1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrTessellator.h"
9 
10 #include "GrBatchFlushState.h"
11 #include "GrBatchTest.h"
12 #include "GrDefaultGeoProcFactory.h"
13 #include "GrPathUtils.h"
14 #include "GrVertices.h"
15 #include "GrResourceCache.h"
16 #include "GrResourceProvider.h"
17 #include "SkGeometry.h"
18 #include "SkChunkAlloc.h"
19 
20 #include "batches/GrVertexBatch.h"
21 
22 #include <stdio.h>
23 
24 /*
25  * There are six stages to the algorithm:
26  *
27  * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
28  * 2) Build a mesh of edges connecting the vertices (build_edges()).
29  * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()).
30  * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()).
31  * 5) Tessellate the simplified mesh into monotone polygons (tessellate()).
32  * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()).
33  *
34  * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list
35  * of vertices (and the necessity of inserting new vertices on intersection).
36  *
37  * Stages (4) and (5) use an active edge list, which a list of all edges for which the
38  * sweep line has crossed the top vertex, but not the bottom vertex.  It's sorted
39  * left-to-right based on the point where both edges are active (when both top vertices
40  * have been seen, so the "lower" top vertex of the two). If the top vertices are equal
41  * (shared), it's sorted based on the last point where both edges are active, so the
42  * "upper" bottom vertex.
43  *
44  * The most complex step is the simplification (4). It's based on the Bentley-Ottman
45  * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are
46  * not exact and may violate the mesh topology or active edge list ordering. We
47  * accommodate this by adjusting the topology of the mesh and AEL to match the intersection
48  * points. This occurs in three ways:
49  *
50  * A) Intersections may cause a shortened edge to no longer be ordered with respect to its
51  *    neighbouring edges at the top or bottom vertex. This is handled by merging the
52  *    edges (merge_collinear_edges()).
53  * B) Intersections may cause an edge to violate the left-to-right ordering of the
54  *    active edge list. This is handled by splitting the neighbour edge on the
55  *    intersected vertex (cleanup_active_edges()).
56  * C) Shortening an edge may cause an active edge to become inactive or an inactive edge
57  *    to become active. This is handled by removing or inserting the edge in the active
58  *    edge list (fix_active_state()).
59  *
60  * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and
61  * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it
62  * currently uses a linked list for the active edge list, rather than a 2-3 tree as the
63  * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also
64  * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N)
65  * insertions and removals was greater than the cost of infrequent O(N) lookups with the
66  * linked list implementation. With the latter, all removals are O(1), and most insertions
67  * are O(1), since we know the adjacent edge in the active edge list based on the topology.
68  * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less
69  * frequent. There may be other data structures worth investigating, however.
70  *
71  * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the
72  * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y
73  * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall,
74  * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so
75  * that the "left" and "right" orientation in the code remains correct (edges to the left are
76  * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
77  * degrees counterclockwise, rather that transposing.
78  */
79 
80 #define LOGGING_ENABLED 0
81 
82 #if LOGGING_ENABLED
83 #define LOG printf
84 #else
85 #define LOG(...)
86 #endif
87 
88 #define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args
89 
90 namespace {
91 
92 struct Vertex;
93 struct Edge;
94 struct Poly;
95 
96 template <class T, T* T::*Prev, T* T::*Next>
insert(T * t,T * prev,T * next,T ** head,T ** tail)97 void insert(T* t, T* prev, T* next, T** head, T** tail) {
98     t->*Prev = prev;
99     t->*Next = next;
100     if (prev) {
101         prev->*Next = t;
102     } else if (head) {
103         *head = t;
104     }
105     if (next) {
106         next->*Prev = t;
107     } else if (tail) {
108         *tail = t;
109     }
110 }
111 
112 template <class T, T* T::*Prev, T* T::*Next>
remove(T * t,T ** head,T ** tail)113 void remove(T* t, T** head, T** tail) {
114     if (t->*Prev) {
115         t->*Prev->*Next = t->*Next;
116     } else if (head) {
117         *head = t->*Next;
118     }
119     if (t->*Next) {
120         t->*Next->*Prev = t->*Prev;
121     } else if (tail) {
122         *tail = t->*Prev;
123     }
124     t->*Prev = t->*Next = nullptr;
125 }
126 
127 /**
128  * Vertices are used in three ways: first, the path contours are converted into a
129  * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
130  * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
131  * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
132  * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
133  * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
134  * an individual Vertex from the path mesh may belong to multiple
135  * MonotonePolys, so the original Vertices cannot be re-used.
136  */
137 
138 struct Vertex {
Vertex__anonf5ef66760111::Vertex139   Vertex(const SkPoint& point)
140     : fPoint(point), fPrev(nullptr), fNext(nullptr)
141     , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
142     , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
143     , fProcessed(false)
144 #if LOGGING_ENABLED
145     , fID (-1.0f)
146 #endif
147     {}
148     SkPoint fPoint;           // Vertex position
149     Vertex* fPrev;            // Linked list of contours, then Y-sorted vertices.
150     Vertex* fNext;            // "
151     Edge*   fFirstEdgeAbove;  // Linked list of edges above this vertex.
152     Edge*   fLastEdgeAbove;   // "
153     Edge*   fFirstEdgeBelow;  // Linked list of edges below this vertex.
154     Edge*   fLastEdgeBelow;   // "
155     bool    fProcessed;       // Has this vertex been seen in simplify()?
156 #if LOGGING_ENABLED
157     float   fID;              // Identifier used for logging.
