1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined HAVE_CUDA || defined(CUDA_DISABLER)
49
create(int,double,bool,int,int,int,double,int)50 Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int, double, bool, int, int, int, double, int) { throw_no_cuda(); return Ptr<BroxOpticalFlow>(); }
51
52 #else
53
54 #define MIN_SIZE 32
55
56 // CUDA resize() is fast, but it differs from the CPU analog. Disabling this flag
57 // leads to an inefficient code. It's for debug purposes only.
58 #define ENABLE_CUDA_RESIZE 1
59
60 namespace cv { namespace cuda { namespace device { namespace optflow_farneback
61 {
62 void setPolynomialExpansionConsts(
63 int polyN, const float *g, const float *xg, const float *xxg,
64 float ig11, float ig03, float ig33, float ig55);
65
66 void polynomialExpansionGpu(const PtrStepSzf &src, int polyN, PtrStepSzf dst, cudaStream_t stream);
67
68 void setUpdateMatricesConsts();
69
70 void updateMatricesGpu(
71 const PtrStepSzf flowx, const PtrStepSzf flowy, const PtrStepSzf R0, const PtrStepSzf R1,
72 PtrStepSzf M, cudaStream_t stream);
73
74 void updateFlowGpu(
75 const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream);
76
77 void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
78
79 void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
80
81 void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
82
83 void gaussianBlurGpu(
84 const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
85
86 void gaussianBlur5Gpu(
87 const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
88
89 void gaussianBlur5Gpu_CC11(
90 const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
91
92 }}}}
93
94 namespace
95 {
96 class FarnebackOpticalFlowImpl : public FarnebackOpticalFlow
97 {
98 public:
FarnebackOpticalFlowImpl(int numLevels,double pyrScale,bool fastPyramids,int winSize,int numIters,int polyN,double polySigma,int flags)99 FarnebackOpticalFlowImpl(int numLevels, double pyrScale, bool fastPyramids, int winSize,
100 int numIters, int polyN, double polySigma, int flags) :
101 numLevels_(numLevels), pyrScale_(pyrScale), fastPyramids_(fastPyramids), winSize_(winSize),
102 numIters_(numIters), polyN_(polyN), polySigma_(polySigma), flags_(flags)
103 {
104 }
105
getNumLevels() const106 virtual int getNumLevels() const { return numLevels_; }
setNumLevels(int numLevels)107 virtual void setNumLevels(int numLevels) { numLevels_ = numLevels; }
108
getPyrScale() const109 virtual double getPyrScale() const { return pyrScale_; }
setPyrScale(double pyrScale)110 virtual void setPyrScale(double pyrScale) { pyrScale_ = pyrScale; }
111
getFastPyramids() const112 virtual bool getFastPyramids() const { return fastPyramids_; }
setFastPyramids(bool fastPyramids)113 virtual void setFastPyramids(bool fastPyramids) { fastPyramids_ = fastPyramids; }
114
getWinSize() const115 virtual int getWinSize() const { return winSize_; }
setWinSize(int winSize)116 virtual void setWinSize(int winSize) { winSize_ = winSize; }
117
getNumIters() const118 virtual int getNumIters() const { return numIters_; }
setNumIters(int numIters)119 virtual void setNumIters(int numIters) { numIters_ = numIters; }
120
getPolyN() const121 virtual int getPolyN() const { return polyN_; }
setPolyN(int polyN)122 virtual void setPolyN(int polyN) { polyN_ = polyN; }
123
getPolySigma() const124 virtual double getPolySigma() const { return polySigma_; }
setPolySigma(double polySigma)125 virtual void setPolySigma(double polySigma) { polySigma_ = polySigma; }
126
getFlags() const127 virtual int getFlags() const { return flags_; }
setFlags(int flags)128 virtual void setFlags(int flags) { flags_ = flags; }
129
130 virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream);
131
132 private:
133 int numLevels_;
134 double pyrScale_;
135 bool fastPyramids_;
136 int winSize_;
137 int numIters_;
138 int polyN_;
139 double polySigma_;
140 int flags_;
141
142 private:
143 void prepareGaussian(
144 int n, double sigma, float *g, float *xg, float *xxg,
145 double &ig11, double &ig03, double &ig33, double &ig55);
146
147 void setPolynomialExpansionConsts(int n, double sigma);
148
149 void updateFlow_boxFilter(
150 const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
151 GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
152
153 void updateFlow_gaussianBlur(
154 const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
155 GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
156
157 void calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream);
158
159 GpuMat frames_[2];
160 GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
161 std::vector<GpuMat> pyramid0_, pyramid1_;
162 };
163
calc(InputArray _frame0,InputArray _frame1,InputOutputArray _flow,Stream & stream)164 void FarnebackOpticalFlowImpl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream)
165 {
166 const GpuMat frame0 = _frame0.getGpuMat();
