1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkScalar_DEFINED
9 #define SkScalar_DEFINED
10 
11 #include "SkFixed.h"
12 #include "../private/SkFloatingPoint.h"
13 
14 // TODO: move this sort of check into SkPostConfig.h
15 #define SK_SCALAR_IS_DOUBLE 0
16 #undef SK_SCALAR_IS_FLOAT
17 #define SK_SCALAR_IS_FLOAT  1
18 
19 
20 #if SK_SCALAR_IS_FLOAT
21 
22 typedef float SkScalar;
23 
24 #define SK_Scalar1                  1.0f
25 #define SK_ScalarHalf               0.5f
26 #define SK_ScalarSqrt2              1.41421356f
27 #define SK_ScalarPI                 3.14159265f
28 #define SK_ScalarTanPIOver8         0.414213562f
29 #define SK_ScalarRoot2Over2         0.707106781f
30 #define SK_ScalarMax                3.402823466e+38f
31 #define SK_ScalarInfinity           SK_FloatInfinity
32 #define SK_ScalarNegativeInfinity   SK_FloatNegativeInfinity
33 #define SK_ScalarNaN                SK_FloatNaN
34 
35 #define SkFixedToScalar(x)          SkFixedToFloat(x)
36 #define SkScalarToFixed(x)          SkFloatToFixed(x)
37 
38 #define SkScalarFloorToScalar(x)    sk_float_floor(x)
39 #define SkScalarCeilToScalar(x)     sk_float_ceil(x)
40 #define SkScalarRoundToScalar(x)    sk_float_floor((x) + 0.5f)
41 
42 #define SkScalarFloorToInt(x)       sk_float_floor2int(x)
43 #define SkScalarCeilToInt(x)        sk_float_ceil2int(x)
44 #define SkScalarRoundToInt(x)       sk_float_round2int(x)
45 
46 #define SkScalarAbs(x)              sk_float_abs(x)
47 #define SkScalarCopySign(x, y)      sk_float_copysign(x, y)
48 #define SkScalarMod(x, y)           sk_float_mod(x,y)
49 #define SkScalarFraction(x)         sk_float_mod(x, 1.0f)
50 #define SkScalarSqrt(x)             sk_float_sqrt(x)
51 #define SkScalarPow(b, e)           sk_float_pow(b, e)
52 
53 #define SkScalarSin(radians)        (float)sk_float_sin(radians)
54 #define SkScalarCos(radians)        (float)sk_float_cos(radians)
55 #define SkScalarTan(radians)        (float)sk_float_tan(radians)
56 #define SkScalarASin(val)           (float)sk_float_asin(val)
57 #define SkScalarACos(val)           (float)sk_float_acos(val)
58 #define SkScalarATan2(y, x)         (float)sk_float_atan2(y,x)
59 #define SkScalarExp(x)              (float)sk_float_exp(x)
60 #define SkScalarLog(x)              (float)sk_float_log(x)
61 #define SkScalarLog2(x)             (float)sk_float_log2(x)
62 
63 #else   // SK_SCALAR_IS_DOUBLE
64 
65 typedef double SkScalar;
66 
67 #define SK_Scalar1                  1.0
68 #define SK_ScalarHalf               0.5
69 #define SK_ScalarSqrt2              1.414213562373095
70 #define SK_ScalarPI                 3.141592653589793
71 #define SK_ScalarTanPIOver8         0.4142135623731
72 #define SK_ScalarRoot2Over2         0.70710678118655
73 #define SK_ScalarMax                1.7976931348623157+308
74 #define SK_ScalarInfinity           SK_DoubleInfinity
75 #define SK_ScalarNegativeInfinity   SK_DoubleNegativeInfinity
76 #define SK_ScalarNaN                SK_DoubleNaN
77 
78 #define SkFixedToScalar(x)          SkFixedToDouble(x)
79 #define SkScalarToFixed(x)          SkDoubleToFixed(x)
