1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/crankshaft/ppc/lithium-codegen-ppc.h"
6
7 #include "src/base/bits.h"
8 #include "src/code-factory.h"
9 #include "src/code-stubs.h"
10 #include "src/crankshaft/hydrogen-osr.h"
11 #include "src/crankshaft/ppc/lithium-gap-resolver-ppc.h"
12 #include "src/ic/ic.h"
13 #include "src/ic/stub-cache.h"
14 #include "src/profiler/cpu-profiler.h"
15
16 namespace v8 {
17 namespace internal {
18
19
20 class SafepointGenerator final : public CallWrapper {
21 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)22 SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
23 Safepoint::DeoptMode mode)
24 : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
~SafepointGenerator()25 virtual ~SafepointGenerator() {}
26
BeforeCall(int call_size) const27 void BeforeCall(int call_size) const override {}
28
AfterCall() const29 void AfterCall() const override {
30 codegen_->RecordSafepoint(pointers_, deopt_mode_);
31 }
32
33 private:
34 LCodeGen* codegen_;
35 LPointerMap* pointers_;
36 Safepoint::DeoptMode deopt_mode_;
37 };
38
39
40 #define __ masm()->
41
GenerateCode()42 bool LCodeGen::GenerateCode() {
43 LPhase phase("Z_Code generation", chunk());
44 DCHECK(is_unused());
45 status_ = GENERATING;
46
47 // Open a frame scope to indicate that there is a frame on the stack. The
48 // NONE indicates that the scope shouldn't actually generate code to set up
49 // the frame (that is done in GeneratePrologue).
50 FrameScope frame_scope(masm_, StackFrame::NONE);
51
52 bool rc = GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
53 GenerateJumpTable() && GenerateSafepointTable();
54 if (FLAG_enable_embedded_constant_pool && !rc) {
55 masm()->AbortConstantPoolBuilding();
56 }
57 return rc;
58 }
59
60
FinishCode(Handle<Code> code)61 void LCodeGen::FinishCode(Handle<Code> code) {
62 DCHECK(is_done());
63 code->set_stack_slots(GetStackSlotCount());
64 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
65 PopulateDeoptimizationData(code);
66 }
67
68
SaveCallerDoubles()69 void LCodeGen::SaveCallerDoubles() {
70 DCHECK(info()->saves_caller_doubles());
71 DCHECK(NeedsEagerFrame());
72 Comment(";;; Save clobbered callee double registers");
73 int count = 0;
74 BitVector* doubles = chunk()->allocated_double_registers();
75 BitVector::Iterator save_iterator(doubles);
76 while (!save_iterator.Done()) {
77 __ stfd(DoubleRegister::from_code(save_iterator.Current()),
78 MemOperand(sp, count * kDoubleSize));
79 save_iterator.Advance();
80 count++;
81 }
82 }
83
84
RestoreCallerDoubles()85 void LCodeGen::RestoreCallerDoubles() {
86 DCHECK(info()->saves_caller_doubles());
87 DCHECK(NeedsEagerFrame());
88 Comment(";;; Restore clobbered callee double registers");
89 BitVector* doubles = chunk()->allocated_double_registers();
90 BitVector::Iterator save_iterator(doubles);
91 int count = 0;
92 while (!save_iterator.Done()) {
93 __ lfd(DoubleRegister::from_code(save_iterator.Current()),
94 MemOperand(sp, count * kDoubleSize));
95 save_iterator.Advance();
96 count++;
97 }
98 }
99
100
GeneratePrologue()101 bool LCodeGen::GeneratePrologue() {
102 DCHECK(is_generating());
103
104 if (info()->IsOptimizing()) {
105 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
106
107 #ifdef DEBUG
108 if (strlen(FLAG_stop_at) > 0 &&
109 info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
110 __ stop("stop_at");
111 }
112 #endif
113
114 // r4: Callee's JS function.
115 // cp: Callee's context.
116 // pp: Callee's constant pool pointer (if enabled)
117 // fp: Caller's frame pointer.
118 // lr: Caller's pc.
119 // ip: Our own function entry (required by the prologue)
120 }
121
122 int prologue_offset = masm_->pc_offset();
123
124 if (prologue_offset) {
125 // Prologue logic requires it's starting address in ip and the
126 // corresponding offset from the function entry.
127 prologue_offset += Instruction::kInstrSize;
128 __ addi(ip, ip, Operand(prologue_offset));
129 }
130 info()->set_prologue_offset(prologue_offset);
131 if (NeedsEagerFrame()) {
132 if (info()->IsStub()) {
133 __ StubPrologue(ip, prologue_offset);
134 } else {
135 __ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset);
136 }
137 frame_is_built_ = true;
138 }
139
140 // Reserve space for the stack slots needed by the code.
141 int slots = GetStackSlotCount();
142 if (slots > 0) {
143 __ subi(sp, sp, Operand(slots * kPointerSize));
144 if (FLAG_debug_code) {
145 __ Push(r3, r4);
146 __ li(r0, Operand(slots));
147 __ mtctr(r0);
148 __ addi(r3, sp, Operand((slots + 2) * kPointerSize));
149 __ mov(r4, Operand(kSlotsZapValue));
150 Label loop;
151 __ bind(&loop);
152 __ StorePU(r4, MemOperand(r3, -kPointerSize));
153 __ bdnz(&loop);
154 __ Pop(r3, r4);
155 }
156 }
157
158 if (info()->saves_caller_doubles()) {
159 SaveCallerDoubles();
160 }
161 return !is_aborted();
162 }
163
164
DoPrologue(LPrologue * instr)165 void LCodeGen::DoPrologue(LPrologue* instr) {
166 Comment(";;; Prologue begin");
167
168 // Possibly allocate a local context.
169 if (info()->scope()->num_heap_slots() > 0) {
170 Comment(";;; Allocate local context");
171 bool need_write_barrier = true;
172 // Argument to NewContext is the function, which is in r4.
173 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
174 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
175 if (info()->scope()->is_script_scope()) {
176 __ push(r4);
177 __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
178 __ CallRuntime(Runtime::kNewScriptContext);
179 deopt_mode = Safepoint::kLazyDeopt;
180 } else if (slots <= FastNewContextStub::kMaximumSlots) {
181 FastNewContextStub stub(isolate(), slots);
182 __ CallStub(&stub);
183 // Result of FastNewContextStub is always in new space.
184 need_write_barrier = false;
185 } else {
186 __ push(r4);
187 __ CallRuntime(Runtime::kNewFunctionContext);
188 }
189 RecordSafepoint(deopt_mode);
190
191 // Context is returned in both r3 and cp. It replaces the context
192 // passed to us. It's saved in the stack and kept live in cp.
193 __ mr(cp, r3);
194 __ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
195 // Copy any necessary parameters into the context.
196 int num_parameters = scope()->num_parameters();
197 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
198 for (int i = first_parameter; i < num_parameters; i++) {
199 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
200 if (var->IsContextSlot()) {
201 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
202 (num_parameters - 1 - i) * kPointerSize;
203 // Load parameter from stack.
204 __ LoadP(r3, MemOperand(fp, parameter_offset));
205 // Store it in the context.
206 MemOperand target = ContextMemOperand(cp, var->index());
207 __ StoreP(r3, target, r0);
208 // Update the write barrier. This clobbers r6 and r3.
