1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "perf_precomp.hpp"
44
45 using namespace std;
46 using namespace testing;
47 using namespace perf;
48
49 //////////////////////////////////////////////////////////////////////
50 // HoughLines
51
52 namespace
53 {
54 struct Vec4iComparator
55 {
operator ()__anon5503e0f70111::Vec4iComparator56 bool operator()(const cv::Vec4i& a, const cv::Vec4i b) const
57 {
58 if (a[0] != b[0]) return a[0] < b[0];
59 else if(a[1] != b[1]) return a[1] < b[1];
60 else if(a[2] != b[2]) return a[2] < b[2];
61 else return a[3] < b[3];
62 }
63 };
64 struct Vec3fComparator
65 {
operator ()__anon5503e0f70111::Vec3fComparator66 bool operator()(const cv::Vec3f& a, const cv::Vec3f b) const
67 {
68 if(a[0] != b[0]) return a[0] < b[0];
69 else if(a[1] != b[1]) return a[1] < b[1];
70 else return a[2] < b[2];
71 }
72 };
73 struct Vec2fComparator
74 {
operator ()__anon5503e0f70111::Vec2fComparator75 bool operator()(const cv::Vec2f& a, const cv::Vec2f b) const
76 {
77 if(a[0] != b[0]) return a[0] < b[0];
78 else return a[1] < b[1];
79 }
80 };
81 }
82
PERF_TEST_P(Sz,HoughLines,CUDA_TYPICAL_MAT_SIZES)83 PERF_TEST_P(Sz, HoughLines,
84 CUDA_TYPICAL_MAT_SIZES)
85 {
86 declare.time(30.0);
87
88 const cv::Size size = GetParam();
89
90 const float rho = 1.0f;
91 const float theta = static_cast<float>(CV_PI / 180.0);
92 const int threshold = 300;
93
94 cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
95 cv::line(src, cv::Point(0, 100), cv::Point(src.cols, 100), cv::Scalar::all(255), 1);
96 cv::line(src, cv::Point(0, 200), cv::Point(src.cols, 200), cv::Scalar::all(255), 1);
97 cv::line(src, cv::Point(0, 400), cv::Point(src.cols, 400), cv::Scalar::all(255), 1);
98 cv::line(src, cv::Point(100, 0), cv::Point(100, src.rows), cv::Scalar::all(255), 1);
99 cv::line(src, cv::Point(200, 0), cv::Point(200, src.rows), cv::Scalar::all(255), 1);
100 cv::line(src, cv::Point(400, 0), cv::Point(400, src.rows), cv::Scalar::all(255), 1);
101
102 if (PERF_RUN_CUDA())
103 {
104 const cv::cuda::GpuMat d_src(src);
105 cv::cuda::GpuMat d_lines;
106
107 cv::Ptr<cv::cuda::HoughLinesDetector> hough = cv::cuda::createHoughLinesDetector(rho, theta, threshold);
108
109 TEST_CYCLE() hough->detect(d_src, d_lines);
110
111 cv::Mat gpu_lines(d_lines.row(0));
112 cv::Vec2f* begin = gpu_lines.ptr<cv::Vec2f>(0);
113 cv::Vec2f* end = begin + gpu_lines.cols;
114 std::sort(begin, end, Vec2fComparator());
115 SANITY_CHECK(gpu_lines);
116 }
117 else
118 {
119 std::vector<cv::Vec2f> cpu_lines;
120
121 TEST_CYCLE() cv::HoughLines(src, cpu_lines, rho, theta, threshold);
122
123 SANITY_CHECK(cpu_lines);
124 }
125 }
126
127 //////////////////////////////////////////////////////////////////////
128 // HoughLinesP
129
130 DEF_PARAM_TEST_1(Image, std::string);
131
132 PERF_TEST_P(Image, HoughLinesP,
133 testing::Values("cv/shared/pic5.png", "stitching/a1.png"))
134 {
135 declare.time(30.0);
136
137 const std::string fileName = getDataPath(GetParam());
138
139 const float rho = 1.0f;