167 const GpuMat frame1 = _frame1.getGpuMat();
168
169 BufferPool pool(stream);
170 GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1);
171 GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1);
172
173 calcImpl(frame0, frame1, flowx, flowy, stream);
174
175 GpuMat flows[] = {flowx, flowy};
176 cuda::merge(flows, 2, _flow, stream);
177 }
178
allocMatFromBuf(int rows,int cols,int type,GpuMat & mat)179 GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
180 {
181 if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
182 return mat(Rect(0, 0, cols, rows));
183
184 return mat = GpuMat(rows, cols, type);
185 }
186
prepareGaussian(int n,double sigma,float * g,float * xg,float * xxg,double & ig11,double & ig03,double & ig33,double & ig55)187 void FarnebackOpticalFlowImpl::prepareGaussian(
188 int n, double sigma, float *g, float *xg, float *xxg,
189 double &ig11, double &ig03, double &ig33, double &ig55)
190 {
191 double s = 0.;
192 for (int x = -n; x <= n; x++)
193 {
194 g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
195 s += g[x];
196 }
197
198 s = 1./s;
199 for (int x = -n; x <= n; x++)
200 {
201 g[x] = (float)(g[x]*s);
202 xg[x] = (float)(x*g[x]);
203 xxg[x] = (float)(x*x*g[x]);
204 }
205
206 Mat_<double> G(6, 6);
207 G.setTo(0);
208
209 for (int y = -n; y <= n; y++)
210 {
211 for (int x = -n; x <= n; x++)
212 {
213 G(0,0) += g[y]*g[x];
214 G(1,1) += g[y]*g[x]*x*x;
215 G(3,3) += g[y]*g[x]*x*x*x*x;
216 G(5,5) += g[y]*g[x]*x*x*y*y;
217 }
218 }
219
220 //G[0][0] = 1.;
221 G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
222 G(4,4) = G(3,3);
223 G(3,4) = G(4,3) = G(5,5);
224
225 // invG:
226 // [ x e e ]
227 // [ y ]
228 // [ y ]
229 // [ e z ]
230 // [ e z ]
231 // [ u ]
232 Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
233
234 ig11 = invG(1,1);
235 ig03 = invG(0,3);
236 ig33 = invG(3,3);
237 ig55 = invG(5,5);
238 }
239
setPolynomialExpansionConsts(int n,double sigma)240 void FarnebackOpticalFlowImpl::setPolynomialExpansionConsts(int n, double sigma)
241 {
242 std::vector<float> buf(n*6 + 3);
243 float* g = &buf[0] + n;
244 float* xg = g + n*2 + 1;
245 float* xxg = xg + n*2 + 1;
246
247 if (sigma < FLT_EPSILON)
248 sigma = n*0.3;
249
250 double ig11, ig03, ig33, ig55;
251 prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
252
253 device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55));
254 }
255
updateFlow_boxFilter(const GpuMat & R0,const GpuMat & R1,GpuMat & flowx,GpuMat & flowy,GpuMat & M,GpuMat & bufM,int blockSize,bool updateMatrices,Stream streams[])256 void FarnebackOpticalFlowImpl::updateFlow_boxFilter(
257 const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
258 GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
259 {
260 if (deviceSupports(FEATURE_SET_COMPUTE_12))
261 device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0]));
262 else
263 device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0]));
264 swap(M, bufM);
265
266 for (int i = 1; i < 5; ++i)
267 streams[i].waitForCompletion();
268 device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0]));
269
270 if (updateMatrices)
271 device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0]));
272 }
273
updateFlow_gaussianBlur(const GpuMat & R0,const GpuMat & R1,GpuMat & flowx,GpuMat & flowy,GpuMat & M,GpuMat & bufM,int blockSize,bool updateMatrices,Stream streams[])274 void FarnebackOpticalFlowImpl::updateFlow_gaussianBlur(
275 const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
276 GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
277 {
278 if (deviceSupports(FEATURE_SET_COMPUTE_12))
279 device::optflow_farneback::gaussianBlur5Gpu(
280 M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0]));
281 else
282 device::optflow_farneback::gaussianBlur5Gpu_CC11(
283 M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0]));
284 swap(M, bufM);
285
286 device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0]));
287
288 if (updateMatrices)
289 device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0]));
290 }
291
calcImpl(const GpuMat & frame0,const GpuMat & frame1,GpuMat & flowx,GpuMat & flowy,Stream & stream)292 void FarnebackOpticalFlowImpl::calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream)
293 {
294 CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
295 CV_Assert(frame0.size() == frame1.size());
296 CV_Assert(polyN_ == 5 || polyN_ == 7);
297 CV_Assert(!fastPyramids_ || std::abs(pyrScale_ - 0.5) < 1e-6);
298
299 Stream streams[5];
300 if (stream)
301 streams[0] = stream;
302
303 Size size = frame0.size();
304 GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
305
306 flowx.create(size, CV_32F);
307 flowy.create(size, CV_32F);
308 GpuMat flowx0 = flowx;
309 GpuMat flowy0 = flowy;
310
311 // Crop unnecessary levels
312 double scale = 1;
313 int numLevelsCropped = 0;
