1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // Intel License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 // * Redistribution's of source code must retain the above copyright notice,
20 // this list of conditions and the following disclaimer.
21 //
22 // * Redistribution's in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
24 // and/or other materials provided with the distribution.
25 //
26 // * The name of Intel Corporation may not be used to endorse or promote products
27 // derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41
42 #include "precomp.hpp"
43 #include "opencl_kernels_imgproc.hpp"
44
45 #include <cstdio>
46 #include <vector>
47 #include <iostream>
48 #include <functional>
49
50 namespace cv
51 {
52
53 struct greaterThanPtr :
54 public std::binary_function<const float *, const float *, bool>
55 {
operator ()cv::greaterThanPtr56 bool operator () (const float * a, const float * b) const
57 { return *a > *b; }
58 };
59
60 #ifdef HAVE_OPENCL
61
62 struct Corner
63 {
64 float val;
65 short y;
66 short x;
67
operator <cv::Corner68 bool operator < (const Corner & c) const
69 { return val > c.val; }
70 };
71
ocl_goodFeaturesToTrack(InputArray _image,OutputArray _corners,int maxCorners,double qualityLevel,double minDistance,InputArray _mask,int blockSize,bool useHarrisDetector,double harrisK)72 static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
73 int maxCorners, double qualityLevel, double minDistance,
74 InputArray _mask, int blockSize,
75 bool useHarrisDetector, double harrisK )
76 {
77 UMat eig, maxEigenValue;
78 if( useHarrisDetector )
79 cornerHarris( _image, eig, blockSize, 3, harrisK );
80 else
81 cornerMinEigenVal( _image, eig, blockSize, 3 );
82
83 Size imgsize = _image.size();
84 size_t total, i, j, ncorners = 0, possibleCornersCount =
85 std::max(1024, static_cast<int>(imgsize.area() * 0.1));
86 bool haveMask = !_mask.empty();
87 UMat corners_buffer(1, (int)possibleCornersCount + 1, CV_32FC2);
88 CV_Assert(sizeof(Corner) == corners_buffer.elemSize());
89 Mat tmpCorners;
90
91 // find threshold
92 {
93 CV_Assert(eig.type() == CV_32FC1);
94 int dbsize = ocl::Device::getDefault().maxComputeUnits();
95 size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
96
97 int wgs2_aligned = 1;
98 while (wgs2_aligned < (int)wgs)
99 wgs2_aligned <<= 1;
100 wgs2_aligned >>= 1;
101
102 ocl::Kernel k("maxEigenVal", ocl::imgproc::gftt_oclsrc,
103 format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D groupnum=%d -D WGS2_ALIGNED=%d%s",
104 (int)wgs, dbsize, wgs2_aligned, haveMask ? " -D HAVE_MASK" : ""));
105 if (k.empty())
106 return false;
107
108 UMat mask = _mask.getUMat();
109 maxEigenValue.create(1, dbsize, CV_32FC1);
110
111 ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig),
112 dbarg = ocl::KernelArg::PtrWriteOnly(maxEigenValue),
113 maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
114 cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer);
115
116 if (haveMask)
117 k.args(eigarg, eig.cols, (int)eig.total(), dbarg, maskarg);
118 else
119 k.args(eigarg, eig.cols, (int)eig.total(), dbarg);
120
121 size_t globalsize = dbsize * wgs;
122 if (!k.run(1, &globalsize, &wgs, false))
123 return false;
124
125 ocl::Kernel k2("maxEigenValTask", ocl::imgproc::gftt_oclsrc,
126 format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D WGS2_ALIGNED=%d -D groupnum=%d",
127 wgs, wgs2_aligned, dbsize));
128 if (k2.empty())
129 return false;
130
131 k2.args(dbarg, (float)qualityLevel, cornersarg);
132
133 if (!k2.runTask(false))
134 return false;
135 }
136
137 // collect list of pointers to features - put them into temporary image
138 {
139 ocl::Kernel k("findCorners", ocl::imgproc::gftt_oclsrc,
140 format("-D OP_FIND_CORNERS%s", haveMask ? " -D HAVE_MASK" : ""));
141 if (k.empty())
142 return false;
143
144 ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig),
