1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective icvers.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #ifndef __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_HPP__
43 #define __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_HPP__
44 
45 #include "precomp.hpp"
46 #include <limits>
47 
48 #include "fast_nlmeans_denoising_invoker_commons.hpp"
49 #include "arrays.hpp"
50 
51 using namespace cv;
52 
53 template <typename T, typename IT, typename UIT, typename D, typename WT>
54 struct FastNlMeansDenoisingInvoker :
55         public ParallelLoopBody
56 {
57 public:
58     FastNlMeansDenoisingInvoker(const Mat& src, Mat& dst,
59         int template_window_size, int search_window_size, const float *h);
60 
61     void operator() (const Range& range) const;
62 
63 private:
64     void operator= (const FastNlMeansDenoisingInvoker&);
65 
66     const Mat& src_;
67     Mat& dst_;
68 
69     Mat extended_src_;
70     int border_size_;
71 
72     int template_window_size_;
73     int search_window_size_;
74 
75     int template_window_half_size_;
76     int search_window_half_size_;
77 
78     typename pixelInfo<WT>::sampleType fixed_point_mult_;
79     int almost_template_window_size_sq_bin_shift_;
80     std::vector<WT> almost_dist2weight_;
81 
82     void calcDistSumsForFirstElementInRow(
83         int i, Array2d<int>& dist_sums,
84         Array3d<int>& col_dist_sums,
85         Array3d<int>& up_col_dist_sums) const;
86 
87     void calcDistSumsForElementInFirstRow(
88         int i, int j, int first_col_num,
89         Array2d<int>& dist_sums,
90         Array3d<int>& col_dist_sums,
91         Array3d<int>& up_col_dist_sums) const;
92 };
93 
getNearestPowerOf2(int value)94 inline int getNearestPowerOf2(int value)
95 {
96     int p = 0;
97     while( 1 << p < value)
98         ++p;
99     return p;
100 }
101 
102 template <typename T, typename IT, typename UIT, typename D, typename WT>
FastNlMeansDenoisingInvoker(const Mat & src,Mat & dst,int template_window_size,int search_window_size,const float * h)103 FastNlMeansDenoisingInvoker<T, IT, UIT, D, WT>::FastNlMeansDenoisingInvoker(
104     const Mat& src, Mat& dst,
105     int template_window_size,
106     int search_window_size,
107     const float *h) :
108     src_(src), dst_(dst)
109 {
110     CV_Assert(src.channels() == pixelInfo<T>::channels);
111 
112     template_window_half_size_ = template_window_size / 2;
113     search_window_half_size_   = search_window_size   / 2;
114     template_window_size_      = template_window_half_size_ * 2 + 1;
115     search_window_size_        = search_window_half_size_   * 2 + 1;
116 
117     border_size_ = search_window_half_size_ + template_window_half_size_;
118     copyMakeBorder(src_, extended_src_, border_size_, border_size_, border_size_, border_size_, BORDER_DEFAULT);
119 
120     const IT max_estimate_sum_value =
121         (IT)search_window_size_ * (IT)search_window_size_ * (IT)pixelInfo<T>::sampleMax();
122     fixed_point_mult_ = (int)std::min<IT>(std::numeric_limits<IT>::max() / max_estimate_sum_value,
123                                           pixelInfo<WT>::sampleMax());
124 
125     // precalc weight for every possible l2 dist between blocks
126     // additional optimization of precalced weights to replace division(averaging) by binary shift
127     CV_Assert(template_window_size_ <= 46340); // sqrt(INT_MAX)
128     int template_window_size_sq = template_window_size_ * template_window_size_;
129     almost_template_window_size_sq_bin_shift_ = getNearestPowerOf2(template_window_size_sq);
130     double almost_dist2actual_dist_multiplier = ((double)(1 << almost_template_window_size_sq_bin_shift_)) / template_window_size_sq;
131 
132     int max_dist = D::template maxDist<T>();
133     int almost_max_dist = (int)(max_dist / almost_dist2actual_dist_multiplier + 1);
134     almost_dist2weight_.resize(almost_max_dist);
135 
136     for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++)
137     {
138         double dist = almost_dist * almost_dist2actual_dist_multiplier;
139         almost_dist2weight_[almost_dist] =
140             D::template calcWeight<T, WT>(dist, h, fixed_point_mult_);
141     }
142 