209 if (need_write_barrier) {
210 __ RecordWriteContextSlot(cp, target.offset(), r3, r6,
211 GetLinkRegisterState(), kSaveFPRegs);
212 } else if (FLAG_debug_code) {
213 Label done;
214 __ JumpIfInNewSpace(cp, r3, &done);
215 __ Abort(kExpectedNewSpaceObject);
216 __ bind(&done);
217 }
218 }
219 }
220 Comment(";;; End allocate local context");
221 }
222
223 Comment(";;; Prologue end");
224 }
225
226
GenerateOsrPrologue()227 void LCodeGen::GenerateOsrPrologue() {
228 // Generate the OSR entry prologue at the first unknown OSR value, or if there
229 // are none, at the OSR entrypoint instruction.
230 if (osr_pc_offset_ >= 0) return;
231
232 osr_pc_offset_ = masm()->pc_offset();
233
234 // Adjust the frame size, subsuming the unoptimized frame into the
235 // optimized frame.
236 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
237 DCHECK(slots >= 0);
238 __ subi(sp, sp, Operand(slots * kPointerSize));
239 }
240
241
GenerateBodyInstructionPre(LInstruction * instr)242 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
243 if (instr->IsCall()) {
244 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
245 }
246 if (!instr->IsLazyBailout() && !instr->IsGap()) {
247 safepoints_.BumpLastLazySafepointIndex();
248 }
249 }
250
251
GenerateDeferredCode()252 bool LCodeGen::GenerateDeferredCode() {
253 DCHECK(is_generating());
254 if (deferred_.length() > 0) {
255 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
256 LDeferredCode* code = deferred_[i];
257
258 HValue* value =
259 instructions_->at(code->instruction_index())->hydrogen_value();
260 RecordAndWritePosition(
261 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
262
263 Comment(
264 ";;; <@%d,#%d> "
265 "-------------------- Deferred %s --------------------",
266 code->instruction_index(), code->instr()->hydrogen_value()->id(),
267 code->instr()->Mnemonic());
268 __ bind(code->entry());
269 if (NeedsDeferredFrame()) {
270 Comment(";;; Build frame");
271 DCHECK(!frame_is_built_);
272 DCHECK(info()->IsStub());
273 frame_is_built_ = true;
274 __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
275 __ PushFixedFrame(scratch0());
276 __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
277 Comment(";;; Deferred code");
278 }
279 code->Generate();
280 if (NeedsDeferredFrame()) {
281 Comment(";;; Destroy frame");
282 DCHECK(frame_is_built_);
283 __ PopFixedFrame(ip);
284 frame_is_built_ = false;
285 }
286 __ b(code->exit());
287 }
288 }
289
290 return !is_aborted();
291 }
292
293
GenerateJumpTable()294 bool LCodeGen::GenerateJumpTable() {
295 // Check that the jump table is accessible from everywhere in the function
296 // code, i.e. that offsets to the table can be encoded in the 24bit signed
297 // immediate of a branch instruction.
298 // To simplify we consider the code size from the first instruction to the
299 // end of the jump table. We also don't consider the pc load delta.
300 // Each entry in the jump table generates one instruction and inlines one
301 // 32bit data after it.
302 if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
303 jump_table_.length() * 7)) {
304 Abort(kGeneratedCodeIsTooLarge);
305 }
306
307 if (jump_table_.length() > 0) {
308 Label needs_frame, call_deopt_entry;
309
310 Comment(";;; -------------------- Jump table --------------------");
311 Address base = jump_table_[0].address;
312
313 Register entry_offset = scratch0();
314
315 int length = jump_table_.length();
316 for (int i = 0; i < length; i++) {
317 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
318 __ bind(&table_entry->label);
319
320 DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
321 Address entry = table_entry->address;
322 DeoptComment(table_entry->deopt_info);
323
324 // Second-level deopt table entries are contiguous and small, so instead
325 // of loading the full, absolute address of each one, load an immediate
326 // offset which will be added to the base address later.
327 __ mov(entry_offset, Operand(entry - base));
328
329 if (table_entry->needs_frame) {
330 DCHECK(!info()->saves_caller_doubles());
331 Comment(";;; call deopt with frame");
332 __ PushFixedFrame();
333 __ b(&needs_frame, SetLK);
334 } else {
335 __ b(&call_deopt_entry, SetLK);
336 }
337 info()->LogDeoptCallPosition(masm()->pc_offset(),
338 table_entry->deopt_info.inlining_id);
339 }
340
341 if (needs_frame.is_linked()) {
342 __ bind(&needs_frame);
343 // This variant of deopt can only be used with stubs. Since we don't
344 // have a function pointer to install in the stack frame that we're
345 // building, install a special marker there instead.
346 DCHECK(info()->IsStub());
347 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB));
348 __ push(ip);
349 __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
350 }
351
352 Comment(";;; call deopt");
353 __ bind(&call_deopt_entry);
354
355 if (info()->saves_caller_doubles()) {
356 DCHECK(info()->IsStub());
357 RestoreCallerDoubles();
358 }
359
360 // Add the base address to the offset previously loaded in entry_offset.
361 __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
362 __ add(ip, entry_offset, ip);
363 __ Jump(ip);
364 }
365
366 // The deoptimization jump table is the last part of the instruction
367 // sequence. Mark the generated code as done unless we bailed out.