314 for (; numLevelsCropped < numLevels_; numLevelsCropped++)
315 {
316 scale *= pyrScale_;
317 if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
318 break;
319 }
320
321 frame0.convertTo(frames_[0], CV_32F, streams[0]);
322 frame1.convertTo(frames_[1], CV_32F, streams[1]);
323
324 if (fastPyramids_)
325 {
326 // Build Gaussian pyramids using pyrDown()
327 pyramid0_.resize(numLevelsCropped + 1);
328 pyramid1_.resize(numLevelsCropped + 1);
329 pyramid0_[0] = frames_[0];
330 pyramid1_[0] = frames_[1];
331 for (int i = 1; i <= numLevelsCropped; ++i)
332 {
333 cuda::pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
334 cuda::pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
335 }
336 }
337
338 setPolynomialExpansionConsts(polyN_, polySigma_);
339 device::optflow_farneback::setUpdateMatricesConsts();
340
341 for (int k = numLevelsCropped; k >= 0; k--)
342 {
343 streams[0].waitForCompletion();
344
345 scale = 1;
346 for (int i = 0; i < k; i++)
347 scale *= pyrScale_;
348
349 double sigma = (1./scale - 1) * 0.5;
350 int smoothSize = cvRound(sigma*5) | 1;
351 smoothSize = std::max(smoothSize, 3);
352
353 int width = cvRound(size.width*scale);
354 int height = cvRound(size.height*scale);
355
356 if (fastPyramids_)
357 {
358 width = pyramid0_[k].cols;
359 height = pyramid0_[k].rows;
360 }
361
362 if (k > 0)
363 {
364 curFlowX.create(height, width, CV_32F);
365 curFlowY.create(height, width, CV_32F);
366 }
367 else
368 {
369 curFlowX = flowx0;
370 curFlowY = flowy0;
371 }
372
373 if (!prevFlowX.data)
374 {
375 if (flags_ & OPTFLOW_USE_INITIAL_FLOW)
376 {
377 cuda::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
378 cuda::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
379 curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]);
380 curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]);
381 }
382 else
383 {
384 curFlowX.setTo(0, streams[0]);
385 curFlowY.setTo(0, streams[1]);
386 }
387 }
388 else
389 {
390 cuda::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
391 cuda::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
392 curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale_, streams[0]);
393 curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale_, streams[1]);
394 }
395
396 GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
397 GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
398 GpuMat R[2] =
399 {
400 allocMatFromBuf(5*height, width, CV_32F, R_[0]),
401 allocMatFromBuf(5*height, width, CV_32F, R_[1])
402 };
403
404 if (fastPyramids_)
405 {
406 device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN_, R[0], StreamAccessor::getStream(streams[0]));
407 device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN_, R[1], StreamAccessor::getStream(streams[1]));
408 }
409 else
410 {
411 GpuMat blurredFrame[2] =
412 {
413 allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
414 allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
415 };
416 GpuMat pyrLevel[2] =
417 {
418 allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
419 allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
420 };
421
422 Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
423 device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
424
425 for (int i = 0; i < 2; i++)
426 {
427 device::optflow_farneback::gaussianBlurGpu(
428 frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, StreamAccessor::getStream(streams[i]));
429 cuda::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]);
430 device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN_, R[i], StreamAccessor::getStream(streams[i]));
431 }
432 }
433
434 streams[1].waitForCompletion();
435 device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, StreamAccessor::getStream(streams[0]));
436
437 if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN)
438 {
439 Mat g = getGaussianKernel(winSize_, winSize_/2*0.3f, CV_32F);
440 device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize_/2), winSize_/2);
441 }
442 for (int i = 0; i < numIters_; i++)
443 {
444 if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN)
445 updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams);
446 else
447 updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams);
448 }
449
450 prevFlowX = curFlowX;
451 prevFlowY = curFlowY;
452 }
453
454 flowx = curFlowX;
455 flowy = curFlowY;
456
457 if (!stream)
458 streams[0].waitForCompletion();
459 }
460 }
461
create(int numLevels,double pyrScale,bool fastPyramids,int winSize,int numIters,int polyN,double polySigma,int flags)462 Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int numLevels, double pyrScale, bool fastPyramids, int winSize,
463 int numIters, int polyN, double polySigma, int flags)
464 {
465 return makePtr<FarnebackOpticalFlowImpl>(numLevels, pyrScale, fastPyramids, winSize,
466 numIters, polyN, polySigma, flags);
467 }
468
469 #endif
470