->getType()->isPointerTy())
1975 return nullptr;
1976 return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1977 }
1978 return nullptr;
1979 }
1980
optimizeFPrintF(CallInst * CI,IRBuilder<> & B)1981 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1982 Function *Callee = CI->getCalledFunction();
1983 // Require two fixed paramters as pointers and integer result.
1984 FunctionType *FT = Callee->getFunctionType();
1985 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1986 !FT->getParamType(1)->isPointerTy() ||
1987 !FT->getReturnType()->isIntegerTy())
1988 return nullptr;
1989
1990 if (Value *V = optimizeFPrintFString(CI, B)) {
1991 return V;
1992 }
1993
1994 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1995 // floating point arguments.
1996 if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1997 Module *M = B.GetInsertBlock()->getParent()->getParent();
1998 Constant *FIPrintFFn =
1999 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2000 CallInst *New = cast<CallInst>(CI->clone());
2001 New->setCalledFunction(FIPrintFFn);
2002 B.Insert(New);
2003 return New;
2004 }
2005 return nullptr;
2006 }
2007
optimizeFWrite(CallInst * CI,IRBuilder<> & B)2008 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2009 optimizeErrorReporting(CI, B, 3);
2010
2011 Function *Callee = CI->getCalledFunction();
2012 // Require a pointer, an integer, an integer, a pointer, returning integer.
2013 FunctionType *FT = Callee->getFunctionType();
2014 if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
2015 !FT->getParamType(1)->isIntegerTy() ||
2016 !FT->getParamType(2)->isIntegerTy() ||
2017 !FT->getParamType(3)->isPointerTy() ||
2018 !FT->getReturnType()->isIntegerTy())
2019 return nullptr;
2020
2021 // Get the element size and count.
2022 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2023 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2024 if (!SizeC || !CountC)
2025 return nullptr;
2026 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2027
2028 // If this is writing zero records, remove the call (it's a noop).
2029 if (Bytes == 0)
2030 return ConstantInt::get(CI->getType(), 0);
2031
2032 // If this is writing one byte, turn it into fputc.
2033 // This optimisation is only valid, if the return value is unused.
2034 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2035 Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
2036 Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
2037 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2038 }
2039
2040 return nullptr;
2041 }
2042
optimizeFPuts(CallInst * CI,IRBuilder<> & B)2043 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2044 optimizeErrorReporting(CI, B, 1);
2045
2046 Function *Callee = CI->getCalledFunction();
2047
2048 // Require two pointers. Also, we can't optimize if return value is used.
2049 FunctionType *FT = Callee->getFunctionType();
2050 if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
2051 !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
2052 return nullptr;
2053
2054 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
2055 uint64_t Len = GetStringLength(CI->getArgOperand(0));
2056 if (!Len)
2057 return nullptr;
2058
2059 // Known to have no uses (see above).
2060 return EmitFWrite(
2061 CI->getArgOperand(0),
2062 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2063 CI->getArgOperand(1), B, DL, TLI);
2064 }
2065
optimizePuts(CallInst * CI,IRBuilder<> & B)2066 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2067 Function *Callee = CI->getCalledFunction();
2068 // Require one fixed pointer argument and an integer/void result.
2069 FunctionType *FT = Callee->getFunctionType();
2070 if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
2071 !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
2072 return nullptr;
2073
2074 // Check for a constant string.
2075 StringRef Str;
2076 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2077 return nullptr;
2078
2079 if (Str.empty() && CI->use_empty()) {
2080 // puts("") -> putchar('\n')
2081 Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
2082 if (CI->use_empty() || !Res)
2083 return Res;
2084 return B.CreateIntCast(Res, CI->getType(), true);
2085 }
2086
2087 return nullptr;
2088 }
2089
hasFloatVersion(StringRef FuncName)2090 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2091 LibFunc::Func Func;
2092 SmallString<20> FloatFuncName = FuncName;
2093 FloatFuncName += 'f';
2094 if (TLI->getLibFunc(FloatFuncName, Func))
2095 return TLI->has(Func);
2096 return false;
2097 }
2098
optimizeStringMemoryLibCall(CallInst * CI,IRBuilder<> & Builder)2099 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2100 IRBuilder<> &Builder) {
2101 LibFunc::Func Func;
2102 Function *Callee = CI->getCalledFunction();
2103 StringRef FuncName = Callee->getName();
2104
2105 // Check for string/memory library functions.
