1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrPath.h"
9 
10 namespace {
11 // Verb count limit for generating path key from content of a volatile path.
12 // The value should accomodate at least simple rects and rrects.
13 static const int kSimpleVolatilePathVerbLimit = 10;
14 
compute_key_for_line_path(const SkPath & path,const GrStrokeInfo & stroke,GrUniqueKey * key)15 inline static bool compute_key_for_line_path(const SkPath& path, const GrStrokeInfo& stroke,
16                                              GrUniqueKey* key) {
17     SkPoint pts[2];
18     if (!path.isLine(pts)) {
19         return false;
20     }
21     static_assert((sizeof(pts) % sizeof(uint32_t)) == 0 && sizeof(pts) > sizeof(uint32_t),
22                   "pts_needs_padding");
23 
24     const int kBaseData32Cnt = 1 + sizeof(pts) / sizeof(uint32_t);
25     int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
26     static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain();
27     GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt);
28     builder[0] = path.getFillType();
29     memcpy(&builder[1], &pts, sizeof(pts));
30     if (strokeDataCnt > 0) {
31         stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
32     }
33     return true;
34 }
35 
compute_key_for_oval_path(const SkPath & path,const GrStrokeInfo & stroke,GrUniqueKey * key)36 inline static bool compute_key_for_oval_path(const SkPath& path, const GrStrokeInfo& stroke,
37                                              GrUniqueKey* key) {
38     SkRect rect;
39     // Point order is significant when dashing, so we cannot devolve to a rect key.
40     if (stroke.isDashed() || !path.isOval(&rect)) {
41         return false;
42     }
43     static_assert((sizeof(rect) % sizeof(uint32_t)) == 0 && sizeof(rect) > sizeof(uint32_t),
44                   "rect_needs_padding");
45 
46     const int kBaseData32Cnt = 1 + sizeof(rect) / sizeof(uint32_t);
47     int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
48     static const GrUniqueKey::Domain kOvalPathDomain = GrUniqueKey::GenerateDomain();
49     GrUniqueKey::Builder builder(key, kOvalPathDomain, kBaseData32Cnt + strokeDataCnt);
50     builder[0] = path.getFillType();
51     memcpy(&builder[1], &rect, sizeof(rect));
52     if (strokeDataCnt > 0) {
53         stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
54     }
55     return true;
56 }
57 
58 // Encodes the full path data to the unique key for very small, volatile paths. This is typically
59 // hit when clipping stencils the clip stack. Intention is that this handles rects too, since
60 // SkPath::isRect seems to do non-trivial amount of work.
compute_key_for_simple_path(const SkPath & path,const GrStrokeInfo & stroke,GrUniqueKey * key)61 inline static bool compute_key_for_simple_path(const SkPath& path, const GrStrokeInfo& stroke,
62                                                GrUniqueKey* key) {
63     if (!path.isVolatile()) {
64         return false;
65     }
66     // The check below should take care of negative values casted positive.
67     const int verbCnt = path.countVerbs();
68     if (verbCnt > kSimpleVolatilePathVerbLimit) {
69         return false;
70     }
71 
72     // If somebody goes wild with the constant, it might cause an overflow.
73     static_assert(kSimpleVolatilePathVerbLimit <= 100,
74                   "big_simple_volatile_path_verb_limit_may_cause_overflow");
75 
76     const int pointCnt = path.countPoints();
77     if (pointCnt < 0) {
78         SkASSERT(false);
79         return false;
80     }
81     SkSTArray<16, SkScalar, true> conicWeights(16);
82     if ((path.getSegmentMasks() & SkPath::kConic_SegmentMask) != 0) {
83         SkPath::RawIter iter(path);
84         SkPath::Verb verb;
85         SkPoint points[4];
86         while ((verb = iter.next(points)) != SkPath::kDone_Verb) {
87             if (verb == SkPath::kConic_Verb) {
88                 conicWeights.push_back(iter.conicWeight());
89             }
90         }
91     }
92 
93     const int conicWeightCnt = conicWeights.count();
94 
95     // Construct counts that align as uint32_t counts.
96 #define ARRAY_DATA32_COUNT(array_type, count) \
97     static_cast<int>((((count) * sizeof(array_type) + sizeof(uint32_t) - 1) / sizeof(uint32_t)))
98 
99     const int verbData32Cnt = ARRAY_DATA32_COUNT(uint8_t, verbCnt);
100     const int pointData32Cnt = ARRAY_DATA32_COUNT(SkPoint, pointCnt);
101     const int conicWeightData32Cnt = ARRAY_DATA32_COUNT(SkScalar, conicWeightCnt);
102 
103 #undef ARRAY_DATA32_COUNT
104 
105     // The unique key data is a "message" with following fragments:
106     // 0) domain, key length, uint32_t for fill type and uint32_t for verbCnt
107     //   (fragment 0, fixed size)
108     // 1) verb, point data and conic weights (varying size)
109     // 2) stroke data (varying size)
110 
111     const int baseData32Cnt = 2 + verbData32Cnt + pointData32Cnt + conicWeightData32Cnt;
112     const int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
113     static const GrUniqueKey::Domain kSimpleVolatilePathDomain = GrUniqueKey::GenerateDomain();
114     GrUniqueKey::Builder builder(key, kSimpleVolatilePathDomain, baseData32Cnt + strokeDataCnt);
115     int i = 0;
116     builder[i++] = path.getFillType();
117 
118     // Serialize the verbCnt to make the whole message unambiguous.