158 #endif
159 };
160 
161 /***************************************************************************************/
162 
163 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
164 
165 struct Comparator {
166     CompareFunc sweep_lt;
167     CompareFunc sweep_gt;
168 };
169 
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)170 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
171     return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX;
172 }
173 
sweep_lt_vert(const SkPoint & a,const SkPoint & b)174 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
175     return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY;
176 }
177 
sweep_gt_horiz(const SkPoint & a,const SkPoint & b)178 bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) {
179     return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX;
180 }
181 
sweep_gt_vert(const SkPoint & a,const SkPoint & b)182 bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
183     return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
184 }
185 
emit_vertex(Vertex * v,SkPoint * data)186 inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
187     *data++ = v->fPoint;
188     return data;
189 }
190 
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,SkPoint * data)191 SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
192 #if WIREFRAME
193     data = emit_vertex(v0, data);
194     data = emit_vertex(v1, data);
195     data = emit_vertex(v1, data);
196     data = emit_vertex(v2, data);
197     data = emit_vertex(v2, data);
198     data = emit_vertex(v0, data);
199 #else
200     data = emit_vertex(v0, data);
201     data = emit_vertex(v1, data);
202     data = emit_vertex(v2, data);
203 #endif
204     return data;
205 }
206 
207 struct EdgeList {
EdgeList__anonf5ef66760111::EdgeList208     EdgeList() : fHead(nullptr), fTail(nullptr) {}
209     Edge* fHead;
210     Edge* fTail;
211 };
212 
213 /**
214  * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
215  * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
216  * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating
217  * point). For speed, that case is only tested by the callers which require it (e.g.,
218  * cleanup_active_edges()). Edges also handle checking for intersection with other edges.
219  * Currently, this converts the edges to the parametric form, in order to avoid doing a division
220  * until an intersection has been confirmed. This is slightly slower in the "found" case, but
221  * a lot faster in the "not found" case.
222  *
223  * The coefficients of the line equation stored in double precision to avoid catastrphic
224  * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is
225  * correct in float, since it's a polynomial of degree 2. The intersect() function, being
226  * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its
227  * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of
228  * this file).
229  */
230 
231 struct Edge {
Edge__anonf5ef66760111::Edge232     Edge(Vertex* top, Vertex* bottom, int winding)
233         : fWinding(winding)
234         , fTop(top)
235         , fBottom(bottom)
236         , fLeft(nullptr)
237         , fRight(nullptr)
238         , fPrevEdgeAbove(nullptr)
239         , fNextEdgeAbove(nullptr)
240         , fPrevEdgeBelow(nullptr)
241         , fNextEdgeBelow(nullptr)
242         , fLeftPoly(nullptr)
243         , fRightPoly(nullptr) {
244             recompute();
245         }
246     int      fWinding;          // 1 == edge goes downward; -1 = edge goes upward.
247     Vertex*  fTop;              // The top vertex in vertex-sort-order (sweep_lt).
248     Vertex*  fBottom;           // The bottom vertex in vertex-sort-order.
249     Edge*    fLeft;             // The linked list of edges in the active edge list.
250     Edge*    fRight;            // "
251     Edge*    fPrevEdgeAbove;    // The linked list of edges in the bottom Vertex's "edges above".
252     Edge*    fNextEdgeAbove;    // "
253     Edge*    fPrevEdgeBelow;    // The linked list of edges in the top Vertex's "edges below".
254     Edge*    fNextEdgeBelow;    // "
255     Poly*    fLeftPoly;         // The Poly to the left of this edge, if any.
256     Poly*    fRightPoly;        // The Poly to the right of this edge, if any.
257     double   fDX;               // The line equation for this edge, in implicit form.
258     double   fDY;               // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
259     double   fC;
dist__anonf5ef66760111::Edge260     double dist(const SkPoint& p) const {
261         return fDY * p.fX - fDX * p.fY + fC;
262     }
isRightOf__anonf5ef66760111::Edge263     bool isRightOf(Vertex* v) const {
264         return dist(v->fPoint) < 0.0;
265     }
isLeftOf__anonf5ef66760111::Edge266     bool isLeftOf(Vertex* v) const {
267         return dist(v->fPoint) > 0.0;
268     }
recompute__anonf5ef66760111::Edge269     void recompute() {
270         fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
271         fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
272         fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
273              static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
274     }
intersect__anonf5ef66760111::Edge275     bool intersect(const Edge& other, SkPoint* p) {
276         LOG("intersecting %g -> %g with %g -> %g\n",
277                fTop->fID, fBottom->fID,
278                other.fTop->fID, other.fBottom->fID);
279         if (fTop == other.fTop || fBottom == other.fBottom) {
280             return false;
281         }
282         double denom = fDX * other.fDY - fDY * other.fDX;
283         if (denom == 0.0) {
284             return false;
285         }
286         double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
287         double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
288         double sNumer = dy * other.fDX - dx * other.fDY;
289         double tNumer = dy * fDX - dx * fDY;
290         // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
291         // This saves us doing the divide below unless absolutely necessary.