80 
81 #define SkScalarFloorToScalar(x)    floor(x)
82 #define SkScalarCeilToScalar(x)     ceil(x)
83 #define SkScalarRoundToScalar(x)    floor((x) + 0.5)
84 
85 #define SkScalarFloorToInt(x)       (int)floor(x)
86 #define SkScalarCeilToInt(x)        (int)ceil(x)
87 #define SkScalarRoundToInt(x)       (int)floor((x) + 0.5)
88 
89 #define SkScalarAbs(x)              abs(x)
90 #define SkScalarCopySign(x, y)      copysign(x, y)
91 #define SkScalarMod(x, y)           fmod(x,y)
92 #define SkScalarFraction(x)         fmod(x, 1.0)
93 #define SkScalarSqrt(x)             sqrt(x)
94 #define SkScalarPow(b, e)           pow(b, e)
95 
96 #define SkScalarSin(radians)        sin(radians)
97 #define SkScalarCos(radians)        cos(radians)
98 #define SkScalarTan(radians)        tan(radians)
99 #define SkScalarASin(val)           asin(val)
100 #define SkScalarACos(val)           acos(val)
101 #define SkScalarATan2(y, x)         atan2(y,x)
102 #define SkScalarExp(x)              exp(x)
103 #define SkScalarLog(x)              log(x)
104 #define SkScalarLog2(x)             log2(x)
105 
106 #endif
107 
108 //////////////////////////////////////////////////////////////////////////////////////////////////
109 
110 #define SkIntToScalar(x)        static_cast<SkScalar>(x)
111 #define SkScalarTruncToInt(x)   static_cast<int>(x)
112 
113 #define SkScalarToFloat(x)      static_cast<float>(x)
114 #define SkFloatToScalar(x)      static_cast<SkScalar>(x)
115 #define SkScalarToDouble(x)     static_cast<double>(x)
116 #define SkDoubleToScalar(x)     static_cast<SkScalar>(x)
117 
118 #define SK_ScalarMin            (-SK_ScalarMax)
119 
SkScalarIsNaN(SkScalar x)120 static inline bool SkScalarIsNaN(SkScalar x) { return x != x; }
121 
122 /** Returns true if x is not NaN and not infinite
123  */
SkScalarIsFinite(SkScalar x)124 static inline bool SkScalarIsFinite(SkScalar x) {
125     // We rely on the following behavior of infinities and nans
126     // 0 * finite --> 0
127     // 0 * infinity --> NaN
128     // 0 * NaN --> NaN
129     SkScalar prod = x * 0;
130     // At this point, prod will either be NaN or 0
131     return !SkScalarIsNaN(prod);
132 }
133 
SkScalarsAreFinite(SkScalar a,SkScalar b)134 static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) {
135     SkScalar prod = 0;
136     prod *= a;
137     prod *= b;
138     // At this point, prod will either be NaN or 0
139     return !SkScalarIsNaN(prod);
140 }
141 
SkScalarsAreFinite(const SkScalar array[],int count)142 static inline bool SkScalarsAreFinite(const SkScalar array[], int count) {
143     SkScalar prod = 0;
144     for (int i = 0; i < count; ++i) {
145         prod *= array[i];
146     }
147     // At this point, prod will either be NaN or 0
148     return !SkScalarIsNaN(prod);
149 }
150 
151 /**
152  *  Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
153  *  double, to avoid possibly losing the low bit(s) of the answer before calling floor().
154  *
155  *  This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
156  *  extra precision is known to be valuable.