368 if (!is_aborted()) status_ = DONE;
369 return !is_aborted();
370 }
371
372
GenerateSafepointTable()373 bool LCodeGen::GenerateSafepointTable() {
374 DCHECK(is_done());
375 safepoints_.Emit(masm(), GetStackSlotCount());
376 return !is_aborted();
377 }
378
379
ToRegister(int code) const380 Register LCodeGen::ToRegister(int code) const {
381 return Register::from_code(code);
382 }
383
384
ToDoubleRegister(int code) const385 DoubleRegister LCodeGen::ToDoubleRegister(int code) const {
386 return DoubleRegister::from_code(code);
387 }
388
389
ToRegister(LOperand * op) const390 Register LCodeGen::ToRegister(LOperand* op) const {
391 DCHECK(op->IsRegister());
392 return ToRegister(op->index());
393 }
394
395
EmitLoadRegister(LOperand * op,Register scratch)396 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
397 if (op->IsRegister()) {
398 return ToRegister(op->index());
399 } else if (op->IsConstantOperand()) {
400 LConstantOperand* const_op = LConstantOperand::cast(op);
401 HConstant* constant = chunk_->LookupConstant(const_op);
402 Handle<Object> literal = constant->handle(isolate());
403 Representation r = chunk_->LookupLiteralRepresentation(const_op);
404 if (r.IsInteger32()) {
405 AllowDeferredHandleDereference get_number;
406 DCHECK(literal->IsNumber());
407 __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
408 } else if (r.IsDouble()) {
409 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
410 } else {
411 DCHECK(r.IsSmiOrTagged());
412 __ Move(scratch, literal);
413 }
414 return scratch;
415 } else if (op->IsStackSlot()) {
416 __ LoadP(scratch, ToMemOperand(op));
417 return scratch;
418 }
419 UNREACHABLE();
420 return scratch;
421 }
422
423
EmitLoadIntegerConstant(LConstantOperand * const_op,Register dst)424 void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
425 Register dst) {
426 DCHECK(IsInteger32(const_op));
427 HConstant* constant = chunk_->LookupConstant(const_op);
428 int32_t value = constant->Integer32Value();
429 if (IsSmi(const_op)) {
430 __ LoadSmiLiteral(dst, Smi::FromInt(value));
431 } else {
432 __ LoadIntLiteral(dst, value);
433 }
434 }
435
436
ToDoubleRegister(LOperand * op) const437 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
438 DCHECK(op->IsDoubleRegister());
439 return ToDoubleRegister(op->index());
440 }
441
442
ToHandle(LConstantOperand * op) const443 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
444 HConstant* constant = chunk_->LookupConstant(op);
445 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
446 return constant->handle(isolate());
447 }
448
449
IsInteger32(LConstantOperand * op) const450 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
451 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
452 }
453
454
IsSmi(LConstantOperand * op) const455 bool LCodeGen::IsSmi(LConstantOperand* op) const {
456 return chunk_->LookupLiteralRepresentation(op).IsSmi();
457 }
458
459
ToInteger32(LConstantOperand * op) const460 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
461 return ToRepresentation(op, Representation::Integer32());
462 }
463
464
ToRepresentation(LConstantOperand * op,const Representation & r) const465 intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
466 const Representation& r) const {
467 HConstant* constant = chunk_->LookupConstant(op);
468 int32_t value = constant->Integer32Value();
469 if (r.IsInteger32()) return value;
470 DCHECK(r.IsSmiOrTagged());
471 return reinterpret_cast<intptr_t>(Smi::FromInt(value));
472 }
473
474
ToSmi(LConstantOperand * op) const475 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
476 HConstant* constant = chunk_->LookupConstant(op);
477 return Smi::FromInt(constant->Integer32Value());
478 }
479
480
ToDouble(LConstantOperand * op) const481 double LCodeGen::ToDouble(LConstantOperand* op) const {
482 HConstant* constant = chunk_->LookupConstant(op);
483 DCHECK(constant->HasDoubleValue());
484 return constant->DoubleValue();
485 }
486
487
ToOperand(LOperand * op)488 Operand LCodeGen::ToOperand(LOperand* op) {
489 if (op->IsConstantOperand()) {
490 LConstantOperand* const_op = LConstantOperand::cast(op);
491 HConstant* constant = chunk()->LookupConstant(const_op);
492 Representation r = chunk_->LookupLiteralRepresentation(const_op);
493 if (r.IsSmi()) {
494 DCHECK(constant->HasSmiValue());
495 return Operand(Smi::FromInt(constant->Integer32Value()));
496 } else if (r.IsInteger32()) {
497 DCHECK(constant->HasInteger32Value());
498 return Operand(constant->Integer32Value());
499 } else if (r.IsDouble()) {
500 Abort(kToOperandUnsupportedDoubleImmediate);
501 }
502 DCHECK(r.IsTagged());
503 return Operand(constant->handle(isolate()));
504 } else if (op->IsRegister()) {
505 return Operand(ToRegister(op));
506 } else if (op->IsDoubleRegister()) {
507 Abort(kToOperandIsDoubleRegisterUnimplemented);
508 return Operand::Zero();
509 }
510 // Stack slots not implemented, use ToMemOperand instead.
511 UNREACHABLE();
512 return Operand::Zero();
513 }
514
515
ArgumentsOffsetWithoutFrame(int index)516 static int ArgumentsOffsetWithoutFrame(int index) {
517 DCHECK(index < 0);
518 return -(index + 1) * kPointerSize;
519 }
520
521
ToMemOperand(LOperand * op) const522 MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
523 DCHECK(!op->IsRegister());
524 DCHECK(!op->IsDoubleRegister());
525 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
526 if (NeedsEagerFrame()) {
527 return MemOperand(fp, StackSlotOffset(op->index()));
528 } else {
529 // Retrieve parameter without eager stack-frame relative to the
530 // stack-pointer.
531 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
532 }
533 }
534
535
ToHighMemOperand(LOperand * op) const536 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
537 DCHECK(op->IsDoubleStackSlot());
538 if (NeedsEagerFrame()) {
539 return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
540 } else {
541 // Retrieve parameter without eager stack-frame relative to the
542 // stack-pointer.
543 return MemOperand(sp,
544 ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
545 }
546 }
547
548
WriteTranslation(LEnvironment * environment,Translation * translation)549 void LCodeGen::WriteTranslation(LEnvironment* environment,
550 Translation* translation) {
551 if (environment == NULL) return;
552
553 // The translation includes one command per value in the environment.
554 int translation_size = environment->translation_size();
555
556 WriteTranslation(environment->outer(), translation);
557 WriteTranslationFrame(environment, translation);
558
559 int object_index = 0;
560 int dematerialized_index = 0;
561 for (int i = 0; i < translation_size; ++i) {
562 LOperand* value = environment->values()->at(i);
563 AddToTranslation(
564 environment, translation, value, environment->HasTaggedValueAt(i),
565 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
566 }
567 }
568
569
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)570 void LCodeGen::AddToTranslation(LEnvironment* environment,
571 Translation* translation, LOperand* op,
572 bool is_tagged, bool is_uint32,
573 int* object_index_pointer,
574 int* dematerialized_index_pointer) {
575 if (op == LEnvironment::materialization_marker()) {
576 int object_index = (*object_index_pointer)++;
577 if (environment->ObjectIsDuplicateAt(object_index)) {
578 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
579 translation->DuplicateObject(dupe_of);
580 return;
581 }
582 int object_length = environment->ObjectLengthAt(object_index);
583 if (environment->ObjectIsArgumentsAt(object_index)) {
584 translation->BeginArgumentsObject(object_length);
585 } else {
586 translation->BeginCapturedObject(object_length);
587 }
588 int dematerialized_index = *dematerialized_index_pointer;
589 int env_offset = environment->translation_size() + dematerialized_index;
590 *dematerialized_index_pointer += object_length;
591 for (int i = 0; i < object_length; ++i) {
592 LOperand* value = environment->values()->at(env_offset + i);
593 AddToTranslation(environment, translation, value,
594 environment->HasTaggedValueAt(env_offset + i),
595 environment->HasUint32ValueAt(env_offset + i),
596 object_index_pointer, dematerialized_index_pointer);
597 }
598 return;
599 }
600
601 if (op->IsStackSlot()) {
602 int index = op->index();
603 if (index >= 0) {
604 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
605 }
606 if (is_tagged) {
607 translation->StoreStackSlot(index);
608 } else if (is_uint32) {
609 translation->StoreUint32StackSlot(index);
610 } else {
611 translation->StoreInt32StackSlot(index);
612 }
613 } else if (op->IsDoubleStackSlot()) {
614 int index = op->index();
615 if (index >= 0) {
616 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
617 }
618 translation->StoreDoubleStackSlot(index);
619 } else if (op->IsRegister()) {
620 Register reg = ToRegister(op);
621 if (is_tagged) {
622 translation->StoreRegister(reg);
623 } else if (is_uint32) {
624 translation->StoreUint32Register(reg);
625 } else {
626 translation->StoreInt32Register(reg);
627 }
628 } else if (op->IsDoubleRegister()) {
629 DoubleRegister reg = ToDoubleRegister(op);
630 translation->StoreDoubleRegister(reg);
631 } else if (op->IsConstantOperand()) {
632 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
633 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
634 translation->StoreLiteral(src_index);
635 } else {
636 UNREACHABLE();
637 }
638 }
639
640
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)641 void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
642 LInstruction* instr) {
643 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
644 }
645
646
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)647 void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
648 LInstruction* instr,
649 SafepointMode safepoint_mode) {
650 DCHECK(instr != NULL);
651 __ Call(code, mode);
652 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
653
654 // Signal that we don't inline smi code before these stubs in the
655 // optimizing code generator.