292         if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
293                         : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
294             return false;
295         }
296         double s = sNumer / denom;
297         SkASSERT(s >= 0.0 && s <= 1.0);
298         p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
299         p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
300         return true;
301     }
isActive__anonf5ef66760111::Edge302     bool isActive(EdgeList* activeEdges) const {
303         return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
304     }
305 };
306 
307 /***************************************************************************************/
308 
309 struct Poly {
Poly__anonf5ef66760111::Poly310     Poly(int winding)
311         : fWinding(winding)
312         , fHead(nullptr)
313         , fTail(nullptr)
314         , fActive(nullptr)
315         , fNext(nullptr)
316         , fPartner(nullptr)
317         , fCount(0)
318     {
319 #if LOGGING_ENABLED
320         static int gID = 0;
321         fID = gID++;
322         LOG("*** created Poly %d\n", fID);
323 #endif
324     }
325     typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side;
326     struct MonotonePoly {
MonotonePoly__anonf5ef66760111::Poly::MonotonePoly327         MonotonePoly()
328             : fSide(kNeither_Side)
329             , fHead(nullptr)
330             , fTail(nullptr)
331             , fPrev(nullptr)
332             , fNext(nullptr) {}
333         Side          fSide;
334         Vertex*       fHead;
335         Vertex*       fTail;
336         MonotonePoly* fPrev;
337         MonotonePoly* fNext;
addVertex__anonf5ef66760111::Poly::MonotonePoly338         bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
339             Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
340             bool done = false;
341             if (fSide == kNeither_Side) {
342                 fSide = side;
343             } else {
344                 done = side != fSide;
345             }
346             if (fHead == nullptr) {
347                 fHead = fTail = newV;
348             } else if (fSide == kRight_Side) {
349                 newV->fPrev = fTail;
350                 fTail->fNext = newV;
351                 fTail = newV;
352             } else {
353                 newV->fNext = fHead;
354                 fHead->fPrev = newV;
355                 fHead = newV;
356             }
357             return done;
358         }
359 
emit__anonf5ef66760111::Poly::MonotonePoly360         SkPoint* emit(SkPoint* data) {
361             Vertex* first = fHead;
362             Vertex* v = first->fNext;
363             while (v != fTail) {
364                 SkASSERT(v && v->fPrev && v->fNext);
365                 Vertex* prev = v->fPrev;
366                 Vertex* curr = v;
367                 Vertex* next = v->fNext;
368                 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
369                 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
370                 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
371                 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
372                 if (ax * by - ay * bx >= 0.0) {
373                     data = emit_triangle(prev, curr, next, data);
374                     v->fPrev->fNext = v->fNext;
375                     v->fNext->fPrev = v->fPrev;
376                     if (v->fPrev == first) {
377                         v = v->fNext;
378                     } else {
379                         v = v->fPrev;
380                     }
381                 } else {
382                     v = v->fNext;
383                 }
384             }
385             return data;
386         }
387     };
addVertex__anonf5ef66760111::Poly388     Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
389         LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
390                side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
391         Poly* partner = fPartner;
392         Poly* poly = this;
393         if (partner) {
394             fPartner = partner->fPartner = nullptr;
395         }
396         if (!fActive) {
397             fActive = ALLOC_NEW(MonotonePoly, (), alloc);
398         }
399         if (fActive->addVertex(v, side, alloc)) {
400             if (fTail) {
401                 fActive->fPrev = fTail;
402                 fTail->fNext = fActive;
403                 fTail = fActive;
404             } else {
405                 fHead = fTail = fActive;
406             }
407             if (partner) {
408                 partner->addVertex(v, side, alloc);
409                 poly = partner;
410             } else {
411                 Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
412                                fActive->fHead->fNext : fActive->fTail->fPrev;
413                 fActive = ALLOC_NEW(MonotonePoly, , alloc);
414                 fActive->addVertex(prev, Poly::kNeither_Side, alloc);
415                 fActive->addVertex(v, side, alloc);
416             }
417         }
418         fCount++;
419         return poly;
420     }
end__anonf5ef66760111::Poly421     void end(Vertex* v, SkChunkAlloc& alloc) {
422         LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
423         if (fPartner) {
424             fPartner = fPartner->fPartner = nullptr;
425         }
426         addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc);
427     }
emit__anonf5ef66760111::Poly428     SkPoint* emit(SkPoint *data) {
429         if (fCount < 3) {
430             return data;
431         }
432         LOG("emit() %d, size %d\n", fID, fCount);
433         for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
434             data = m->emit(data);
435         }
436         return data;
437     }
438     int fWinding;
439     MonotonePoly* fHead;
440     MonotonePoly* fTail;
441     MonotonePoly* fActive;
442     Poly* fNext;
443     Poly* fPartner;
444     int fCount;
445 #if LOGGING_ENABLED
446     int fID;
447 #endif
448 };
449 
450 /***************************************************************************************/
451 
coincident(const SkPoint & a,const SkPoint & b)452 bool coincident(const SkPoint& a, const SkPoint& b) {
453     return a == b;
454 }
455 
new_poly(Poly ** head,Vertex * v,int winding,SkChunkAlloc & alloc)456 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
457     Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
458     poly->addVertex(v, Poly::kNeither_Side, alloc);
459     poly->fNext = *head;
460     *head = poly;
461     return poly;
462 }
463 
append_point_to_contour(const SkPoint & p,Vertex * prev,Vertex ** head,SkChunkAlloc & alloc)464 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
465                                 SkChunkAlloc& alloc) {
466     Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
467 #if LOGGING_ENABLED
468     static float gID = 0.0f;
469     v->fID = gID++;
470 #endif
471     if (prev) {
472         prev->fNext = v;
473         v->fPrev = prev;
474     } else {
475         *head = v;
476     }
477     return v;
478 }
479 
generate_quadratic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,Vertex * prev,Vertex ** head,int pointsLeft,SkChunkAlloc & alloc)480 Vertex* generate_quadratic_points(const SkPoint& p0,
481                                   const SkPoint& p1,
482                                   const SkPoint& p2,
483                                   SkScalar tolSqd,
484                                   Vertex* prev,
485                                   Vertex** head,
486                                   int pointsLeft,
487                                   SkChunkAlloc& alloc) {
488     SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
489     if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
490         return append_point_to_contour(p2, prev, head, alloc);
491     }
492 
493     const SkPoint q[] = {
494         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
495         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
496     };
497     const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
498 
499     pointsLeft >>= 1;
500     prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc);
501     prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc);
502     return prev;
503 }
504 
generate_cubic_points(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,Vertex * prev,Vertex ** head,int pointsLeft,SkChunkAlloc & alloc)505 Vertex* generate_cubic_points(const SkPoint& p0,
506                               const SkPoint& p1,
507                               const SkPoint& p2,
508                               const SkPoint& p3,
509                               SkScalar tolSqd,