143     // additional optimization init end
144     if (dst_.empty())
145         dst_ = Mat::zeros(src_.size(), src_.type());
146 }
147 
148 template <typename T, typename IT, typename UIT, typename D, typename WT>
operator ()(const Range & range) const149 void FastNlMeansDenoisingInvoker<T, IT, UIT, D, WT>::operator() (const Range& range) const
150 {
151     int row_from = range.start;
152     int row_to = range.end - 1;
153 
154     // sums of cols anf rows for current pixel p
155     Array2d<int> dist_sums(search_window_size_, search_window_size_);
156 
157     // for lazy calc optimization (sum of cols for current pixel)
158     Array3d<int> col_dist_sums(template_window_size_, search_window_size_, search_window_size_);
159 
160     int first_col_num = -1;
161     // last elements of column sum (for each element in row)
162     Array3d<int> up_col_dist_sums(src_.cols, search_window_size_, search_window_size_);
163 
164     for (int i = row_from; i <= row_to; i++)
165     {
166         for (int j = 0; j < src_.cols; j++)
167         {
168             int search_window_y = i - search_window_half_size_;
169             int search_window_x = j - search_window_half_size_;
170 
171             // calc dist_sums
172             if (j == 0)
173             {
174                 calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums);
175                 first_col_num = 0;
176             }
177             else
178             {
179                 // calc cur dist_sums using previous dist_sums
180                 if (i == row_from)
181                 {
182                     calcDistSumsForElementInFirstRow(i, j, first_col_num,
183                         dist_sums, col_dist_sums, up_col_dist_sums);
184                 }
185                 else
186                 {
187                     int ay = border_size_ + i;
188                     int ax = border_size_ + j + template_window_half_size_;
189 
190                     int start_by = border_size_ + i - search_window_half_size_;
191                     int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_;
192 
193                     T a_up = extended_src_.at<T>(ay - template_window_half_size_ - 1, ax);
194                     T a_down = extended_src_.at<T>(ay + template_window_half_size_, ax);
195 
196                     // copy class member to local variable for optimization
197                     int search_window_size = search_window_size_;
198 
199                     for (int y = 0; y < search_window_size; y++)
200                     {
201                         int * dist_sums_row = dist_sums.row_ptr(y);
202                         int * col_dist_sums_row = col_dist_sums.row_ptr(first_col_num, y);
203                         int * up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y);
204 
205                         const T * b_up_ptr = extended_src_.ptr<T>(start_by - template_window_half_size_ - 1 + y);
206                         const T * b_down_ptr = extended_src_.ptr<T>(start_by + template_window_half_size_ + y);
207 
208                         for (int x = 0; x < search_window_size; x++)
209                         {
210                             // remove from current pixel sum column sum with index "first_col_num"
211                             dist_sums_row[x] -= col_dist_sums_row[x];
212 
213                             int bx = start_bx + x;
214                             col_dist_sums_row[x] = up_col_dist_sums_row[x] + D::template calcUpDownDist<T>(a_up, a_down, b_up_ptr[bx], b_down_ptr[bx]);
215 
216                             dist_sums_row[x] += col_dist_sums_row[x];
217                             up_col_dist_sums_row[x] = col_dist_sums_row[x];
218                         }
219                     }
220                 }
221 
222                 first_col_num = (first_col_num + 1) % template_window_size_;
223             }
224 
225             // calc weights
226             IT estimation[pixelInfo<T>::channels], weights_sum[pixelInfo<WT>::channels];
227             for (int channel_num = 0; channel_num < pixelInfo<T>::channels; channel_num++)
228                 estimation[channel_num] = 0;
229             for (int channel_num = 0; channel_num < pixelInfo<WT>::channels; channel_num++)