656 if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
657 __ nop();
658 }
659 }
660
661
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)662 void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
663 LInstruction* instr, SaveFPRegsMode save_doubles) {
664 DCHECK(instr != NULL);
665
666 __ CallRuntime(function, num_arguments, save_doubles);
667
668 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
669 }
670
671
LoadContextFromDeferred(LOperand * context)672 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
673 if (context->IsRegister()) {
674 __ Move(cp, ToRegister(context));
675 } else if (context->IsStackSlot()) {
676 __ LoadP(cp, ToMemOperand(context));
677 } else if (context->IsConstantOperand()) {
678 HConstant* constant =
679 chunk_->LookupConstant(LConstantOperand::cast(context));
680 __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
681 } else {
682 UNREACHABLE();
683 }
684 }
685
686
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)687 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
688 LInstruction* instr, LOperand* context) {
689 LoadContextFromDeferred(context);
690 __ CallRuntimeSaveDoubles(id);
691 RecordSafepointWithRegisters(instr->pointer_map(), argc,
692 Safepoint::kNoLazyDeopt);
693 }
694
695
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)696 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
697 Safepoint::DeoptMode mode) {
698 environment->set_has_been_used();
699 if (!environment->HasBeenRegistered()) {
700 // Physical stack frame layout:
701 // -x ............. -4 0 ..................................... y
702 // [incoming arguments] [spill slots] [pushed outgoing arguments]
703
704 // Layout of the environment:
705 // 0 ..................................................... size-1
706 // [parameters] [locals] [expression stack including arguments]
707
708 // Layout of the translation:
709 // 0 ........................................................ size - 1 + 4
710 // [expression stack including arguments] [locals] [4 words] [parameters]
711 // |>------------ translation_size ------------<|
712
713 int frame_count = 0;
714 int jsframe_count = 0;
715 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
716 ++frame_count;
717 if (e->frame_type() == JS_FUNCTION) {
718 ++jsframe_count;
719 }
720 }
721 Translation translation(&translations_, frame_count, jsframe_count, zone());
722 WriteTranslation(environment, &translation);
723 int deoptimization_index = deoptimizations_.length();
724 int pc_offset = masm()->pc_offset();
725 environment->Register(deoptimization_index, translation.index(),
726 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
727 deoptimizations_.Add(environment, zone());
728 }
729 }
730
731
DeoptimizeIf(Condition cond,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,Deoptimizer::BailoutType bailout_type,CRegister cr)732 void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
733 Deoptimizer::DeoptReason deopt_reason,
734 Deoptimizer::BailoutType bailout_type,
735 CRegister cr) {
736 LEnvironment* environment = instr->environment();
737 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
738 DCHECK(environment->HasBeenRegistered());
739 int id = environment->deoptimization_index();
740 Address entry =
741 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
742 if (entry == NULL) {
743 Abort(kBailoutWasNotPrepared);
744 return;
745 }
746
747 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
748 CRegister alt_cr = cr6;
749 Register scratch = scratch0();
750 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
751 Label no_deopt;
752 DCHECK(!alt_cr.is(cr));
753 __ Push(r4, scratch);
754 __ mov(scratch, Operand(count));
755 __ lwz(r4, MemOperand(scratch));
756 __ subi(r4, r4, Operand(1));
757 __ cmpi(r4, Operand::Zero(), alt_cr);
758 __ bne(&no_deopt, alt_cr);
759 __ li(r4, Operand(FLAG_deopt_every_n_times));
760 __ stw(r4, MemOperand(scratch));
761 __ Pop(r4, scratch);
762
763 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
764 __ bind(&no_deopt);
765 __ stw(r4, MemOperand(scratch));
766 __ Pop(r4, scratch);
767 }
768
769 if (info()->ShouldTrapOnDeopt()) {
770 __ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
771 }
772
773 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
774
775 DCHECK(info()->IsStub() || frame_is_built_);
776 // Go through jump table if we need to handle condition, build frame, or
777 // restore caller doubles.
778 if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
779 DeoptComment(deopt_info);
780 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
781 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
782 } else {
783 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
784 !frame_is_built_);
785 // We often have several deopts to the same entry, reuse the last
786 // jump entry if this is the case.
787 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
788 jump_table_.is_empty() ||
789 !table_entry.IsEquivalentTo(jump_table_.last())) {
790 jump_table_.Add(table_entry, zone());
791 }
792 __ b(cond, &jump_table_.last().label, cr);
793 }
794 }
795
796
DeoptimizeIf(Condition condition,LInstruction * instr,Deoptimizer::DeoptReason deopt_reason,CRegister cr)797 void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
798 Deoptimizer::DeoptReason deopt_reason,
799 CRegister cr) {
800 Deoptimizer::BailoutType bailout_type =
801 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
802 DeoptimizeIf(condition, instr, deopt_reason, bailout_type, cr);
803 }
804
805
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)806 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
807 SafepointMode safepoint_mode) {
808 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
809 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
810 } else {
811 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
812 RecordSafepointWithRegisters(instr->pointer_map(), 0,
813 Safepoint::kLazyDeopt);
814 }
815 }
816
817
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)818 void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
819 int arguments, Safepoint::DeoptMode deopt_mode) {
820 DCHECK(expected_safepoint_kind_ == kind);
821
822 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
823 Safepoint safepoint =
824 safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
825 for (int i = 0; i < operands->length(); i++) {
826 LOperand* pointer = operands->at(i);
827 if (pointer->IsStackSlot()) {
828 safepoint.DefinePointerSlot(pointer->index(), zone());
829 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
830 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
831 }
832 }
833 }
834
835
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)836 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
837 Safepoint::DeoptMode deopt_mode) {
838 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
839 }
840
841
RecordSafepoint(Safepoint::DeoptMode deopt_mode)842 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
843 LPointerMap empty_pointers(zone());
844 RecordSafepoint(&empty_pointers, deopt_mode);
845 }
846
847
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)848 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
849 int arguments,
850 Safepoint::DeoptMode deopt_mode) {
851 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
852 }
853
854
RecordAndWritePosition(int position)855 void LCodeGen::RecordAndWritePosition(int position) {
856 if (position == RelocInfo::kNoPosition) return;
857 masm()->positions_recorder()->RecordPosition(position);
858 masm()->positions_recorder()->WriteRecordedPositions();
859 }
860
861
LabelType(LLabel * label)862 static const char* LabelType(LLabel* label) {
863 if (label->is_loop_header()) return " (loop header)";
864 if (label->is_osr_entry()) return " (OSR entry)";
865 return "";
866 }
867
868
DoLabel(LLabel * label)869 void LCodeGen::DoLabel(LLabel* label) {
870 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
871 current_instruction_, label->hydrogen_value()->id(),
872 label->block_id(), LabelType(label));
873 __ bind(label->label());
874 current_block_ = label->block_id();
875 DoGap(label);
876 }
877
878
DoParallelMove(LParallelMove * move)879 void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }
880
881
DoGap(LGap * gap)882 void LCodeGen::DoGap(LGap* gap) {
883 for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
884 i++) {
885 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
886 LParallelMove* move = gap->GetParallelMove(inner_pos);
887 if (move != NULL) DoParallelMove(move);
888 }
889 }
890
891
DoInstructionGap(LInstructionGap * instr)892 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }
893
894
DoParameter(LParameter * instr)895 void LCodeGen::DoParameter(LParameter* instr) {
896 // Nothing to do.