510                               Vertex* prev,
511                               Vertex** head,
512                               int pointsLeft,
513                               SkChunkAlloc& alloc) {
514     SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
515     SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
516     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
517         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
518         return append_point_to_contour(p3, prev, head, alloc);
519     }
520     const SkPoint q[] = {
521         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
522         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
523         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
524     };
525     const SkPoint r[] = {
526         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
527         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
528     };
529     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
530     pointsLeft >>= 1;
531     prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc);
532     prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc);
533     return prev;
534 }
535 
536 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
537 
path_to_contours(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,Vertex ** contours,SkChunkAlloc & alloc,bool * isLinear)538 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
539                       Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
540     SkScalar toleranceSqd = tolerance * tolerance;
541 
542     SkPoint pts[4];
543     bool done = false;
544     *isLinear = true;
545     SkPath::Iter iter(path, false);
546     Vertex* prev = nullptr;
547     Vertex* head = nullptr;
548     if (path.isInverseFillType()) {
549         SkPoint quad[4];
550         clipBounds.toQuad(quad);
551         for (int i = 3; i >= 0; i--) {
552             prev = append_point_to_contour(quad[i], prev, &head, alloc);
553         }
554         head->fPrev = prev;
555         prev->fNext = head;
556         *contours++ = head;
557         head = prev = nullptr;
558     }
559     SkAutoConicToQuads converter;
560     while (!done) {
561         SkPath::Verb verb = iter.next(pts);
562         switch (verb) {
563             case SkPath::kConic_Verb: {
564                 SkScalar weight = iter.conicWeight();
565                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
566                 for (int i = 0; i < converter.countQuads(); ++i) {
567                     int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance);
568                     prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2],
569                                                      toleranceSqd, prev, &head, pointsLeft, alloc);
570                     quadPts += 2;
571                 }
572                 *isLinear = false;
573                 break;
574             }
575             case SkPath::kMove_Verb:
576                 if (head) {
577                     head->fPrev = prev;
578                     prev->fNext = head;
579                     *contours++ = head;
580                 }
581                 head = prev = nullptr;
582                 prev = append_point_to_contour(pts[0], prev, &head, alloc);
583                 break;
584             case SkPath::kLine_Verb: {
585                 prev = append_point_to_contour(pts[1], prev, &head, alloc);
586                 break;
587             }
588             case SkPath::kQuad_Verb: {
589                 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance);
590                 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev,
591                                                  &head, pointsLeft, alloc);
592                 *isLinear = false;
593                 break;
594             }
595             case SkPath::kCubic_Verb: {
596                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
597                 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3],
598                                 toleranceSqd, prev, &head, pointsLeft, alloc);
599                 *isLinear = false;
600                 break;
601             }
602             case SkPath::kClose_Verb:
603                 if (head) {
604                     head->fPrev = prev;
605                     prev->fNext = head;
606                     *contours++ = head;
607                 }
608                 head = prev = nullptr;
609                 break;
610             case SkPath::kDone_Verb:
611                 if (head) {
612                     head->fPrev = prev;
613                     prev->fNext = head;
614                     *contours++ = head;
615                 }
616                 done = true;
617                 break;
618         }
619     }
620 }
621 
apply_fill_type(SkPath::FillType fillType,int winding)622 inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
623     switch (fillType) {
624         case SkPath::kWinding_FillType:
625             return winding != 0;
626         case SkPath::kEvenOdd_FillType:
627             return (winding & 1) != 0;
628         case SkPath::kInverseWinding_FillType:
629             return winding == 1;
630         case SkPath::kInverseEvenOdd_FillType:
631             return (winding & 1) == 1;
632         default:
633             SkASSERT(false);
634             return false;
635     }
636 }
637 
new_edge(Vertex * prev,Vertex * next,SkChunkAlloc & alloc,Comparator & c)638 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
639     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
640     Vertex* top = winding < 0 ? next : prev;
641     Vertex* bottom = winding < 0 ? prev : next;
642     return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
643 }
644 
remove_edge(Edge * edge,EdgeList * edges)645 void remove_edge(Edge* edge, EdgeList* edges) {
646     LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
647     SkASSERT(edge->isActive(edges));
648     remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail);
649 }
650 
insert_edge(Edge * edge,Edge * prev,EdgeList * edges)651 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
652     LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
653     SkASSERT(!edge->isActive(edges));
654     Edge* next = prev ? prev->fRight : edges->fHead;
655     insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
656 }
657 
find_enclosing_edges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)658 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
659     if (v->fFirstEdgeAbove) {
660         *left = v->fFirstEdgeAbove->fLeft;
661         *right = v->fLastEdgeAbove->fRight;
662         return;
663     }
664     Edge* next = nullptr;
665     Edge* prev;
666     for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
667         if (prev->isLeftOf(v)) {
668             break;
669         }
670         next = prev;
671     }
672     *left = prev;
673     *right = next;
674     return;
675 }
676 
find_enclosing_edges(Edge * edge,EdgeList * edges,Comparator & c,Edge ** left,Edge ** right)677 void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) {
678     Edge* prev = nullptr;
679     Edge* next;
680     for (next = edges->fHead; next != nullptr; next = next->fRight) {
681         if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) ||
682             (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) ||
683             (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) &&
684              next->isRightOf(edge->fBottom)) ||
685             (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) &&
686              edge->isLeftOf(next->fBottom))) {
687             break;
688         }
689         prev = next;
690     }
691     *left = prev;
692     *right = next;
693     return;
694 }
695 
fix_active_state(Edge * edge,EdgeList * activeEdges,Comparator & c)696 void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
697     if (edge->isActive(activeEdges)) {
698         if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) {
699             remove_edge(edge, activeEdges);
700         }
701     } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) {
702         Edge* left;
703         Edge* right;
704         find_enclosing_edges(edge, activeEdges, c, &left, &right);
705         insert_edge(edge, left, activeEdges);
706     }
707 }
708 
insert_edge_above(Edge * edge,Vertex * v,Comparator & c)709 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
710     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
711         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
712         return;
713     }
714     LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