145 cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer),
146 thresholdarg = ocl::KernelArg::PtrReadOnly(maxEigenValue);
147
148 if (!haveMask)
149 k.args(eigarg, cornersarg, eig.rows - 2, eig.cols - 2, thresholdarg,
150 (int)possibleCornersCount);
151 else
152 {
153 UMat mask = _mask.getUMat();
154 k.args(eigarg, ocl::KernelArg::ReadOnlyNoSize(mask),
155 cornersarg, eig.rows - 2, eig.cols - 2,
156 thresholdarg, (int)possibleCornersCount);
157 }
158
159 size_t globalsize[2] = { eig.cols - 2, eig.rows - 2 };
160 if (!k.run(2, globalsize, NULL, false))
161 return false;
162
163 tmpCorners = corners_buffer.getMat(ACCESS_RW);
164 total = std::min<size_t>(tmpCorners.at<Vec2i>(0, 0)[0], possibleCornersCount);
165 if (total == 0)
166 {
167 _corners.release();
168 return true;
169 }
170 }
171
172 Corner* corner_ptr = tmpCorners.ptr<Corner>() + 1;
173 std::sort(corner_ptr, corner_ptr + total);
174
175 std::vector<Point2f> corners;
176 corners.reserve(total);
177
178 if (minDistance >= 1)
179 {
180 // Partition the image into larger grids
181 int w = imgsize.width, h = imgsize.height;
182
183 const int cell_size = cvRound(minDistance);
184 const int grid_width = (w + cell_size - 1) / cell_size;
185 const int grid_height = (h + cell_size - 1) / cell_size;
186
187 std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
188 minDistance *= minDistance;
189
190 for( i = 0; i < total; i++ )
191 {
192 const Corner & c = corner_ptr[i];
193 bool good = true;
194
195 int x_cell = c.x / cell_size;
196 int y_cell = c.y / cell_size;
197
198 int x1 = x_cell - 1;
199 int y1 = y_cell - 1;
200 int x2 = x_cell + 1;
201 int y2 = y_cell + 1;
202
203 // boundary check
204 x1 = std::max(0, x1);
205 y1 = std::max(0, y1);
206 x2 = std::min(grid_width - 1, x2);
207 y2 = std::min(grid_height - 1, y2);
208
209 for( int yy = y1; yy <= y2; yy++ )
210 for( int xx = x1; xx <= x2; xx++ )
211 {
212 std::vector<Point2f> &m = grid[yy * grid_width + xx];
213
214 if( m.size() )
215 {
216 for(j = 0; j < m.size(); j++)
217 {
218 float dx = c.x - m[j].x;
219 float dy = c.y - m[j].y;
220
221 if( dx*dx + dy*dy < minDistance )
222 {
223 good = false;
224 goto break_out;
225 }
226 }
227 }
228 }
229
230 break_out:
231
232 if (good)
233 {
234 grid[y_cell*grid_width + x_cell].push_back(Point2f((float)c.x, (float)c.y));
235
236 corners.push_back(Point2f((float)c.x, (float)c.y));
237 ++ncorners;
238
239 if( maxCorners > 0 && (int)ncorners == maxCorners )
240 break;
241 }
242 }
243 }
244 else
245 {
246 for( i = 0; i < total; i++ )
247 {
248 const Corner & c = corner_ptr[i];
249
250 corners.push_back(Point2f((float)c.x, (float)c.y));
251 ++ncorners;
252 if( maxCorners > 0 && (int)ncorners == maxCorners )
253 break;
254 }
255 }
256
257 Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
258 return true;
259 }
260
261 #endif
262
263 }
264
goodFeaturesToTrack(InputArray _image,OutputArray _corners,int maxCorners,double qualityLevel,double minDistance,InputArray _mask,int blockSize,bool useHarrisDetector,double harrisK)265 void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
266 int maxCorners, double qualityLevel, double minDistance,
267 InputArray _mask, int blockSize,
268 bool useHarrisDetector, double harrisK )
269 {
270 CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
271 CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) );
272
273 CV_OCL_RUN(_image.dims() <= 2 && _image.isUMat(),
274 ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
275 _mask, blockSize, useHarrisDetector, harrisK))
276
277 Mat image = _image.getMat(), eig, tmp;
278 if (image.empty())
279 {
280 _corners.release();
281 return;
282 }
283
284 if( useHarrisDetector )
285 cornerHarris( image, eig, blockSize, 3, harrisK );
286 else
287 cornerMinEigenVal( image, eig, blockSize, 3 );
288
289 double maxVal = 0;
290 minMaxLoc( eig, 0, &maxVal, 0, 0, _mask );
