1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 using namespace cv::cuda;
47 
48 #if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_CUDALEGACY) || defined (CUDA_DISABLER)
49 
create(double,double,double,int,int,int)50 Ptr<BroxOpticalFlow> cv::cuda::BroxOpticalFlow::create(double, double, double, int, int, int) { throw_no_cuda(); return Ptr<BroxOpticalFlow>(); }
51 
52 #else
53 
54 namespace {
55 
56     class BroxOpticalFlowImpl : public BroxOpticalFlow
57     {
58     public:
BroxOpticalFlowImpl(double alpha,double gamma,double scale_factor,int inner_iterations,int outer_iterations,int solver_iterations)59         BroxOpticalFlowImpl(double alpha, double gamma, double scale_factor,
60                             int inner_iterations, int outer_iterations, int solver_iterations) :
61             alpha_(alpha), gamma_(gamma), scale_factor_(scale_factor),
62             inner_iterations_(inner_iterations), outer_iterations_(outer_iterations),
63             solver_iterations_(solver_iterations)
64         {
65         }
66 
67         virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream);
68 
getFlowSmoothness() const69         virtual double getFlowSmoothness() const { return alpha_; }
setFlowSmoothness(double alpha)70         virtual void setFlowSmoothness(double alpha) { alpha_ = static_cast<float>(alpha); }
71 
getGradientConstancyImportance() const72         virtual double getGradientConstancyImportance() const { return gamma_; }
setGradientConstancyImportance(double gamma)73         virtual void setGradientConstancyImportance(double gamma) { gamma_ = static_cast<float>(gamma); }
74 
getPyramidScaleFactor() const75         virtual double getPyramidScaleFactor() const { return scale_factor_; }
setPyramidScaleFactor(double scale_factor)76         virtual void setPyramidScaleFactor(double scale_factor) { scale_factor_ = static_cast<float>(scale_factor); }
77 
78         //! number of lagged non-linearity iterations (inner loop)
getInnerIterations() const79         virtual int getInnerIterations() const { return inner_iterations_; }
setInnerIterations(int inner_iterations)80         virtual void setInnerIterations(int inner_iterations) { inner_iterations_ = inner_iterations; }
81 
82         //! number of warping iterations (number of pyramid levels)
getOuterIterations() const83         virtual int getOuterIterations() const { return outer_iterations_; }
setOuterIterations(int outer_iterations)84         virtual void setOuterIterations(int outer_iterations) { outer_iterations_ = outer_iterations; }
85 
86         //! number of linear system solver iterations
getSolverIterations() const87         virtual int getSolverIterations() const { return solver_iterations_; }
setSolverIterations(int solver_iterations)88         virtual void setSolverIterations(int solver_iterations) { solver_iterations_ = solver_iterations; }
89 
90     private:
91         //! flow smoothness
92         float alpha_;
93 
94         //! gradient constancy importance
95         float gamma_;
96 
97         //! pyramid scale factor
98         float scale_factor_;
99 
100         //! number of lagged non-linearity iterations (inner loop)
101         int inner_iterations_;
102 
103         //! number of warping iterations (number of pyramid levels)
104         int outer_iterations_;
105 
106         //! number of linear system solver iterations
107         int solver_iterations_;
108     };
109 
getBufSize(const NCVBroxOpticalFlowDescriptor & desc,const NCVMatrix<Ncv32f> & frame0,const NCVMatrix<Ncv32f> & frame1,NCVMatrix<Ncv32f> & u,NCVMatrix<Ncv32f> & v,size_t textureAlignment)110     static size_t getBufSize(const NCVBroxOpticalFlowDescriptor& desc,
111                              const NCVMatrix<Ncv32f>& frame0, const NCVMatrix<Ncv32f>& frame1,
112                              NCVMatrix<Ncv32f>& u, NCVMatrix<Ncv32f>& v,
113                              size_t textureAlignment)
114     {