715     Edge* prev = nullptr;
716     Edge* next;
717     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
718         if (next->isRightOf(edge->fTop)) {
719             break;
720         }
721         prev = next;
722     }
723     insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
724         edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
725 }
726 
insert_edge_below(Edge * edge,Vertex * v,Comparator & c)727 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
728     if (edge->fTop->fPoint == edge->fBottom->fPoint ||
729         c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
730         return;
731     }
732     LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID);
733     Edge* prev = nullptr;
734     Edge* next;
735     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
736         if (next->isRightOf(edge->fBottom)) {
737             break;
738         }
739         prev = next;
740     }
741     insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
742         edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
743 }
744 
remove_edge_above(Edge * edge)745 void remove_edge_above(Edge* edge) {
746     LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
747         edge->fBottom->fID);
748     remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
749         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
750 }
751 
remove_edge_below(Edge * edge)752 void remove_edge_below(Edge* edge) {
753     LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
754         edge->fTop->fID);
755     remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
756         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
757 }
758 
erase_edge_if_zero_winding(Edge * edge,EdgeList * edges)759 void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
760     if (edge->fWinding != 0) {
761         return;
762     }
763     LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID);
764     remove_edge_above(edge);
765     remove_edge_below(edge);
766     if (edge->isActive(edges)) {
767         remove_edge(edge, edges);
768     }
769 }
770 
771 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
772 
set_top(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)773 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
774     remove_edge_below(edge);
775     edge->fTop = v;
776     edge->recompute();
777     insert_edge_below(edge, v, c);
778     fix_active_state(edge, activeEdges, c);
779     merge_collinear_edges(edge, activeEdges, c);
780 }
781 
set_bottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c)782 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
783     remove_edge_above(edge);
784     edge->fBottom = v;
785     edge->recompute();
786     insert_edge_above(edge, v, c);
787     fix_active_state(edge, activeEdges, c);
788     merge_collinear_edges(edge, activeEdges, c);
789 }
790 
merge_edges_above(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)791 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
792     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
793         LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
794             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
795             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
796         other->fWinding += edge->fWinding;
797         erase_edge_if_zero_winding(other, activeEdges);
798         edge->fWinding = 0;
799         erase_edge_if_zero_winding(edge, activeEdges);
800     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
801         other->fWinding += edge->fWinding;
802         erase_edge_if_zero_winding(other, activeEdges);
803         set_bottom(edge, other->fTop, activeEdges, c);
804     } else {
805         edge->fWinding += other->fWinding;
806         erase_edge_if_zero_winding(edge, activeEdges);
807         set_bottom(other, edge->fTop, activeEdges, c);
808     }
809 }
810 
merge_edges_below(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c)811 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) {
812     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
813         LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
814             edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
815             edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
816         other->fWinding += edge->fWinding;
817         erase_edge_if_zero_winding(other, activeEdges);
818         edge->fWinding = 0;
819         erase_edge_if_zero_winding(edge, activeEdges);
820     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
821         edge->fWinding += other->fWinding;
822         erase_edge_if_zero_winding(edge, activeEdges);
823         set_top(other, edge->fBottom, activeEdges, c);
824     } else {
825         other->fWinding += edge->fWinding;
826         erase_edge_if_zero_winding(other, activeEdges);
827         set_top(edge, other->fBottom, activeEdges, c);
828     }
829 }
830 
merge_collinear_edges(Edge * edge,EdgeList * activeEdges,Comparator & c)831 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
832     if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop ||
833                                  !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) {
834         merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c);
835     } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop ||
836                                         !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) {
837         merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c);
838     }
839     if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom ||
840                                  !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) {
841         merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c);
842     } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom ||
843                                         !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) {
844         merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c);
845     }
846 }
847 
848 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
849 
cleanup_active_edges(Edge * edge,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)850 void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
851     Vertex* top = edge->fTop;
852     Vertex* bottom = edge->fBottom;
853     if (edge->fLeft) {
854         Vertex* leftTop = edge->fLeft->fTop;
855         Vertex* leftBottom = edge->fLeft->fBottom;
856         if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
857             split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
858         } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
859             split_edge(edge, leftTop, activeEdges, c, alloc);
860         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
861                    !edge->fLeft->isLeftOf(bottom)) {
862             split_edge(edge->fLeft, bottom, activeEdges, c, alloc);
863         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
864             split_edge(edge, leftBottom, activeEdges, c, alloc);
865         }
866     }
867     if (edge->fRight) {
868         Vertex* rightTop = edge->fRight->fTop;
869         Vertex* rightBottom = edge->fRight->fBottom;
870         if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
871             split_edge(edge->fRight, top, activeEdges, c, alloc);
872         } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
873             split_edge(edge, rightTop, activeEdges, c, alloc);
874         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
875                    !edge->fRight->isRightOf(bottom)) {
876             split_edge(edge->fRight, bottom, activeEdges, c, alloc);
877         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
878                    !edge->isLeftOf(rightBottom)) {
879             split_edge(edge, rightBottom, activeEdges, c, alloc);
880         }
881     }
882 }
883 
split_edge(Edge * edge,Vertex * v,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)884 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
885     LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
886         edge->fTop->fID, edge->fBottom->fID,
887         v->fID, v->fPoint.fX, v->fPoint.fY);
888     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
889         set_top(edge, v, activeEdges, c);
890     } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) {
891         set_bottom(edge, v, activeEdges, c);
892     } else {
893         Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc);
894         insert_edge_below(newEdge, v, c);
895         insert_edge_above(newEdge, edge->fBottom, c);
896         set_bottom(edge, v, activeEdges, c);
897         cleanup_active_edges(edge, activeEdges, c, alloc);