2106 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
2107 // Make sure we never change the calling convention.
2108 assert((ignoreCallingConv(Func) ||
2109 CI->getCallingConv() == llvm::CallingConv::C) &&
2110 "Optimizing string/memory libcall would change the calling convention");
2111 switch (Func) {
2112 case LibFunc::strcat:
2113 return optimizeStrCat(CI, Builder);
2114 case LibFunc::strncat:
2115 return optimizeStrNCat(CI, Builder);
2116 case LibFunc::strchr:
2117 return optimizeStrChr(CI, Builder);
2118 case LibFunc::strrchr:
2119 return optimizeStrRChr(CI, Builder);
2120 case LibFunc::strcmp:
2121 return optimizeStrCmp(CI, Builder);
2122 case LibFunc::strncmp:
2123 return optimizeStrNCmp(CI, Builder);
2124 case LibFunc::strcpy:
2125 return optimizeStrCpy(CI, Builder);
2126 case LibFunc::stpcpy:
2127 return optimizeStpCpy(CI, Builder);
2128 case LibFunc::strncpy:
2129 return optimizeStrNCpy(CI, Builder);
2130 case LibFunc::strlen:
2131 return optimizeStrLen(CI, Builder);
2132 case LibFunc::strpbrk:
2133 return optimizeStrPBrk(CI, Builder);
2134 case LibFunc::strtol:
2135 case LibFunc::strtod:
2136 case LibFunc::strtof:
2137 case LibFunc::strtoul:
2138 case LibFunc::strtoll:
2139 case LibFunc::strtold:
2140 case LibFunc::strtoull:
2141 return optimizeStrTo(CI, Builder);
2142 case LibFunc::strspn:
2143 return optimizeStrSpn(CI, Builder);
2144 case LibFunc::strcspn:
2145 return optimizeStrCSpn(CI, Builder);
2146 case LibFunc::strstr:
2147 return optimizeStrStr(CI, Builder);
2148 case LibFunc::memchr:
2149 return optimizeMemChr(CI, Builder);
2150 case LibFunc::memcmp:
2151 return optimizeMemCmp(CI, Builder);
2152 case LibFunc::memcpy:
2153 return optimizeMemCpy(CI, Builder);
2154 case LibFunc::memmove:
2155 return optimizeMemMove(CI, Builder);
2156 case LibFunc::memset:
2157 return optimizeMemSet(CI, Builder);
2158 default:
2159 break;
2160 }
2161 }
2162 return nullptr;
2163 }
2164
optimizeCall(CallInst * CI)2165 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2166 if (CI->isNoBuiltin())
2167 return nullptr;
2168
2169 LibFunc::Func Func;
2170 Function *Callee = CI->getCalledFunction();
2171 StringRef FuncName = Callee->getName();
2172 IRBuilder<> Builder(CI);
2173 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2174
2175 // Command-line parameter overrides function attribute.
2176 if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2177 UnsafeFPShrink = EnableUnsafeFPShrink;
2178 else if (canUseUnsafeFPMath(Callee))
2179 UnsafeFPShrink = true;
2180
2181 // First, check for intrinsics.
2182 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2183 if (!isCallingConvC)
2184 return nullptr;
2185 switch (II->getIntrinsicID()) {
2186 case Intrinsic::pow:
2187 return optimizePow(CI, Builder);
2188 case Intrinsic::exp2:
2189 return optimizeExp2(CI, Builder);
2190 case Intrinsic::fabs:
2191 return optimizeFabs(CI, Builder);
2192 case Intrinsic::log:
2193 return optimizeLog(CI, Builder);
2194 case Intrinsic::sqrt:
2195 return optimizeSqrt(CI, Builder);
2196 default:
2197 return nullptr;
2198 }
2199 }
2200
2201 // Also try to simplify calls to fortified library functions.
2202 if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2203 // Try to further simplify the result.
2204 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2205 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
2206 // Use an IR Builder from SimplifiedCI if available instead of CI
2207 // to guarantee we reach all uses we might replace later on.
2208 IRBuilder<> TmpBuilder(SimplifiedCI);
2209 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
2210 // If we were able to further simplify, remove the now redundant call.
2211 SimplifiedCI->replaceAllUsesWith(V);
2212 SimplifiedCI->eraseFromParent();
2213 return V;
2214 }
2215 }
2216 return SimplifiedFortifiedCI;
2217 }
2218
2219 // Then check for known library functions.