115         NCVMemStackAllocator gpuCounter(static_cast<Ncv32u>(textureAlignment));
116 
117         ncvSafeCall( NCVBroxOpticalFlow(desc, gpuCounter, frame0, frame1, u, v, 0) );
118 
119         return gpuCounter.maxSize();
120     }
121 
outputHandler(const String & msg)122     static void outputHandler(const String &msg)
123     {
124         CV_Error(cv::Error::GpuApiCallError, msg.c_str());
125     }
126 
calc(InputArray _I0,InputArray _I1,InputOutputArray _flow,Stream & stream)127     void BroxOpticalFlowImpl::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow, Stream& stream)
128     {
129         const GpuMat frame0 = _I0.getGpuMat();
130         const GpuMat frame1 = _I1.getGpuMat();
131 
132         CV_Assert( frame0.type() == CV_32FC1 );
133         CV_Assert( frame1.size() == frame0.size() && frame1.type() == frame0.type() );
134 
135         ncvSetDebugOutputHandler(outputHandler);
136 
137         BufferPool pool(stream);
138         GpuMat u = pool.getBuffer(frame0.size(), CV_32FC1);
139         GpuMat v = pool.getBuffer(frame0.size(), CV_32FC1);
140 
141         NCVBroxOpticalFlowDescriptor desc;
142         desc.alpha = alpha_;
143         desc.gamma = gamma_;
144         desc.scale_factor = scale_factor_;
145         desc.number_of_inner_iterations = inner_iterations_;
146         desc.number_of_outer_iterations = outer_iterations_;
147         desc.number_of_solver_iterations = solver_iterations_;
148 
149         NCVMemSegment frame0MemSeg;
150         frame0MemSeg.begin.memtype = NCVMemoryTypeDevice;
151         frame0MemSeg.begin.ptr = const_cast<uchar*>(frame0.data);
152         frame0MemSeg.size = frame0.step * frame0.rows;
153 
154         NCVMemSegment frame1MemSeg;
155         frame1MemSeg.begin.memtype = NCVMemoryTypeDevice;
156         frame1MemSeg.begin.ptr = const_cast<uchar*>(frame1.data);
157         frame1MemSeg.size = frame1.step * frame1.rows;
158 
159         NCVMemSegment uMemSeg;
160         uMemSeg.begin.memtype = NCVMemoryTypeDevice;
161         uMemSeg.begin.ptr = u.ptr();
162         uMemSeg.size = u.step * u.rows;
163 
164         NCVMemSegment vMemSeg;
165         vMemSeg.begin.memtype = NCVMemoryTypeDevice;
166         vMemSeg.begin.ptr = v.ptr();
167         vMemSeg.size = v.step * v.rows;
168 
169         DeviceInfo devInfo;
170         size_t textureAlignment = devInfo.textureAlignment();
171 
172         NCVMatrixReuse<Ncv32f> frame0Mat(frame0MemSeg, static_cast<Ncv32u>(textureAlignment), frame0.cols, frame0.rows, static_cast<Ncv32u>(frame0.step));
173         NCVMatrixReuse<Ncv32f> frame1Mat(frame1MemSeg, static_cast<Ncv32u>(textureAlignment), frame1.cols, frame1.rows, static_cast<Ncv32u>(frame1.step));
174         NCVMatrixReuse<Ncv32f> uMat(uMemSeg, static_cast<Ncv32u>(textureAlignment), u.cols, u.rows, static_cast<Ncv32u>(u.step));
175         NCVMatrixReuse<Ncv32f> vMat(vMemSeg, static_cast<Ncv32u>(textureAlignment), v.cols, v.rows, static_cast<Ncv32u>(v.step));
176 
177         size_t bufSize = getBufSize(desc, frame0Mat, frame1Mat, uMat, vMat, textureAlignment);
178         GpuMat buf = pool.getBuffer(1, static_cast<int>(bufSize), CV_8UC1);
179 
180         NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, bufSize, static_cast<Ncv32u>(textureAlignment), buf.ptr());
181 
182         ncvSafeCall( NCVBroxOpticalFlow(desc, gpuAllocator, frame0Mat, frame1Mat, uMat, vMat, StreamAccessor::getStream(stream)) );
183 
184         GpuMat flows[] = {u, v};
185         cuda::merge(flows, 2, _flow, stream);
186     }
187 }
188 
create(double alpha,double gamma,double scale_factor,int inner_iterations,int outer_iterations,int solver_iterations)189 Ptr<BroxOpticalFlow> cv::cuda::BroxOpticalFlow::create(double alpha, double gamma, double scale_factor, int inner_iterations, int outer_iterations, int solver_iterations)
190 {
191     return makePtr<BroxOpticalFlowImpl>(alpha, gamma, scale_factor, inner_iterations, outer_iterations, solver_iterations);
192 }
193 
194 #endif /* HAVE_CUDA */
195