898         fix_active_state(newEdge, activeEdges, c);
899         merge_collinear_edges(newEdge, activeEdges, c);
900     }
901 }
902 
merge_vertices(Vertex * src,Vertex * dst,Vertex ** head,Comparator & c,SkChunkAlloc & alloc)903 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
904     LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
905         src->fID, dst->fID);
906     for (Edge* edge = src->fFirstEdgeAbove; edge;) {
907         Edge* next = edge->fNextEdgeAbove;
908         set_bottom(edge, dst, nullptr, c);
909         edge = next;
910     }
911     for (Edge* edge = src->fFirstEdgeBelow; edge;) {
912         Edge* next = edge->fNextEdgeBelow;
913         set_top(edge, dst, nullptr, c);
914         edge = next;
915     }
916     remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr);
917 }
918 
check_for_intersection(Edge * edge,Edge * other,EdgeList * activeEdges,Comparator & c,SkChunkAlloc & alloc)919 Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
920                                SkChunkAlloc& alloc) {
921     SkPoint p;
922     if (!edge || !other) {
923         return nullptr;
924     }
925     if (edge->intersect(*other, &p)) {
926         Vertex* v;
927         LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
928         if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
929             split_edge(other, edge->fTop, activeEdges, c, alloc);
930             v = edge->fTop;
931         } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) {
932             split_edge(other, edge->fBottom, activeEdges, c, alloc);
933             v = edge->fBottom;
934         } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) {
935             split_edge(edge, other->fTop, activeEdges, c, alloc);
936             v = other->fTop;
937         } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) {
938             split_edge(edge, other->fBottom, activeEdges, c, alloc);
939             v = other->fBottom;
940         } else {
941             Vertex* nextV = edge->fTop;
942             while (c.sweep_lt(p, nextV->fPoint)) {
943                 nextV = nextV->fPrev;
944             }
945             while (c.sweep_lt(nextV->fPoint, p)) {
946                 nextV = nextV->fNext;
947             }
948             Vertex* prevV = nextV->fPrev;
949             if (coincident(prevV->fPoint, p)) {
950                 v = prevV;
951             } else if (coincident(nextV->fPoint, p)) {
952                 v = nextV;
953             } else {
954                 v = ALLOC_NEW(Vertex, (p), alloc);
955                 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
956                     prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
957                     nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
958 #if LOGGING_ENABLED
959                 v->fID = (nextV->fID + prevV->fID) * 0.5f;
960 #endif
961                 v->fPrev = prevV;
962                 v->fNext = nextV;
963                 prevV->fNext = v;
964                 nextV->fPrev = v;
965             }
966             split_edge(edge, v, activeEdges, c, alloc);
967             split_edge(other, v, activeEdges, c, alloc);
968         }
969         return v;
970     }
971     return nullptr;
972 }
973 
sanitize_contours(Vertex ** contours,int contourCnt)974 void sanitize_contours(Vertex** contours, int contourCnt) {
975     for (int i = 0; i < contourCnt; ++i) {
976         SkASSERT(contours[i]);
977         for (Vertex* v = contours[i];;) {
978             if (coincident(v->fPrev->fPoint, v->fPoint)) {
979                 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
980                 if (v->fPrev == v) {
981                     contours[i] = nullptr;
982                     break;
983                 }
984                 v->fPrev->fNext = v->fNext;
985                 v->fNext->fPrev = v->fPrev;
986                 if (contours[i] == v) {
987                     contours[i] = v->fNext;
988                 }
989                 v = v->fPrev;
990             } else {
991                 v = v->fNext;
992                 if (v == contours[i]) break;
993             }
994         }
995     }
996 }
997 
merge_coincident_vertices(Vertex ** vertices,Comparator & c,SkChunkAlloc & alloc)998 void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
999     for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) {
1000         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1001             v->fPoint = v->fPrev->fPoint;
1002         }
1003         if (coincident(v->fPrev->fPoint, v->fPoint)) {
1004             merge_vertices(v->fPrev, v, vertices, c, alloc);
1005         }
1006     }
1007 }
1008 
1009 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1010 
build_edges(Vertex ** contours,int contourCnt,Comparator & c,SkChunkAlloc & alloc)1011 Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
1012     Vertex* vertices = nullptr;
1013     Vertex* prev = nullptr;
1014     for (int i = 0; i < contourCnt; ++i) {
1015         for (Vertex* v = contours[i]; v != nullptr;) {
1016             Vertex* vNext = v->fNext;
1017             Edge* edge = new_edge(v->fPrev, v, alloc, c);
1018             if (edge->fWinding > 0) {
1019                 insert_edge_below(edge, v->fPrev, c);
1020                 insert_edge_above(edge, v, c);
1021             } else {
1022                 insert_edge_below(edge, v, c);
1023                 insert_edge_above(edge, v->fPrev, c);
1024             }
1025             merge_collinear_edges(edge, nullptr, c);
1026             if (prev) {
1027                 prev->fNext = v;
1028                 v->fPrev = prev;
1029             } else {
1030                 vertices = v;
1031             }
1032             prev = v;
1033             v = vNext;
1034             if (v == contours[i]) break;
1035         }
1036     }
1037     if (prev) {
1038         prev->fNext = vertices->fPrev = nullptr;
1039     }
1040     return vertices;
1041 }
1042 
1043 // Stage 3: sort the vertices by increasing sweep direction.
1044 
1045 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
1046 
front_back_split(Vertex * v,Vertex ** pFront,Vertex ** pBack)1047 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
1048     Vertex* fast;
1049     Vertex* slow;
1050     if (!v || !v->fNext) {
1051         *pFront = v;
1052         *pBack = nullptr;
1053     } else {
1054         slow = v;
1055         fast = v->fNext;
1056 
1057         while (fast != nullptr) {
1058             fast = fast->fNext;
1059             if (fast != nullptr) {
1060                 slow = slow->fNext;
1061                 fast = fast->fNext;
1062             }
1063         }
1064 
1065         *pFront = v;
1066         *pBack = slow->fNext;
1067         slow->fNext->fPrev = nullptr;
1068         slow->fNext = nullptr;
1069     }
1070 }
1071 
merge_sort(Vertex ** head,Comparator & c)1072 void merge_sort(Vertex** head, Comparator& c) {
1073     if (!*head || !(*head)->fNext) {
1074         return;
1075     }
1076 
1077     Vertex* a;
1078     Vertex* b;
1079     front_back_split(*head, &a, &b);
1080 
1081     merge_sort(&a, c);
1082     merge_sort(&b, c);
1083 
1084     *head = sorted_merge(a, b, c);
1085 }
1086 
append_vertex(Vertex * v,Vertex ** head,Vertex ** tail)1087 inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) {
1088     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, nullptr, head, tail);
1089 }
1090 
append_vertex_list(Vertex * v,Vertex ** head,Vertex ** tail)1091 inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) {
1092     insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail);
1093 }
1094 
sorted_merge(Vertex * a,Vertex * b,Comparator & c)1095 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
1096     Vertex* head = nullptr;
1097     Vertex* tail = nullptr;
1098 
1099     while (a && b) {
1100         if (c.sweep_lt(a->fPoint, b->fPoint)) {
1101             Vertex* next = a->fNext;
1102             append_vertex(a, &head, &tail);
1103             a = next;
1104         } else {
1105             Vertex* next = b->fNext;
1106             append_vertex(b, &head, &tail);
1107             b = next;
1108         }
1109     }
1110     if (a) {
1111         append_vertex_list(a, &head, &tail);
1112     }
1113     if (b) {
1114         append_vertex_list(b, &head, &tail);
1115     }
1116     return head;
1117 }
1118 
1119 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1120 
simplify(Vertex * vertices,Comparator & c,SkChunkAlloc & alloc)1121 void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
1122     LOG("simplifying complex polygons\n");
1123     EdgeList activeEdges;
1124     for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1125         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1126             continue;