2220 if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
2221 // We never change the calling convention.
2222 if (!ignoreCallingConv(Func) && !isCallingConvC)
2223 return nullptr;
2224 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2225 return V;
2226 switch (Func) {
2227 case LibFunc::cosf:
2228 case LibFunc::cos:
2229 case LibFunc::cosl:
2230 return optimizeCos(CI, Builder);
2231 case LibFunc::sinpif:
2232 case LibFunc::sinpi:
2233 case LibFunc::cospif:
2234 case LibFunc::cospi:
2235 return optimizeSinCosPi(CI, Builder);
2236 case LibFunc::powf:
2237 case LibFunc::pow:
2238 case LibFunc::powl:
2239 return optimizePow(CI, Builder);
2240 case LibFunc::exp2l:
2241 case LibFunc::exp2:
2242 case LibFunc::exp2f:
2243 return optimizeExp2(CI, Builder);
2244 case LibFunc::fabsf:
2245 case LibFunc::fabs:
2246 case LibFunc::fabsl:
2247 return optimizeFabs(CI, Builder);
2248 case LibFunc::sqrtf:
2249 case LibFunc::sqrt:
2250 case LibFunc::sqrtl:
2251 return optimizeSqrt(CI, Builder);
2252 case LibFunc::ffs:
2253 case LibFunc::ffsl:
2254 case LibFunc::ffsll:
2255 return optimizeFFS(CI, Builder);
2256 case LibFunc::abs:
2257 case LibFunc::labs:
2258 case LibFunc::llabs:
2259 return optimizeAbs(CI, Builder);
2260 case LibFunc::isdigit:
2261 return optimizeIsDigit(CI, Builder);
2262 case LibFunc::isascii:
2263 return optimizeIsAscii(CI, Builder);
2264 case LibFunc::toascii:
2265 return optimizeToAscii(CI, Builder);
2266 case LibFunc::printf:
2267 return optimizePrintF(CI, Builder);
2268 case LibFunc::sprintf:
2269 return optimizeSPrintF(CI, Builder);
2270 case LibFunc::fprintf:
2271 return optimizeFPrintF(CI, Builder);
2272 case LibFunc::fwrite:
2273 return optimizeFWrite(CI, Builder);
2274 case LibFunc::fputs:
2275 return optimizeFPuts(CI, Builder);
2276 case LibFunc::log:
2277 case LibFunc::log10:
2278 case LibFunc::log1p:
2279 case LibFunc::log2:
2280 case LibFunc::logb:
2281 return optimizeLog(CI, Builder);
2282 case LibFunc::puts:
2283 return optimizePuts(CI, Builder);
2284 case LibFunc::tan:
2285 case LibFunc::tanf:
2286 case LibFunc::tanl:
2287 return optimizeTan(CI, Builder);
2288 case LibFunc::perror:
2289 return optimizeErrorReporting(CI, Builder);
2290 case LibFunc::vfprintf:
2291 case LibFunc::fiprintf:
2292 return optimizeErrorReporting(CI, Builder, 0);
2293 case LibFunc::fputc:
2294 return optimizeErrorReporting(CI, Builder, 1);
2295 case LibFunc::ceil:
2296 case LibFunc::floor:
2297 case LibFunc::rint:
2298 case LibFunc::round:
2299 case LibFunc::nearbyint:
2300 case LibFunc::trunc:
2301 if (hasFloatVersion(FuncName))
2302 return optimizeUnaryDoubleFP(CI, Builder, false);
2303 return nullptr;
2304 case LibFunc::acos:
2305 case LibFunc::acosh:
2306 case LibFunc::asin:
2307 case LibFunc::asinh:
2308 case LibFunc::atan:
2309 case LibFunc::atanh:
2310 case LibFunc::cbrt:
2311 case LibFunc::cosh:
2312 case LibFunc::exp:
2313 case LibFunc::exp10:
2314 case LibFunc::expm1:
2315 case LibFunc::sin:
2316 case LibFunc::sinh:
2317 case LibFunc::tanh:
2318 if (UnsafeFPShrink && hasFloatVersion(FuncName))
2319 return optimizeUnaryDoubleFP(CI, Builder, true);
2320 return nullptr;
2321 case LibFunc::copysign:
2322 if (hasFloatVersion(FuncName))
2323 return optimizeBinaryDoubleFP(CI, Builder);
2324 return nullptr;
2325 case LibFunc::fminf:
2326 case LibFunc::fmin:
2327 case LibFunc::fminl:
2328 case LibFunc::fmaxf:
2329 case LibFunc::fmax:
2330 case LibFunc::fmaxl:
2331 return optimizeFMinFMax(CI, Builder);
2332 default:
2333 return nullptr;
2334 }
2335 }
2336 return nullptr;
2337 }
2338
LibCallSimplifier(const DataLayout & DL,const TargetLibraryInfo * TLI,function_ref<void (Instruction *,Value *)> Replacer)2339 LibCallSimplifier::LibCallSimplifier(
2340 const DataLayout &DL, const TargetLibraryInfo *TLI,
2341 function_ref<void(Instruction *, Value *)> Replacer)
2342 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2343 Replacer(Replacer) {}
2344
replaceAllUsesWith(Instruction * I,Value * With)2345 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2346 // Indirect through the replacer used in this instance.