897 }
898
899
DoCallStub(LCallStub * instr)900 void LCodeGen::DoCallStub(LCallStub* instr) {
901 DCHECK(ToRegister(instr->context()).is(cp));
902 DCHECK(ToRegister(instr->result()).is(r3));
903 switch (instr->hydrogen()->major_key()) {
904 case CodeStub::RegExpExec: {
905 RegExpExecStub stub(isolate());
906 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
907 break;
908 }
909 case CodeStub::SubString: {
910 SubStringStub stub(isolate());
911 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
912 break;
913 }
914 default:
915 UNREACHABLE();
916 }
917 }
918
919
DoUnknownOSRValue(LUnknownOSRValue * instr)920 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
921 GenerateOsrPrologue();
922 }
923
924
DoModByPowerOf2I(LModByPowerOf2I * instr)925 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
926 Register dividend = ToRegister(instr->dividend());
927 int32_t divisor = instr->divisor();
928 DCHECK(dividend.is(ToRegister(instr->result())));
929
930 // Theoretically, a variation of the branch-free code for integer division by
931 // a power of 2 (calculating the remainder via an additional multiplication
932 // (which gets simplified to an 'and') and subtraction) should be faster, and
933 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
934 // indicate that positive dividends are heavily favored, so the branching
935 // version performs better.
936 HMod* hmod = instr->hydrogen();
937 int32_t shift = WhichPowerOf2Abs(divisor);
938 Label dividend_is_not_negative, done;
939 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
940 __ cmpwi(dividend, Operand::Zero());
941 __ bge(÷nd_is_not_negative);
942 if (shift) {
943 // Note that this is correct even for kMinInt operands.
944 __ neg(dividend, dividend);
945 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
946 __ neg(dividend, dividend, LeaveOE, SetRC);
947 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
948 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, cr0);
949 }
950 } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
951 __ li(dividend, Operand::Zero());
952 } else {
953 DeoptimizeIf(al, instr, Deoptimizer::kMinusZero);
954 }
955 __ b(&done);
956 }
957
958 __ bind(÷nd_is_not_negative);
959 if (shift) {
960 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
961 } else {
962 __ li(dividend, Operand::Zero());
963 }
964 __ bind(&done);
965 }
966
967
DoModByConstI(LModByConstI * instr)968 void LCodeGen::DoModByConstI(LModByConstI* instr) {
969 Register dividend = ToRegister(instr->dividend());
970 int32_t divisor = instr->divisor();
971 Register result = ToRegister(instr->result());
972 DCHECK(!dividend.is(result));
973
974 if (divisor == 0) {
975 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
976 return;
977 }
978
979 __ TruncatingDiv(result, dividend, Abs(divisor));
980 __ mov(ip, Operand(Abs(divisor)));
981 __ mullw(result, result, ip);
982 __ sub(result, dividend, result, LeaveOE, SetRC);
983
984 // Check for negative zero.
985 HMod* hmod = instr->hydrogen();
986 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
987 Label remainder_not_zero;
988 __ bne(&remainder_not_zero, cr0);
989 __ cmpwi(dividend, Operand::Zero());
990 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
991 __ bind(&remainder_not_zero);
992 }
993 }
994
995
DoModI(LModI * instr)996 void LCodeGen::DoModI(LModI* instr) {
997 HMod* hmod = instr->hydrogen();
998 Register left_reg = ToRegister(instr->left());
999 Register right_reg = ToRegister(instr->right());
1000 Register result_reg = ToRegister(instr->result());
1001 Register scratch = scratch0();
1002 bool can_overflow = hmod->CheckFlag(HValue::kCanOverflow);
1003 Label done;
1004
1005 if (can_overflow) {
1006 __ li(r0, Operand::Zero()); // clear xer
1007 __ mtxer(r0);
1008 }
1009
1010 __ divw(scratch, left_reg, right_reg, SetOE, SetRC);
1011
1012 // Check for x % 0.
1013 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1014 __ cmpwi(right_reg, Operand::Zero());
1015 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1016 }
1017
1018 // Check for kMinInt % -1, divw will return undefined, which is not what we
1019 // want. We have to deopt if we care about -0, because we can't return that.
1020 if (can_overflow) {
1021 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1022 DeoptimizeIf(overflow, instr, Deoptimizer::kMinusZero, cr0);
1023 } else {
1024 if (CpuFeatures::IsSupported(ISELECT)) {
1025 __ isel(overflow, result_reg, r0, result_reg, cr0);
1026 __ boverflow(&done, cr0);
1027 } else {
1028 Label no_overflow_possible;
1029 __ bnooverflow(&no_overflow_possible, cr0);
1030 __ li(result_reg, Operand::Zero());
1031 __ b(&done);
1032 __ bind(&no_overflow_possible);
1033 }
1034 }
1035 }
1036
1037 __ mullw(scratch, right_reg, scratch);
1038 __ sub(result_reg, left_reg, scratch, LeaveOE, SetRC);
1039
1040 // If we care about -0, test if the dividend is <0 and the result is 0.
1041 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1042 __ bne(&done, cr0);
1043 __ cmpwi(left_reg, Operand::Zero());
1044 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1045 }
1046
1047 __ bind(&done);
1048 }
1049
1050
DoDivByPowerOf2I(LDivByPowerOf2I * instr)1051 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1052 Register dividend = ToRegister(instr->dividend());
1053 int32_t divisor = instr->divisor();
1054 Register result = ToRegister(instr->result());
1055 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1056 DCHECK(!result.is(dividend));
1057
1058 // Check for (0 / -x) that will produce negative zero.
1059 HDiv* hdiv = instr->hydrogen();
1060 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1061 __ cmpwi(dividend, Operand::Zero());
1062 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1063 }
1064 // Check for (kMinInt / -1).
1065 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1066 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
1067 __ cmpw(dividend, r0);
1068 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1069 }
1070
1071 int32_t shift = WhichPowerOf2Abs(divisor);
1072
1073 // Deoptimize if remainder will not be 0.
1074 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
1075 __ TestBitRange(dividend, shift - 1, 0, r0);
1076 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, cr0);
1077 }
1078
1079 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1080 __ neg(result, dividend);
1081 return;
1082 }
1083 if (shift == 0) {
1084 __ mr(result, dividend);
1085 } else {
1086 if (shift == 1) {
1087 __ srwi(result, dividend, Operand(31));
1088 } else {
1089 __ srawi(result, dividend, 31);
1090 __ srwi(result, result, Operand(32 - shift));
1091 }
1092 __ add(result, dividend, result);
1093 __ srawi(result, result, shift);
1094 }
1095 if (divisor < 0) __ neg(result, result);
1096 }
1097
1098
DoDivByConstI(LDivByConstI * instr)1099 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1100 Register dividend = ToRegister(instr->dividend());
1101 int32_t divisor = instr->divisor();
1102 Register result = ToRegister(instr->result());
1103 DCHECK(!dividend.is(result));
1104
1105 if (divisor == 0) {
1106 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1107 return;
1108 }
1109
1110 // Check for (0 / -x) that will produce negative zero.