230                 weights_sum[channel_num] = 0;
231 
232             for (int y = 0; y < search_window_size_; y++)
233             {
234                 const T* cur_row_ptr = extended_src_.ptr<T>(border_size_ + search_window_y + y);
235                 int* dist_sums_row = dist_sums.row_ptr(y);
236                 for (int x = 0; x < search_window_size_; x++)
237                 {
238                     int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
239                     WT weight = almost_dist2weight_[almostAvgDist];
240                     T p = cur_row_ptr[border_size_ + search_window_x + x];
241                     incWithWeight<T, IT, WT>(estimation, weights_sum, weight, p);
242                 }
243             }
244 
245             divByWeightsSum<IT, UIT, pixelInfo<T>::channels, pixelInfo<WT>::channels>(estimation,
246                                                                                       weights_sum);
247             dst_.at<T>(i,j) = saturateCastFromArray<T, IT>(estimation);
248         }
249     }
250 }
251 
252 template <typename T, typename IT, typename UIT, typename D, typename WT>
calcDistSumsForFirstElementInRow(int i,Array2d<int> & dist_sums,Array3d<int> & col_dist_sums,Array3d<int> & up_col_dist_sums) const253 inline void FastNlMeansDenoisingInvoker<T, IT, UIT, D, WT>::calcDistSumsForFirstElementInRow(
254     int i,
255     Array2d<int>& dist_sums,
256     Array3d<int>& col_dist_sums,
257     Array3d<int>& up_col_dist_sums) const
258 {
259     int j = 0;
260 
261     for (int y = 0; y < search_window_size_; y++)
262         for (int x = 0; x < search_window_size_; x++)
263         {
264             dist_sums[y][x] = 0;
265             for (int tx = 0; tx < template_window_size_; tx++)
266                 col_dist_sums[tx][y][x] = 0;
267 
268             int start_y = i + y - search_window_half_size_;
269             int start_x = j + x - search_window_half_size_;
270 
271             for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
272                 for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++)
273                 {
274                     int dist = D::template calcDist<T>(extended_src_,
275                         border_size_ + i + ty, border_size_ + j + tx,
276                         border_size_ + start_y + ty, border_size_ + start_x + tx);
277 
278                     dist_sums[y][x] += dist;
279                     col_dist_sums[tx + template_window_half_size_][y][x] += dist;
280                 }
281 
282             up_col_dist_sums[j][y][x] = col_dist_sums[template_window_size_ - 1][y][x];
283         }
284 }
285 
286 template <typename T, typename IT, typename UIT, typename D, typename WT>
calcDistSumsForElementInFirstRow(int i,int j,int first_col_num,Array2d<int> & dist_sums,Array3d<int> & col_dist_sums,Array3d<int> & up_col_dist_sums) const287 inline void FastNlMeansDenoisingInvoker<T, IT, UIT, D, WT>::calcDistSumsForElementInFirstRow(
288     int i, int j, int first_col_num,
289     Array2d<int>& dist_sums,
290     Array3d<int>& col_dist_sums,
291     Array3d<int>& up_col_dist_sums) const
292 {
293     int ay = border_size_ + i;
294     int ax = border_size_ + j + template_window_half_size_;
295 
296     int start_by = border_size_ + i - search_window_half_size_;
297     int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_;
298 
299     int new_last_col_num = first_col_num;
300 
301     for (int y = 0; y < search_window_size_; y++)
302         for (int x = 0; x < search_window_size_; x++)
303         {
304             dist_sums[y][x] -= col_dist_sums[first_col_num][y][x];
305 
306             col_dist_sums[new_last_col_num][y][x] = 0;
307             int by = start_by + y;
308             int bx = start_bx + x;
309             for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++)
310                 col_dist_sums[new_last_col_num][y][x] += D::template calcDist<T>(extended_src_, ay + ty, ax, by + ty, bx);
311 
312             dist_sums[y][x] += col_dist_sums[new_last_col_num][y][x];
313             up_col_dist_sums[j][y][x] = col_dist_sums[new_last_col_num][y][x];
314         }
315 }
316 
317 #endif
318