119     // We serialize two variable length fragments to the message:
120     // * verbs, point data and conic weights (fragment 1)
121     // * stroke data (fragment 2)
122     // "Proof:"
123     // Verb count establishes unambiguous verb data.
124     // Verbs encode also point data size and conic weight size.
125     // Thus the fragment 1 is unambiguous.
126     // Unambiguous fragment 1 establishes unambiguous fragment 2, since the length of the message
127     // has been established.
128 
129     builder[i++] = SkToU32(verbCnt); // The path limit is compile-asserted above, so the cast is ok.
130 
131     // Fill the last uint32_t with 0 first, since the last uint8_ts of the uint32_t may be
132     // uninitialized. This does not produce ambiguous verb data, since we have serialized the exact
133     // verb count.
134     if (verbData32Cnt != static_cast<int>((verbCnt * sizeof(uint8_t) / sizeof(uint32_t)))) {
135         builder[i + verbData32Cnt - 1] = 0;
136     }
137     path.getVerbs(reinterpret_cast<uint8_t*>(&builder[i]), verbCnt);
138     i += verbData32Cnt;
139 
140     static_assert(((sizeof(SkPoint) % sizeof(uint32_t)) == 0) && sizeof(SkPoint) > sizeof(uint32_t),
141                   "skpoint_array_needs_padding");
142 
143     // Here we assume getPoints does a memcpy, so that we do not need to worry about the alignment.
144     path.getPoints(reinterpret_cast<SkPoint*>(&builder[i]), pointCnt);
145     i += pointData32Cnt;
146 
147     if (conicWeightCnt > 0) {
148         if (conicWeightData32Cnt != static_cast<int>(
149                 (conicWeightCnt * sizeof(SkScalar) / sizeof(uint32_t)))) {
150             builder[i + conicWeightData32Cnt - 1] = 0;
151         }
152         memcpy(&builder[i], conicWeights.begin(), conicWeightCnt * sizeof(SkScalar));
153         SkDEBUGCODE(i += conicWeightData32Cnt);
154     }
155     SkASSERT(i == baseData32Cnt);
156     if (strokeDataCnt > 0) {
157         stroke.asUniqueKeyFragment(&builder[baseData32Cnt]);
158     }
159     return true;
160 }
161 
compute_key_for_general_path(const SkPath & path,const GrStrokeInfo & stroke,GrUniqueKey * key)162 inline static void compute_key_for_general_path(const SkPath& path, const GrStrokeInfo& stroke,
163                                                 GrUniqueKey* key) {
164     const int kBaseData32Cnt = 2;
165     int strokeDataCnt = stroke.computeUniqueKeyFragmentData32Cnt();
166     static const GrUniqueKey::Domain kGeneralPathDomain = GrUniqueKey::GenerateDomain();
167     GrUniqueKey::Builder builder(key, kGeneralPathDomain, kBaseData32Cnt + strokeDataCnt);
168     builder[0] = path.getGenerationID();
169     builder[1] = path.getFillType();
170     if (strokeDataCnt > 0) {
171         stroke.asUniqueKeyFragment(&builder[kBaseData32Cnt]);
172     }
173 }
174 
175 }
176 
ComputeKey(const SkPath & path,const GrStrokeInfo & stroke,GrUniqueKey * key,bool * outIsVolatile)177 void GrPath::ComputeKey(const SkPath& path, const GrStrokeInfo& stroke, GrUniqueKey* key,
178                         bool* outIsVolatile) {
179     if (compute_key_for_line_path(path, stroke, key)) {
180         *outIsVolatile = false;
181         return;
182     }
183 
184     if (compute_key_for_oval_path(path, stroke, key)) {
185         *outIsVolatile = false;
186         return;
187     }
188 
189     if (compute_key_for_simple_path(path, stroke, key)) {
190         *outIsVolatile = false;
191         return;
192     }
193 
194     compute_key_for_general_path(path, stroke, key);
195     *outIsVolatile = path.isVolatile();
196 }
197 
198 #ifdef SK_DEBUG
isEqualTo(const SkPath & path,const GrStrokeInfo & stroke) const199 bool GrPath::isEqualTo(const SkPath& path, const GrStrokeInfo& stroke) const {
200     if (!fStroke.hasEqualEffect(stroke)) {
201         return false;
202     }
203 
204     // We treat same-rect ovals as identical - but only when not dashing.
205     SkRect ovalBounds;
206     if (!fStroke.isDashed() && fSkPath.isOval(&ovalBounds)) {
207         SkRect otherOvalBounds;
208         return path.isOval(&otherOvalBounds) && ovalBounds == otherOvalBounds;
209     }
210 
211     return fSkPath == path;
212 }
213 #endif
214 
215