140 const float theta = static_cast<float>(CV_PI / 180.0);
141 const int threshold = 100;
142 const int minLineLength = 50;
143 const int maxLineGap = 5;
144
145 const cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE);
146 ASSERT_FALSE(image.empty());
147
148 cv::Mat mask;
149 cv::Canny(image, mask, 50, 100);
150
151 if (PERF_RUN_CUDA())
152 {
153 const cv::cuda::GpuMat d_mask(mask);
154 cv::cuda::GpuMat d_lines;
155
156 cv::Ptr<cv::cuda::HoughSegmentDetector> hough = cv::cuda::createHoughSegmentDetector(rho, theta, minLineLength, maxLineGap);
157
158 TEST_CYCLE() hough->detect(d_mask, d_lines);
159
160 cv::Mat gpu_lines(d_lines);
161 cv::Vec4i* begin = gpu_lines.ptr<cv::Vec4i>();
162 cv::Vec4i* end = begin + gpu_lines.cols;
163 std::sort(begin, end, Vec4iComparator());
164 SANITY_CHECK(gpu_lines);
165 }
166 else
167 {
168 std::vector<cv::Vec4i> cpu_lines;
169
170 TEST_CYCLE() cv::HoughLinesP(mask, cpu_lines, rho, theta, threshold, minLineLength, maxLineGap);
171
172 SANITY_CHECK(cpu_lines);
173 }
174 }
175
176 //////////////////////////////////////////////////////////////////////
177 // HoughCircles
178
179 DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float);
180
181 PERF_TEST_P(Sz_Dp_MinDist, HoughCircles,
182 Combine(CUDA_TYPICAL_MAT_SIZES,
183 Values(1.0f, 2.0f, 4.0f),
184 Values(1.0f)))
185 {
186 declare.time(30.0);
187
188 const cv::Size size = GET_PARAM(0);
189 const float dp = GET_PARAM(1);
190 const float minDist = GET_PARAM(2);
191
192 const int minRadius = 10;
193 const int maxRadius = 30;
194 const int cannyThreshold = 100;
195 const int votesThreshold = 15;
196
197 cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
198 cv::circle(src, cv::Point(100, 100), 20, cv::Scalar::all(255), -1);
199 cv::circle(src, cv::Point(200, 200), 25, cv::Scalar::all(255), -1);
200 cv::circle(src, cv::Point(200, 100), 25, cv::Scalar::all(255), -1);
201
202 if (PERF_RUN_CUDA())
203 {
204 const cv::cuda::GpuMat d_src(src);
205 cv::cuda::GpuMat d_circles;
206
207 cv::Ptr<cv::cuda::HoughCirclesDetector> houghCircles = cv::cuda::createHoughCirclesDetector(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
208
209 TEST_CYCLE() houghCircles->detect(d_src, d_circles);
210
211 cv::Mat gpu_circles(d_circles);
212 cv::Vec3f* begin = gpu_circles.ptr<cv::Vec3f>(0);
213 cv::Vec3f* end = begin + gpu_circles.cols;
214 std::sort(begin, end, Vec3fComparator());
215 SANITY_CHECK(gpu_circles);
216 }
217 else
218 {
219 std::vector<cv::Vec3f> cpu_circles;
220
221 TEST_CYCLE() cv::HoughCircles(src, cpu_circles, cv::HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
222
223 SANITY_CHECK(cpu_circles);
224 }
225 }
226
227 //////////////////////////////////////////////////////////////////////
228 // GeneralizedHough
229
PERF_TEST_P(Sz,GeneralizedHoughBallard,CUDA_TYPICAL_MAT_SIZES)230 PERF_TEST_P(Sz, GeneralizedHoughBallard, CUDA_TYPICAL_MAT_SIZES)
231 {
232 declare.time(10);
233
234 const cv::Size imageSize = GetParam();
235
236 const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
