1
2 /*
3 * Copyright 2009 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #include "SkCubicClipper.h"
11 #include "SkGeometry.h"
12
SkCubicClipper()13 SkCubicClipper::SkCubicClipper() {
14 fClip.setEmpty();
15 }
16
setClip(const SkIRect & clip)17 void SkCubicClipper::setClip(const SkIRect& clip) {
18 // conver to scalars, since that's where we'll see the points
19 fClip.set(clip);
20 }
21
22
ChopMonoAtY(const SkPoint pts[4],SkScalar y,SkScalar * t)23 bool SkCubicClipper::ChopMonoAtY(const SkPoint pts[4], SkScalar y, SkScalar* t) {
24 SkScalar ycrv[4];
25 ycrv[0] = pts[0].fY - y;
26 ycrv[1] = pts[1].fY - y;
27 ycrv[2] = pts[2].fY - y;
28 ycrv[3] = pts[3].fY - y;
29
30 #ifdef NEWTON_RAPHSON // Quadratic convergence, typically <= 3 iterations.
31 // Initial guess.
32 // TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
33 // is not only monotonic but degenerate.
34 SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
35
36 // Newton's iterations.
37 const SkScalar tol = SK_Scalar1 / 16384; // This leaves 2 fixed noise bits.
38 SkScalar t0;
39 const int maxiters = 5;
40 int iters = 0;
41 bool converged;
42 do {
43 t0 = t1;
44 SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], t0);
45 SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], t0);
46 SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], t0);
47 SkScalar y012 = SkScalarInterp(y01, y12, t0);
48 SkScalar y123 = SkScalarInterp(y12, y23, t0);
49 SkScalar y0123 = SkScalarInterp(y012, y123, t0);
50 SkScalar yder = (y123 - y012) * 3;
51 // TODO(turk): check for yder==0: horizontal.
52 t1 -= y0123 / yder;
53 converged = SkScalarAbs(t1 - t0) <= tol; // NaN-safe
54 ++iters;
55 } while (!converged && (iters < maxiters));
56 *t = t1; // Return the result.
57
58 // The result might be valid, even if outside of the range [0, 1], but
59 // we never evaluate a Bezier outside this interval, so we return false.
60 if (t1 < 0 || t1 > SK_Scalar1)
61 return false; // This shouldn't happen, but check anyway.
62 return converged;
63
64 #else // BISECTION // Linear convergence, typically 16 iterations.
65
66 // Check that the endpoints straddle zero.
67 SkScalar tNeg, tPos; // Negative and positive function parameters.
68 if (ycrv[0] < 0) {
69 if (ycrv[3] < 0)
70 return false;
71 tNeg = 0;
72 tPos = SK_Scalar1;
73 } else if (ycrv[0] > 0) {
74 if (ycrv[3] > 0)
75 return false;
76 tNeg = SK_Scalar1;
77 tPos = 0;
78 } else {
79 *t = 0;
80 return true;
81 }
82
83 const SkScalar tol = SK_Scalar1 / 65536; // 1 for fixed, 1e-5 for float.
84 int iters = 0;
85 do {
86 SkScalar tMid = (tPos + tNeg) / 2;
87 SkScalar y01 = SkScalarInterp(ycrv[0], ycrv[1], tMid);
88 SkScalar y12 = SkScalarInterp(ycrv[1], ycrv[2], tMid);
89 SkScalar y23 = SkScalarInterp(ycrv[2], ycrv[3], tMid);
90 SkScalar y012 = SkScalarInterp(y01, y12, tMid);
91 SkScalar y123 = SkScalarInterp(y12, y23, tMid);
92 SkScalar y0123 = SkScalarInterp(y012, y123, tMid);
93 if (y0123 == 0) {
94 *t = tMid;
95 return true;
96 }
97 if (y0123 < 0) tNeg = tMid;
98 else tPos = tMid;
99 ++iters;
100 } while (!(SkScalarAbs(tPos - tNeg) <= tol)); // Nan-safe
101
102 *t = (tNeg + tPos) / 2;
103 return true;
104 #endif // BISECTION
105 }
106
107
clipCubic(const SkPoint srcPts[4],SkPoint dst[4])108 bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) {
109 bool reverse;
110
111 // we need the data to be monotonically descending in Y
112 if (srcPts[0].fY > srcPts[3].fY) {
113 dst[0] = srcPts[3];
114 dst[1] = srcPts[2];
115 dst[2] = srcPts[1];
116 dst[3] = srcPts[0];
117 reverse = true;
118 } else {
119 memcpy(dst, srcPts, 4 * sizeof(SkPoint));
120 reverse = false;
121 }
122
123 // are we completely above or below
124 const SkScalar ctop = fClip.fTop;
125 const SkScalar cbot = fClip.fBottom;
126 if (dst[3].fY <= ctop || dst[0].fY >= cbot) {
127 return false;
128 }
129
130 SkScalar t;
131 SkPoint tmp[7]; // for SkChopCubicAt
132
133 // are we partially above
134 if (dst[0].fY < ctop && ChopMonoAtY(dst, ctop, &t)) {
135 SkChopCubicAt(dst, tmp, t);
136 dst[0] = tmp[3];
137 dst[1] = tmp[4];
138 dst[2] = tmp[5];
139 }
140
141 // are we partially below
142 if (dst[3].fY > cbot && ChopMonoAtY(dst, cbot, &t)) {
143 SkChopCubicAt(dst, tmp, t);
144 dst[1] = tmp[1];
145 dst[2] = tmp[2];
146 dst[3] = tmp[3];
147 }
148
149 if (reverse) {
150 SkTSwap<SkPoint>(dst[0], dst[3]);
151 SkTSwap<SkPoint>(dst[1], dst[2]);
152 }
153 return true;
154 }
155