1111 HDiv* hdiv = instr->hydrogen();
1112 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1113 __ cmpwi(dividend, Operand::Zero());
1114 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1115 }
1116
1117 __ TruncatingDiv(result, dividend, Abs(divisor));
1118 if (divisor < 0) __ neg(result, result);
1119
1120 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1121 Register scratch = scratch0();
1122 __ mov(ip, Operand(divisor));
1123 __ mullw(scratch, result, ip);
1124 __ cmpw(scratch, dividend);
1125 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
1126 }
1127 }
1128
1129
1130 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)1131 void LCodeGen::DoDivI(LDivI* instr) {
1132 HBinaryOperation* hdiv = instr->hydrogen();
1133 const Register dividend = ToRegister(instr->dividend());
1134 const Register divisor = ToRegister(instr->divisor());
1135 Register result = ToRegister(instr->result());
1136 bool can_overflow = hdiv->CheckFlag(HValue::kCanOverflow);
1137
1138 DCHECK(!dividend.is(result));
1139 DCHECK(!divisor.is(result));
1140
1141 if (can_overflow) {
1142 __ li(r0, Operand::Zero()); // clear xer
1143 __ mtxer(r0);
1144 }
1145
1146 __ divw(result, dividend, divisor, SetOE, SetRC);
1147
1148 // Check for x / 0.
1149 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1150 __ cmpwi(divisor, Operand::Zero());
1151 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1152 }
1153
1154 // Check for (0 / -x) that will produce negative zero.
1155 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1156 Label dividend_not_zero;
1157 __ cmpwi(dividend, Operand::Zero());
1158 __ bne(÷nd_not_zero);
1159 __ cmpwi(divisor, Operand::Zero());
1160 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1161 __ bind(÷nd_not_zero);
1162 }
1163
1164 // Check for (kMinInt / -1).
1165 if (can_overflow) {
1166 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1167 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
1168 } else {
1169 // When truncating, we want kMinInt / -1 = kMinInt.
1170 if (CpuFeatures::IsSupported(ISELECT)) {
1171 __ isel(overflow, result, dividend, result, cr0);
1172 } else {
1173 Label no_overflow_possible;
1174 __ bnooverflow(&no_overflow_possible, cr0);
1175 __ mr(result, dividend);
1176 __ bind(&no_overflow_possible);
1177 }
1178 }
1179 }
1180
1181 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1182 // Deoptimize if remainder is not 0.
1183 Register scratch = scratch0();
1184 __ mullw(scratch, divisor, result);
1185 __ cmpw(dividend, scratch);
1186 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
1187 }
1188 }
1189
1190
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)1191 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1192 HBinaryOperation* hdiv = instr->hydrogen();
1193 Register dividend = ToRegister(instr->dividend());
1194 Register result = ToRegister(instr->result());
1195 int32_t divisor = instr->divisor();
1196 bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt);
1197
1198 // If the divisor is positive, things are easy: There can be no deopts and we
1199 // can simply do an arithmetic right shift.
1200 int32_t shift = WhichPowerOf2Abs(divisor);
1201 if (divisor > 0) {
1202 if (shift || !result.is(dividend)) {
1203 __ srawi(result, dividend, shift);
1204 }
1205 return;
1206 }
1207
1208 // If the divisor is negative, we have to negate and handle edge cases.
1209 OEBit oe = LeaveOE;
1210 #if V8_TARGET_ARCH_PPC64
1211 if (divisor == -1 && can_overflow) {
1212 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
1213 __ cmpw(dividend, r0);
1214 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
1215 }
1216 #else
1217 if (can_overflow) {
1218 __ li(r0, Operand::Zero()); // clear xer
1219 __ mtxer(r0);
1220 oe = SetOE;
1221 }
1222 #endif
1223
1224 __ neg(result, dividend, oe, SetRC);
1225 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1226 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, cr0);
1227 }
1228
1229 // If the negation could not overflow, simply shifting is OK.
1230 #if !V8_TARGET_ARCH_PPC64
1231 if (!can_overflow) {
1232 #endif
1233 if (shift) {
1234 __ ShiftRightArithImm(result, result, shift);
1235 }
1236 return;
1237 #if !V8_TARGET_ARCH_PPC64
1238 }
1239
1240 // Dividing by -1 is basically negation, unless we overflow.
1241 if (divisor == -1) {
1242 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
1243 return;
1244 }
1245
1246 Label overflow, done;
1247 __ boverflow(&overflow, cr0);
1248 __ srawi(result, result, shift);
1249 __ b(&done);
1250 __ bind(&overflow);
1251 __ mov(result, Operand(kMinInt / divisor));
1252 __ bind(&done);
1253 #endif
1254 }
1255
1256
DoFlooringDivByConstI(LFlooringDivByConstI * instr)1257 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1258 Register dividend = ToRegister(instr->dividend());
1259 int32_t divisor = instr->divisor();
1260 Register result = ToRegister(instr->result());
1261 DCHECK(!dividend.is(result));
1262
1263 if (divisor == 0) {
1264 DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
1265 return;
1266 }
1267
1268 // Check for (0 / -x) that will produce negative zero.
1269 HMathFloorOfDiv* hdiv = instr->hydrogen();
1270 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1271 __ cmpwi(dividend, Operand::Zero());
1272 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1273 }
1274
1275 // Easy case: We need no dynamic check for the dividend and the flooring
1276 // division is the same as the truncating division.
1277 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1278 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1279 __ TruncatingDiv(result, dividend, Abs(divisor));
1280 if (divisor < 0) __ neg(result, result);
1281 return;
1282 }
1283
1284 // In the general case we may need to adjust before and after the truncating
1285 // division to get a flooring division.
1286 Register temp = ToRegister(instr->temp());
1287 DCHECK(!temp.is(dividend) && !temp.is(result));
1288 Label needs_adjustment, done;
1289 __ cmpwi(dividend, Operand::Zero());
1290 __ b(divisor > 0 ? lt : gt, &needs_adjustment);
1291 __ TruncatingDiv(result, dividend, Abs(divisor));
1292 if (divisor < 0) __ neg(result, result);
1293 __ b(&done);
1294 __ bind(&needs_adjustment);
1295 __ addi(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1296 __ TruncatingDiv(result, temp, Abs(divisor));
1297 if (divisor < 0) __ neg(result, result);
1298 __ subi(result, result, Operand(1));
1299 __ bind(&done);
1300 }
1301
1302
1303 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)1304 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1305 HBinaryOperation* hdiv = instr->hydrogen();
1306 const Register dividend = ToRegister(instr->dividend());
1307 const Register divisor = ToRegister(instr->divisor());
1308 Register result = ToRegister(instr->result());
1309 bool can_overflow = hdiv->CheckFlag(HValue::kCanOverflow);
1310
1311 DCHECK(!dividend.is(result));
1312 DCHECK(!divisor.is(result));
1313
1314 if (can_overflow) {
1315 __ li(r0, Operand::Zero()); // clear xer
1316 __ mtxer(r0);
1317 }
1318
1319 __ divw(result, dividend, divisor, SetOE, SetRC);
1320
1321 // Check for x / 0.
1322 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1323 __ cmpwi(divisor, Operand::Zero());
1324 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
1325 }
1326
1327 // Check for (0 / -x) that will produce negative zero.
1328 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1329 Label dividend_not_zero;
1330 __ cmpwi(dividend, Operand::Zero());
1331 __ bne(÷nd_not_zero);
1332 __ cmpwi(divisor, Operand::Zero());
1333 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1334 __ bind(÷nd_not_zero);
1335 }
1336
1337 // Check for (kMinInt / -1).