291 threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO );
292 dilate( eig, tmp, Mat());
293
294 Size imgsize = image.size();
295 std::vector<const float*> tmpCorners;
296
297 // collect list of pointers to features - put them into temporary image
298 Mat mask = _mask.getMat();
299 for( int y = 1; y < imgsize.height - 1; y++ )
300 {
301 const float* eig_data = (const float*)eig.ptr(y);
302 const float* tmp_data = (const float*)tmp.ptr(y);
303 const uchar* mask_data = mask.data ? mask.ptr(y) : 0;
304
305 for( int x = 1; x < imgsize.width - 1; x++ )
306 {
307 float val = eig_data[x];
308 if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) )
309 tmpCorners.push_back(eig_data + x);
310 }
311 }
312 std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
313
314 std::vector<Point2f> corners;
315 size_t i, j, total = tmpCorners.size(), ncorners = 0;
316
317 if (minDistance >= 1)
318 {
319 // Partition the image into larger grids
320 int w = image.cols;
321 int h = image.rows;
322
323 const int cell_size = cvRound(minDistance);
324 const int grid_width = (w + cell_size - 1) / cell_size;
325 const int grid_height = (h + cell_size - 1) / cell_size;
326
327 std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
328
329 minDistance *= minDistance;
330
331 for( i = 0; i < total; i++ )
332 {
333 int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
334 int y = (int)(ofs / eig.step);
335 int x = (int)((ofs - y*eig.step)/sizeof(float));
336
337 bool good = true;
338
339 int x_cell = x / cell_size;
340 int y_cell = y / cell_size;
341
342 int x1 = x_cell - 1;
343 int y1 = y_cell - 1;
344 int x2 = x_cell + 1;
345 int y2 = y_cell + 1;
346
347 // boundary check
348 x1 = std::max(0, x1);
349 y1 = std::max(0, y1);
350 x2 = std::min(grid_width-1, x2);
351 y2 = std::min(grid_height-1, y2);
352
353 for( int yy = y1; yy <= y2; yy++ )
354 for( int xx = x1; xx <= x2; xx++ )
355 {
356 std::vector <Point2f> &m = grid[yy*grid_width + xx];
357
358 if( m.size() )
359 {
360 for(j = 0; j < m.size(); j++)
361 {
362 float dx = x - m[j].x;
363 float dy = y - m[j].y;
364
365 if( dx*dx + dy*dy < minDistance )
366 {
367 good = false;
368 goto break_out;
369 }
370 }
371 }
372 }
373
374 break_out:
375
376 if (good)
377 {
378 grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
379
380 corners.push_back(Point2f((float)x, (float)y));
381 ++ncorners;
382
383 if( maxCorners > 0 && (int)ncorners == maxCorners )
384 break;
385 }
386 }
387 }
388 else
389 {
390 for( i = 0; i < total; i++ )
391 {
392 int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
393 int y = (int)(ofs / eig.step);
394 int x = (int)((ofs - y*eig.step)/sizeof(float));
395
396 corners.push_back(Point2f((float)x, (float)y));
397 ++ncorners;
398 if( maxCorners > 0 && (int)ncorners == maxCorners )
399 break;
400 }
401 }
402
403 Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
404 }
405
406 CV_IMPL void
cvGoodFeaturesToTrack(const void * _image,void *,void *,CvPoint2D32f * _corners,int * _corner_count,double quality_level,double min_distance,const void * _maskImage,int block_size,int use_harris,double harris_k)407 cvGoodFeaturesToTrack( const void* _image, void*, void*,
408 CvPoint2D32f* _corners, int *_corner_count,
409 double quality_level, double min_distance,
410 const void* _maskImage, int block_size,
411 int use_harris, double harris_k )
412 {
413 cv::Mat image = cv::cvarrToMat(_image), mask;
414 std::vector<cv::Point2f> corners;
415
416 if( _maskImage )
417 mask = cv::cvarrToMat(_maskImage);
418
419 CV_Assert( _corners && _corner_count );
420 cv::goodFeaturesToTrack( image, corners, *_corner_count, quality_level,
421 min_distance, mask, block_size, use_harris != 0, harris_k );
422
423 size_t i, ncorners = corners.size();
424 for( i = 0; i < ncorners; i++ )
425 _corners[i] = corners[i];
426 *_corner_count = (int)ncorners;
427 }
428
429 /* End of file. */
430