1127         }
1128 #if LOGGING_ENABLED
1129         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1130 #endif
1131         Edge* leftEnclosingEdge = nullptr;
1132         Edge* rightEnclosingEdge = nullptr;
1133         bool restartChecks;
1134         do {
1135             restartChecks = false;
1136             find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1137             if (v->fFirstEdgeBelow) {
1138                 for (Edge* edge = v->fFirstEdgeBelow; edge != nullptr; edge = edge->fNextEdgeBelow) {
1139                     if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) {
1140                         restartChecks = true;
1141                         break;
1142                     }
1143                     if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) {
1144                         restartChecks = true;
1145                         break;
1146                     }
1147                 }
1148             } else {
1149                 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
1150                                                         &activeEdges, c, alloc)) {
1151                     if (c.sweep_lt(pv->fPoint, v->fPoint)) {
1152                         v = pv;
1153                     }
1154                     restartChecks = true;
1155                 }
1156 
1157             }
1158         } while (restartChecks);
1159         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1160             remove_edge(e, &activeEdges);
1161         }
1162         Edge* leftEdge = leftEnclosingEdge;
1163         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1164             insert_edge(e, leftEdge, &activeEdges);
1165             leftEdge = e;
1166         }
1167         v->fProcessed = true;
1168     }
1169 }
1170 
1171 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1172 
tessellate(Vertex * vertices,SkChunkAlloc & alloc)1173 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
1174     LOG("tessellating simple polygons\n");
1175     EdgeList activeEdges;
1176     Poly* polys = nullptr;
1177     for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1178         if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
1179             continue;
1180         }
1181 #if LOGGING_ENABLED
1182         LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
1183 #endif
1184         Edge* leftEnclosingEdge = nullptr;
1185         Edge* rightEnclosingEdge = nullptr;
1186         find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1187         Poly* leftPoly = nullptr;
1188         Poly* rightPoly = nullptr;
1189         if (v->fFirstEdgeAbove) {
1190             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1191             rightPoly = v->fLastEdgeAbove->fRightPoly;
1192         } else {
1193             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1194             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1195         }
1196 #if LOGGING_ENABLED
1197         LOG("edges above:\n");
1198         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1199             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1200                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1201         }
1202         LOG("edges below:\n");
1203         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1204             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1205                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1206         }
1207 #endif
1208         if (v->fFirstEdgeAbove) {
1209             if (leftPoly) {
1210                 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1211             }
1212             if (rightPoly) {
1213                 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1214             }
1215             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1216                 Edge* leftEdge = e;
1217                 Edge* rightEdge = e->fNextEdgeAbove;
1218                 SkASSERT(rightEdge->isRightOf(leftEdge->fTop));
1219                 remove_edge(leftEdge, &activeEdges);
1220                 if (leftEdge->fRightPoly) {
1221                     leftEdge->fRightPoly->end(v, alloc);
1222                 }
1223                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) {
1224                     rightEdge->fLeftPoly->end(v, alloc);
1225                 }
1226             }
1227             remove_edge(v->fLastEdgeAbove, &activeEdges);
1228             if (!v->fFirstEdgeBelow) {
1229                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1230                     SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1231                     rightPoly->fPartner = leftPoly;
1232                     leftPoly->fPartner = rightPoly;
1233                 }
1234             }
1235         }
1236         if (v->fFirstEdgeBelow) {
1237             if (!v->fFirstEdgeAbove) {
1238                 if (leftPoly && leftPoly == rightPoly) {
1239                     // Split the poly.
1240                     if (leftPoly->fActive->fSide == Poly::kLeft_Side) {
1241                         leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding,
1242                                             alloc);
1243                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1244                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1245                         leftEnclosingEdge->fRightPoly = leftPoly;
1246                     } else {
1247                         rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding,
1248                                              alloc);
1249                         rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1250                         leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1251                         rightEnclosingEdge->fLeftPoly = rightPoly;
1252                     }
1253                 } else {
1254                     if (leftPoly) {
1255                         leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc);
1256                     }
1257                     if (rightPoly) {
1258                         rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc);
1259                     }
1260                 }
1261             }
1262             Edge* leftEdge = v->fFirstEdgeBelow;
1263             leftEdge->fLeftPoly = leftPoly;
1264             insert_edge(leftEdge, leftEnclosingEdge, &activeEdges);
1265             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1266                  rightEdge = rightEdge->fNextEdgeBelow) {
1267                 insert_edge(rightEdge, leftEdge, &activeEdges);
1268                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1269                 winding += leftEdge->fWinding;
1270                 if (winding != 0) {
1271                     Poly* poly = new_poly(&polys, v, winding, alloc);
1272                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1273                 }
1274                 leftEdge = rightEdge;
1275             }
1276             v->fLastEdgeBelow->fRightPoly = rightPoly;
1277         }
1278 #if LOGGING_ENABLED
1279         LOG("\nactive edges:\n");
1280         for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1281             LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
1282                 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1);
1283         }
1284 #endif
1285     }
1286     return polys;
1287 }
1288 
1289 // This is a driver function which calls stages 2-5 in turn.
1290 
contours_to_polys(Vertex ** contours,int contourCnt,const SkRect & pathBounds,SkChunkAlloc & alloc)1291 Poly* contours_to_polys(Vertex** contours, int contourCnt, const SkRect& pathBounds,
1292                         SkChunkAlloc& alloc) {
1293     Comparator c;
1294     if (pathBounds.width() > pathBounds.height()) {
1295         c.sweep_lt = sweep_lt_horiz;
1296         c.sweep_gt = sweep_gt_horiz;
1297     } else {
1298         c.sweep_lt = sweep_lt_vert;
1299         c.sweep_gt = sweep_gt_vert;
1300     }
1301 #if LOGGING_ENABLED
1302     for (int i = 0; i < contourCnt; ++i) {
1303         Vertex* v = contours[i];
1304         SkASSERT(v);
1305         LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1306         for (v = v->fNext; v != contours[i]; v = v->fNext) {
1307             LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1308         }
1309     }
1310 #endif
1311     sanitize_contours(contours, contourCnt);
1312     Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
1313     if (!vertices) {
1314         return nullptr;
1315     }
1316 
1317     // Sort vertices in Y (secondarily in X).