1338 if (can_overflow) {
1339 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1340 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
1341 } else {
1342 // When truncating, we want kMinInt / -1 = kMinInt.
1343 if (CpuFeatures::IsSupported(ISELECT)) {
1344 __ isel(overflow, result, dividend, result, cr0);
1345 } else {
1346 Label no_overflow_possible;
1347 __ bnooverflow(&no_overflow_possible, cr0);
1348 __ mr(result, dividend);
1349 __ bind(&no_overflow_possible);
1350 }
1351 }
1352 }
1353
1354 Label done;
1355 Register scratch = scratch0();
1356 // If both operands have the same sign then we are done.
1357 #if V8_TARGET_ARCH_PPC64
1358 __ xor_(scratch, dividend, divisor);
1359 __ cmpwi(scratch, Operand::Zero());
1360 __ bge(&done);
1361 #else
1362 __ xor_(scratch, dividend, divisor, SetRC);
1363 __ bge(&done, cr0);
1364 #endif
1365
1366 // If there is no remainder then we are done.
1367 __ mullw(scratch, divisor, result);
1368 __ cmpw(dividend, scratch);
1369 __ beq(&done);
1370
1371 // We performed a truncating division. Correct the result.
1372 __ subi(result, result, Operand(1));
1373 __ bind(&done);
1374 }
1375
1376
DoMultiplyAddD(LMultiplyAddD * instr)1377 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1378 DoubleRegister addend = ToDoubleRegister(instr->addend());
1379 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1380 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1381 DoubleRegister result = ToDoubleRegister(instr->result());
1382
1383 __ fmadd(result, multiplier, multiplicand, addend);
1384 }
1385
1386
DoMultiplySubD(LMultiplySubD * instr)1387 void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1388 DoubleRegister minuend = ToDoubleRegister(instr->minuend());
1389 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1390 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1391 DoubleRegister result = ToDoubleRegister(instr->result());
1392
1393 __ fmsub(result, multiplier, multiplicand, minuend);
1394 }
1395
1396
DoMulI(LMulI * instr)1397 void LCodeGen::DoMulI(LMulI* instr) {
1398 Register scratch = scratch0();
1399 Register result = ToRegister(instr->result());
1400 // Note that result may alias left.
1401 Register left = ToRegister(instr->left());
1402 LOperand* right_op = instr->right();
1403
1404 bool bailout_on_minus_zero =
1405 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1406 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1407
1408 if (right_op->IsConstantOperand()) {
1409 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1410
1411 if (bailout_on_minus_zero && (constant < 0)) {
1412 // The case of a null constant will be handled separately.
1413 // If constant is negative and left is null, the result should be -0.
1414 __ cmpi(left, Operand::Zero());
1415 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1416 }
1417
1418 switch (constant) {
1419 case -1:
1420 if (can_overflow) {
1421 #if V8_TARGET_ARCH_PPC64
1422 if (instr->hydrogen()->representation().IsSmi()) {
1423 #endif
1424 __ li(r0, Operand::Zero()); // clear xer
1425 __ mtxer(r0);
1426 __ neg(result, left, SetOE, SetRC);
1427 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
1428 #if V8_TARGET_ARCH_PPC64
1429 } else {
1430 __ neg(result, left);
1431 __ TestIfInt32(result, r0);
1432 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1433 }
1434 #endif
1435 } else {
1436 __ neg(result, left);
1437 }
1438 break;
1439 case 0:
1440 if (bailout_on_minus_zero) {
1441 // If left is strictly negative and the constant is null, the
1442 // result is -0. Deoptimize if required, otherwise return 0.
1443 #if V8_TARGET_ARCH_PPC64
1444 if (instr->hydrogen()->representation().IsSmi()) {
1445 #endif
1446 __ cmpi(left, Operand::Zero());
1447 #if V8_TARGET_ARCH_PPC64
1448 } else {
1449 __ cmpwi(left, Operand::Zero());
1450 }
1451 #endif
1452 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
1453 }
1454 __ li(result, Operand::Zero());
1455 break;
1456 case 1:
1457 __ Move(result, left);
1458 break;
1459 default:
1460 // Multiplying by powers of two and powers of two plus or minus
1461 // one can be done faster with shifted operands.
1462 // For other constants we emit standard code.
1463 int32_t mask = constant >> 31;
1464 uint32_t constant_abs = (constant + mask) ^ mask;
1465
1466 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1467 int32_t shift = WhichPowerOf2(constant_abs);
1468 __ ShiftLeftImm(result, left, Operand(shift));
1469 // Correct the sign of the result if the constant is negative.
1470 if (constant < 0) __ neg(result, result);
1471 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1472 int32_t shift = WhichPowerOf2(constant_abs - 1);
1473 __ ShiftLeftImm(scratch, left, Operand(shift));
1474 __ add(result, scratch, left);
1475 // Correct the sign of the result if the constant is negative.
1476 if (constant < 0) __ neg(result, result);
1477 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1478 int32_t shift = WhichPowerOf2(constant_abs + 1);
1479 __ ShiftLeftImm(scratch, left, Operand(shift));
1480 __ sub(result, scratch, left);
1481 // Correct the sign of the result if the constant is negative.
1482 if (constant < 0) __ neg(result, result);
1483 } else {
1484 // Generate standard code.
1485 __ mov(ip, Operand(constant));
1486 __ Mul(result, left, ip);
1487 }
1488 }
1489
1490 } else {
1491 DCHECK(right_op->IsRegister());
1492 Register right = ToRegister(right_op);
1493
1494 if (can_overflow) {
1495 #if V8_TARGET_ARCH_PPC64
1496 // result = left * right.
1497 if (instr->hydrogen()->representation().IsSmi()) {
1498 __ SmiUntag(result, left);
1499 __ SmiUntag(scratch, right);
1500 __ Mul(result, result, scratch);
1501 } else {
1502 __ Mul(result, left, right);
1503 }
1504 __ TestIfInt32(result, r0);
1505 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1506 if (instr->hydrogen()->representation().IsSmi()) {
1507 __ SmiTag(result);
1508 }
1509 #else
1510 // scratch:result = left * right.
1511 if (instr->hydrogen()->representation().IsSmi()) {
1512 __ SmiUntag(result, left);
1513 __ mulhw(scratch, result, right);
1514 __ mullw(result, result, right);
1515 } else {
1516 __ mulhw(scratch, left, right);
1517 __ mullw(result, left, right);
1518 }
1519 __ TestIfInt32(scratch, result, r0);
1520 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1521 #endif
1522 } else {
1523 if (instr->hydrogen()->representation().IsSmi()) {
1524 __ SmiUntag(result, left);
1525 __ Mul(result, result, right);
1526 } else {
1527 __ Mul(result, left, right);
1528 }
1529 }
1530
1531 if (bailout_on_minus_zero) {
1532 Label done;
1533 #if V8_TARGET_ARCH_PPC64
1534 if (instr->hydrogen()->representation().IsSmi()) {
1535 #endif
1536 __ xor_(r0, left, right, SetRC);
1537 __ bge(&done, cr0);
1538 #if V8_TARGET_ARCH_PPC64
1539 } else {
1540 __ xor_(r0, left, right);
1541 __ cmpwi(r0, Operand::Zero());
1542 __ bge(&done);
1543 }
1544 #endif
1545 // Bail out if the result is minus zero.