2347 Replacer(I, With);
2348 }
2349
2350 // TODO:
2351 // Additional cases that we need to add to this file:
2352 //
2353 // cbrt:
2354 // * cbrt(expN(X)) -> expN(x/3)
2355 // * cbrt(sqrt(x)) -> pow(x,1/6)
2356 // * cbrt(cbrt(x)) -> pow(x,1/9)
2357 //
2358 // exp, expf, expl:
2359 // * exp(log(x)) -> x
2360 //
2361 // log, logf, logl:
2362 // * log(exp(x)) -> x
2363 // * log(exp(y)) -> y*log(e)
2364 // * log(exp10(y)) -> y*log(10)
2365 // * log(sqrt(x)) -> 0.5*log(x)
2366 //
2367 // lround, lroundf, lroundl:
2368 // * lround(cnst) -> cnst'
2369 //
2370 // pow, powf, powl:
2371 // * pow(sqrt(x),y) -> pow(x,y*0.5)
2372 // * pow(pow(x,y),z)-> pow(x,y*z)
2373 //
2374 // round, roundf, roundl:
2375 // * round(cnst) -> cnst'
2376 //
2377 // signbit:
2378 // * signbit(cnst) -> cnst'
2379 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2380 //
2381 // sqrt, sqrtf, sqrtl:
2382 // * sqrt(expN(x)) -> expN(x*0.5)
2383 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2384 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2385 //
2386 // trunc, truncf, truncl:
2387 // * trunc(cnst) -> cnst'
2388 //
2389 //
2390
2391 //===----------------------------------------------------------------------===//
2392 // Fortified Library Call Optimizations
2393 //===----------------------------------------------------------------------===//
2394
isFortifiedCallFoldable(CallInst * CI,unsigned ObjSizeOp,unsigned SizeOp,bool isString)2395 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2396 unsigned ObjSizeOp,
2397 unsigned SizeOp,
2398 bool isString) {
2399 if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2400 return true;
2401 if (ConstantInt *ObjSizeCI =
2402 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2403 if (ObjSizeCI->isAllOnesValue())
2404 return true;
2405 // If the object size wasn't -1 (unknown), bail out if we were asked to.
2406 if (OnlyLowerUnknownSize)
2407 return false;
2408 if (isString) {
2409 uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2410 // If the length is 0 we don't know how long it is and so we can't
2411 // remove the check.