1318     merge_sort(&vertices, c);
1319     merge_coincident_vertices(&vertices, c, alloc);
1320 #if LOGGING_ENABLED
1321     for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
1322         static float gID = 0.0f;
1323         v->fID = gID++;
1324     }
1325 #endif
1326     simplify(vertices, c, alloc);
1327     return tessellate(vertices, alloc);
1328 }
1329 
path_to_polys(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,int contourCnt,SkChunkAlloc & alloc,bool * isLinear)1330 Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1331                     int contourCnt, SkChunkAlloc& alloc, bool* isLinear) {
1332     SkPath::FillType fillType = path.getFillType();
1333     if (SkPath::IsInverseFillType(fillType)) {
1334         contourCnt++;
1335     }
1336     SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
1337 
1338     path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
1339     return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc);
1340 }
1341 
get_contour_count_and_size_estimate(const SkPath & path,SkScalar tolerance,int * contourCnt,int * sizeEstimate)1342 void get_contour_count_and_size_estimate(const SkPath& path, SkScalar tolerance, int* contourCnt,
1343                                          int* sizeEstimate) {
1344     int maxPts = GrPathUtils::worstCasePointCount(path, contourCnt, tolerance);
1345     if (maxPts <= 0) {
1346         *contourCnt = 0;
1347         return;
1348     }
1349     if (maxPts > ((int)SK_MaxU16 + 1)) {
1350         SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
1351         *contourCnt = 0;
1352         return;
1353     }
1354     // For the initial size of the chunk allocator, estimate based on the point count:
1355     // one vertex per point for the initial passes, plus two for the vertices in the
1356     // resulting Polys, since the same point may end up in two Polys.  Assume minimal
1357     // connectivity of one Edge per Vertex (will grow for intersections).
1358     *sizeEstimate = maxPts * (3 * sizeof(Vertex) + sizeof(Edge));
1359 }
1360 
count_points(Poly * polys,SkPath::FillType fillType)1361 int count_points(Poly* polys, SkPath::FillType fillType) {
1362     int count = 0;
1363     for (Poly* poly = polys; poly; poly = poly->fNext) {
1364         if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
1365             count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
1366         }
1367     }
1368     return count;
1369 }
1370 
1371 } // namespace
1372 
1373 namespace GrTessellator {
1374 
1375 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1376 
PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrResourceProvider * resourceProvider,SkAutoTUnref<GrVertexBuffer> & vertexBuffer,bool canMapVB,bool * isLinear)1377 int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1378                     GrResourceProvider* resourceProvider,
1379                     SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB, bool* isLinear) {
1380     int contourCnt;
1381     int sizeEstimate;
1382     get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1383     if (contourCnt <= 0) {
1384         *isLinear = true;
1385         return 0;
1386     }
1387     SkChunkAlloc alloc(sizeEstimate);
1388     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, isLinear);
1389     SkPath::FillType fillType = path.getFillType();
1390     int count = count_points(polys, fillType);
1391     if (0 == count) {
1392         return 0;
1393     }
1394 
1395     size_t size = count * sizeof(SkPoint);
1396     if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
1397         vertexBuffer.reset(resourceProvider->createVertexBuffer(
1398             size, GrResourceProvider::kStatic_BufferUsage, 0));
1399     }
1400     if (!vertexBuffer.get()) {
1401         SkDebugf("Could not allocate vertices\n");
1402         return 0;
1403     }
1404     SkPoint* verts;
1405     if (canMapVB) {
1406         verts = static_cast<SkPoint*>(vertexBuffer->map());
1407     } else {
1408         verts = new SkPoint[count];
1409     }
1410     SkPoint* end = verts;
1411     for (Poly* poly = polys; poly; poly = poly->fNext) {
1412         if (apply_fill_type(fillType, poly->fWinding)) {
1413             end = poly->emit(end);
1414         }
1415     }
1416     int actualCount = static_cast<int>(end - verts);
1417     LOG("actual count: %d\n", actualCount);
1418     SkASSERT(actualCount <= count);
1419     if (canMapVB) {
1420         vertexBuffer->unmap();
1421     } else {
1422         vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
1423         delete[] verts;
1424     }
1425 
1426     return actualCount;
1427 }
1428 
PathToVertices(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrTessellator::WindingVertex ** verts)1429 int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
1430                    GrTessellator::WindingVertex** verts) {
1431     int contourCnt;
1432     int sizeEstimate;
1433     get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstimate);
1434     if (contourCnt <= 0) {
1435         return 0;
1436     }
1437     SkChunkAlloc alloc(sizeEstimate);
1438     bool isLinear;
1439     Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc, &isLinear);
1440     SkPath::FillType fillType = path.getFillType();
1441     int count = count_points(polys, fillType);
1442     if (0 == count) {
1443         *verts = nullptr;
1444         return 0;
1445     }
1446 
1447     *verts = new GrTessellator::WindingVertex[count];
1448     GrTessellator::WindingVertex* vertsEnd = *verts;
1449     SkPoint* points = new SkPoint[count];
1450     SkPoint* pointsEnd = points;
1451     for (Poly* poly = polys; poly; poly = poly->fNext) {
1452         if (apply_fill_type(fillType, poly->fWinding)) {
1453             SkPoint* start = pointsEnd;
1454             pointsEnd = poly->emit(pointsEnd);
1455             while (start != pointsEnd) {
1456                 vertsEnd->fPos = *start;
1457                 vertsEnd->fWinding = poly->fWinding;
1458                 ++start;
1459                 ++vertsEnd;
1460             }
1461         }
1462     }
1463     int actualCount = static_cast<int>(vertsEnd - *verts);
1464     SkASSERT(actualCount <= count);
1465     SkASSERT(pointsEnd - points == actualCount);
1466     delete[] points;
1467     return actualCount;
1468 }
1469 
1470 } // namespace
1471