157  *
158  *  In particular, this catches the following case:
159  *      SkScalar x = 0.49999997;
160  *      int ix = SkScalarRoundToInt(x);
161  *      SkASSERT(0 == ix);    // <--- fails
162  *      ix = SkDScalarRoundToInt(x);
163  *      SkASSERT(0 == ix);    // <--- succeeds
164  */
SkDScalarRoundToInt(SkScalar x)165 static inline int SkDScalarRoundToInt(SkScalar x) {
166     double xx = x;
167     xx += 0.5;
168     return (int)floor(xx);
169 }
170 
SkScalarClampMax(SkScalar x,SkScalar max)171 static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
172     x = SkTMin(x, max);
173     x = SkTMax<SkScalar>(x, 0);
174     return x;
175 }
176 
SkScalarPin(SkScalar x,SkScalar min,SkScalar max)177 static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
178     return SkTPin(x, min, max);
179 }
180 
181 SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
182 
SkScalarSquare(SkScalar x)183 static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
184 
185 #define SkScalarMul(a, b)       ((SkScalar)(a) * (b))
186 #define SkScalarMulAdd(a, b, c) ((SkScalar)(a) * (b) + (c))
187 #define SkScalarMulDiv(a, b, c) ((SkScalar)(a) * (b) / (c))
188 #define SkScalarInvert(x)       (SK_Scalar1 / (x))
189 #define SkScalarFastInvert(x)   (SK_Scalar1 / (x))
190 #define SkScalarAve(a, b)       (((a) + (b)) * SK_ScalarHalf)
191 #define SkScalarHalf(a)         ((a) * SK_ScalarHalf)
192 
193 #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
194 #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
195 
SkMaxScalar(SkScalar a,SkScalar b)196 static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
SkMinScalar(SkScalar a,SkScalar b)197 static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
198 
SkScalarIsInt(SkScalar x)199 static inline bool SkScalarIsInt(SkScalar x) {
200     return x == (SkScalar)(int)x;
201 }
202 
203 /**
204  *  Returns -1 || 0 || 1 depending on the sign of value:
205  *  -1 if x < 0
206  *   0 if x == 0
207  *   1 if x > 0
208  */
SkScalarSignAsInt(SkScalar x)209 static inline int SkScalarSignAsInt(SkScalar x) {
210     return x < 0 ? -1 : (x > 0);
211 }
212 
213 // Scalar result version of above
SkScalarSignAsScalar(SkScalar x)214 static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
215     return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
216 }
217 
218 #define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12))
219 
220 static inline bool SkScalarNearlyZero(SkScalar x,
221                                       SkScalar tolerance = SK_ScalarNearlyZero) {
222     SkASSERT(tolerance >= 0);
223     return SkScalarAbs(x) <= tolerance;
224 }
225 
226 static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
227                                        SkScalar tolerance = SK_ScalarNearlyZero) {
228     SkASSERT(tolerance >= 0);
229     return SkScalarAbs(x-y) <= tolerance;
230 }
231 
232 /** Linearly interpolate between A and B, based on t.
233     If t is 0, return A
234     If t is 1, return B
235     else interpolate.
236     t must be [0..SK_Scalar1]
237 */
SkScalarInterp(SkScalar A,SkScalar B,SkScalar t)238 static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
239     SkASSERT(t >= 0 && t <= SK_Scalar1);
240     return A + (B - A) * t;
241 }
242 
243 /** Interpolate along the function described by (keys[length], values[length])
244     for the passed searchKey.  SearchKeys outside the range keys[0]-keys[Length]
245     clamp to the min or max value.  This function was inspired by a desire
246     to change the multiplier for thickness in fakeBold; therefore it assumes
247     the number of pairs (length) will be small, and a linear search is used.
248     Repeated keys are allowed for discontinuous functions (so long as keys is
249     monotonically increasing), and if key is the value of a repeated scalar in
250     keys, the first one will be used.  However, that may change if a binary
251     search is used.
252 */
253 SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
254                             const SkScalar values[], int length);
255 
256 /*
257  *  Helper to compare an array of scalars.
258  */
SkScalarsEqual(const SkScalar a[],const SkScalar b[],int n)259 static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
260     SkASSERT(n >= 0);
261     for (int i = 0; i < n; ++i) {
262         if (a[i] != b[i]) {
263             return false;
264         }
265     }
266     return true;
267 }
268 
269 #endif
270