2412 if (Len == 0)
2413 return false;
2414 return ObjSizeCI->getZExtValue() >= Len;
2415 }
2416 if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2417 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2418 }
2419 return false;
2420 }
2421
optimizeMemCpyChk(CallInst * CI,IRBuilder<> & B)2422 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
2423 Function *Callee = CI->getCalledFunction();
2424
2425 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
2426 return nullptr;
2427
2428 if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2429 B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2430 CI->getArgOperand(2), 1);
2431 return CI->getArgOperand(0);
2432 }
2433 return nullptr;
2434 }
2435
optimizeMemMoveChk(CallInst * CI,IRBuilder<> & B)2436 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
2437 Function *Callee = CI->getCalledFunction();
2438
2439 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
2440 return nullptr;
2441
2442 if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2443 B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2444 CI->getArgOperand(2), 1);
2445 return CI->getArgOperand(0);
2446 }
2447 return nullptr;
2448 }
2449
optimizeMemSetChk(CallInst * CI,IRBuilder<> & B)2450 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
2451 Function *Callee = CI->getCalledFunction();
2452
2453 if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
2454 return nullptr;
2455
2456 if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2457 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2458 B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2459 return CI->getArgOperand(0);
2460 }
2461 return nullptr;
2462 }
2463
optimizeStrpCpyChk(CallInst * CI,IRBuilder<> & B,LibFunc::Func Func)2464 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2465 IRBuilder<> &B,
2466 LibFunc::Func Func) {
2467 Function *Callee = CI->getCalledFunction();
2468 StringRef Name = Callee->getName();
2469 const DataLayout &DL = CI->getModule()->getDataLayout();
2470
2471 if (!checkStringCopyLibFuncSignature(Callee, Func))
2472 return nullptr;
2473
2474 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2475 *ObjSize = CI->getArgOperand(2);
2476
2477 // __stpcpy_chk(x,x,...) -> x+strlen(x)
2478 if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2479 Value *StrLen = EmitStrLen(Src, B, DL, TLI);
2480 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2481 }
2482
2483 // If a) we don't have any length information, or b) we know this will
2484 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2485 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2486 // TODO: It might be nice to get a maximum length out of the possible
2487 // string lengths for varying.
2488 if (isFortifiedCallFoldable(CI, 2, 1, true))
2489 return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2490
2491 if (OnlyLowerUnknownSize)
2492 return nullptr;
2493
2494 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2495 uint64_t Len = GetStringLength(Src);
2496 if (Len == 0)
2497 return nullptr;
2498
2499 Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2500 Value *LenV = ConstantInt::get(SizeTTy, Len);
2501 Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2502 // If the function was an __stpcpy_chk, and we were able to fold it into
2503 // a __memcpy_chk, we still need to return the correct end pointer.
2504 if (Ret && Func == LibFunc::stpcpy_chk)
2505 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2506 return Ret;
2507 }
2508
optimizeStrpNCpyChk(CallInst * CI,IRBuilder<> & B,LibFunc::Func Func)2509 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2510 IRBuilder<> &B,
2511 LibFunc::Func Func) {
2512 Function *Callee = CI->getCalledFunction();
2513 StringRef Name = Callee->getName();
2514
2515 if (!checkStringCopyLibFuncSignature(Callee, Func))
2516 return nullptr;
2517 if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2518 Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2519 CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2520 return Ret;
2521 }
2522 return nullptr;
2523 }
2524
optimizeCall(CallInst * CI)2525 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2526 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2527 // Some clang users checked for _chk libcall availability using:
2528 // __has_builtin(__builtin___memcpy_chk)
2529 // When compiling with -fno-builtin, this is always true.
2530 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2531 // end up with fortified libcalls, which isn't acceptable in a freestanding
2532 // environment which only provides their non-fortified counterparts.
2533 //
2534 // Until we change clang and/or teach external users to check for availability
2535 // differently, disregard the "nobuiltin" attribute and TLI::has.
2536 //
2537 // PR23093.
2538
2539 LibFunc::Func Func;
2540 Function *Callee = CI->getCalledFunction();
2541 StringRef FuncName = Callee->getName();
2542 IRBuilder<> Builder(CI);
2543 bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2544
2545 // First, check that this is a known library functions.
2546 if (!TLI->getLibFunc(FuncName, Func))
2547 return nullptr;
2548
2549 // We never change the calling convention.
2550 if (!ignoreCallingConv(Func) && !isCallingConvC)
2551 return nullptr;
2552
2553 switch (Func) {
2554 case LibFunc::memcpy_chk:
2555 return optimizeMemCpyChk(CI, Builder);
2556 case LibFunc::memmove_chk:
2557 return optimizeMemMoveChk(CI, Builder);
2558 case LibFunc::memset_chk:
2559 return optimizeMemSetChk(CI, Builder);
2560 case LibFunc::stpcpy_chk:
2561 case LibFunc::strcpy_chk:
2562 return optimizeStrpCpyChk(CI, Builder, Func);
2563 case LibFunc::stpncpy_chk:
2564 case LibFunc::strncpy_chk:
2565 return optimizeStrpNCpyChk(CI, Builder, Func);
2566 default:
2567 break;
2568 }
2569 return nullptr;
2570 }
2571
FortifiedLibCallSimplifier(const TargetLibraryInfo * TLI,bool OnlyLowerUnknownSize)2572 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2573 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2574 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
2575