237 ASSERT_FALSE(templ.empty());
238
239 cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
240 templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows)));
241
242 cv::Mat edges;
243 cv::Canny(image, edges, 50, 100);
244
245 cv::Mat dx, dy;
246 cv::Sobel(image, dx, CV_32F, 1, 0);
247 cv::Sobel(image, dy, CV_32F, 0, 1);
248
249 if (PERF_RUN_CUDA())
250 {
251 cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::cuda::createGeneralizedHoughBallard();
252
253 const cv::cuda::GpuMat d_edges(edges);
254 const cv::cuda::GpuMat d_dx(dx);
255 const cv::cuda::GpuMat d_dy(dy);
256 cv::cuda::GpuMat positions;
257
258 alg->setTemplate(cv::cuda::GpuMat(templ));
259
260 TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions);
261
262 CUDA_SANITY_CHECK(positions);
263 }
264 else
265 {
266 cv::Ptr<cv::GeneralizedHoughBallard> alg = cv::createGeneralizedHoughBallard();
267
268 cv::Mat positions;
269
270 alg->setTemplate(templ);
271
272 TEST_CYCLE() alg->detect(edges, dx, dy, positions);
273
274 CPU_SANITY_CHECK(positions);
275 }
276 }
277
PERF_TEST_P(Sz,DISABLED_GeneralizedHoughGuil,CUDA_TYPICAL_MAT_SIZES)278 PERF_TEST_P(Sz, DISABLED_GeneralizedHoughGuil, CUDA_TYPICAL_MAT_SIZES)
279 {
280 declare.time(10);
281
282 const cv::Size imageSize = GetParam();
283
284 const cv::Mat templ = readImage("cv/shared/templ.png", cv::IMREAD_GRAYSCALE);
285 ASSERT_FALSE(templ.empty());
286
287 cv::Mat image(imageSize, CV_8UC1, cv::Scalar::all(0));
288 templ.copyTo(image(cv::Rect(50, 50, templ.cols, templ.rows)));
289
290 cv::RNG rng(123456789);
291 const int objCount = rng.uniform(5, 15);
292 for (int i = 0; i < objCount; ++i)
293 {
294 double scale = rng.uniform(0.7, 1.3);
295 bool rotate = 1 == rng.uniform(0, 2);
296
297 cv::Mat obj;
298 cv::resize(templ, obj, cv::Size(), scale, scale);
299 if (rotate)
300 obj = obj.t();
301
302 cv::Point pos;
303
304 pos.x = rng.uniform(0, image.cols - obj.cols);
305 pos.y = rng.uniform(0, image.rows - obj.rows);
306
307 cv::Mat roi = image(cv::Rect(pos, obj.size()));
308 cv::add(roi, obj, roi);
309 }
310
311 cv::Mat edges;
312 cv::Canny(image, edges, 50, 100);
313
314 cv::Mat dx, dy;
315 cv::Sobel(image, dx, CV_32F, 1, 0);
316 cv::Sobel(image, dy, CV_32F, 0, 1);
317
318 if (PERF_RUN_CUDA())
319 {
320 cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::cuda::createGeneralizedHoughGuil();
321 alg->setMaxAngle(90.0);
322 alg->setAngleStep(2.0);
323
324 const cv::cuda::GpuMat d_edges(edges);
325 const cv::cuda::GpuMat d_dx(dx);
326 const cv::cuda::GpuMat d_dy(dy);
327 cv::cuda::GpuMat positions;
328
329 alg->setTemplate(cv::cuda::GpuMat(templ));
330
331 TEST_CYCLE() alg->detect(d_edges, d_dx, d_dy, positions);
332 }
333 else
334 {
335 cv::Ptr<cv::GeneralizedHoughGuil> alg = cv::createGeneralizedHoughGuil();
336 alg->setMaxAngle(90.0);
337 alg->setAngleStep(2.0);
338
339 cv::Mat positions;
340
341 alg->setTemplate(templ);
342
343 TEST_CYCLE() alg->detect(edges, dx, dy, positions);
344 }
345
346 // The algorithm is not stable yet.
347 SANITY_CHECK_NOTHING();
348 }
349