1546 __ cmpi(result, Operand::Zero());
1547 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
1548 __ bind(&done);
1549 }
1550 }
1551 }
1552
1553
DoBitI(LBitI * instr)1554 void LCodeGen::DoBitI(LBitI* instr) {
1555 LOperand* left_op = instr->left();
1556 LOperand* right_op = instr->right();
1557 DCHECK(left_op->IsRegister());
1558 Register left = ToRegister(left_op);
1559 Register result = ToRegister(instr->result());
1560 Operand right(no_reg);
1561
1562 if (right_op->IsStackSlot()) {
1563 right = Operand(EmitLoadRegister(right_op, ip));
1564 } else {
1565 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1566 right = ToOperand(right_op);
1567
1568 if (right_op->IsConstantOperand() && is_uint16(right.immediate())) {
1569 switch (instr->op()) {
1570 case Token::BIT_AND:
1571 __ andi(result, left, right);
1572 break;
1573 case Token::BIT_OR:
1574 __ ori(result, left, right);
1575 break;
1576 case Token::BIT_XOR:
1577 __ xori(result, left, right);
1578 break;
1579 default:
1580 UNREACHABLE();
1581 break;
1582 }
1583 return;
1584 }
1585 }
1586
1587 switch (instr->op()) {
1588 case Token::BIT_AND:
1589 __ And(result, left, right);
1590 break;
1591 case Token::BIT_OR:
1592 __ Or(result, left, right);
1593 break;
1594 case Token::BIT_XOR:
1595 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1596 __ notx(result, left);
1597 } else {
1598 __ Xor(result, left, right);
1599 }
1600 break;
1601 default:
1602 UNREACHABLE();
1603 break;
1604 }
1605 }
1606
1607
DoShiftI(LShiftI * instr)1608 void LCodeGen::DoShiftI(LShiftI* instr) {
1609 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1610 // result may alias either of them.
1611 LOperand* right_op = instr->right();
1612 Register left = ToRegister(instr->left());
1613 Register result = ToRegister(instr->result());
1614 Register scratch = scratch0();
1615 if (right_op->IsRegister()) {
1616 // Mask the right_op operand.
1617 __ andi(scratch, ToRegister(right_op), Operand(0x1F));
1618 switch (instr->op()) {
1619 case Token::ROR:
1620 // rotate_right(a, b) == rotate_left(a, 32 - b)
1621 __ subfic(scratch, scratch, Operand(32));
1622 __ rotlw(result, left, scratch);
1623 break;
1624 case Token::SAR:
1625 __ sraw(result, left, scratch);
1626 break;
1627 case Token::SHR:
1628 if (instr->can_deopt()) {
1629 __ srw(result, left, scratch, SetRC);
1630 #if V8_TARGET_ARCH_PPC64
1631 __ extsw(result, result, SetRC);
1632 #endif
1633 DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, cr0);
1634 } else {
1635 __ srw(result, left, scratch);
1636 }
1637 break;
1638 case Token::SHL:
1639 __ slw(result, left, scratch);
1640 #if V8_TARGET_ARCH_PPC64
1641 __ extsw(result, result);
1642 #endif
1643 break;
1644 default:
1645 UNREACHABLE();
1646 break;
1647 }
1648 } else {
1649 // Mask the right_op operand.
1650 int value = ToInteger32(LConstantOperand::cast(right_op));
1651 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1652 switch (instr->op()) {
1653 case Token::ROR:
1654 if (shift_count != 0) {
1655 __ rotrwi(result, left, shift_count);
1656 } else {
1657 __ Move(result, left);
1658 }
1659 break;
1660 case Token::SAR:
1661 if (shift_count != 0) {
1662 __ srawi(result, left, shift_count);
1663 } else {
1664 __ Move(result, left);
1665 }
1666 break;
1667 case Token::SHR:
1668 if (shift_count != 0) {
1669 __ srwi(result, left, Operand(shift_count));
1670 } else {
1671 if (instr->can_deopt()) {
1672 __ cmpwi(left, Operand::Zero());
1673 DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue);
1674 }
1675 __ Move(result, left);
1676 }
1677 break;
1678 case Token::SHL:
1679 if (shift_count != 0) {
1680 #if V8_TARGET_ARCH_PPC64
1681 if (instr->hydrogen_value()->representation().IsSmi()) {
1682 __ sldi(result, left, Operand(shift_count));
1683 #else
1684 if (instr->hydrogen_value()->representation().IsSmi() &&
1685 instr->can_deopt()) {
1686 if (shift_count != 1) {
1687 __ slwi(result, left, Operand(shift_count - 1));
1688 __ SmiTagCheckOverflow(result, result, scratch);
1689 } else {
1690 __ SmiTagCheckOverflow(result, left, scratch);
1691 }
1692 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
1693 #endif
1694 } else {
1695 __ slwi(result, left, Operand(shift_count));
1696 #if V8_TARGET_ARCH_PPC64
1697 __ extsw(result, result);
1698 #endif
1699 }
1700 } else {
1701 __ Move(result, left);
1702 }
1703 break;
1704 default:
1705 UNREACHABLE();
1706 break;
1707 }
1708 }
1709 }
1710
1711
1712 void LCodeGen::DoSubI(LSubI* instr) {
1713 LOperand* right = instr->right();
1714 Register left = ToRegister(instr->left());
1715 Register result = ToRegister(instr->result());
1716 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1717 #if V8_TARGET_ARCH_PPC64
1718 const bool isInteger = !instr->hydrogen()->representation().IsSmi();
1719 #else
1720 const bool isInteger = false;
1721 #endif
1722 if (!can_overflow || isInteger) {
1723 if (right->IsConstantOperand()) {
1724 __ Add(result, left, -(ToOperand(right).immediate()), r0);
1725 } else {
1726 __ sub(result, left, EmitLoadRegister(right, ip));
1727 }
1728 #if V8_TARGET_ARCH_PPC64
1729 if (can_overflow) {
1730 __ TestIfInt32(result, r0);
1731 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1732 }
1733 #endif
1734 } else {
1735 if (right->IsConstantOperand()) {
1736 __ AddAndCheckForOverflow(result, left, -(ToOperand(right).immediate()),
1737 scratch0(), r0);
1738 } else {
1739 __ SubAndCheckForOverflow(result, left, EmitLoadRegister(right, ip),
1740 scratch0(), r0);
1741 }
1742 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
1743 }
1744 }
1745
1746
1747 void LCodeGen::DoRSubI(LRSubI* instr) {
1748 LOperand* left = instr->left();
1749 LOperand* right = instr->right();
1750 LOperand* result = instr->result();
1751
1752 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) &&
1753 right->IsConstantOperand());
1754
1755 Operand right_operand = ToOperand(right);
1756 if (is_int16(right_operand.immediate())) {
1757 __ subfic(ToRegister(result), ToRegister(left), right_operand);
1758 } else {
1759 __ mov(r0, right_operand);
1760 __ sub(ToRegister(result), r0, ToRegister(left));
1761 }
1762 }
1763
1764
1765 void LCodeGen::DoConstantI(LConstantI* instr) {
1766 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1767 }
1768
1769
1770 void LCodeGen::DoConstantS(LConstantS* instr) {
1771 __ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
1772 }
1773
1774
1775 void LCodeGen::DoConstantD(LConstantD* instr) {
1776 DCHECK(instr->result()->IsDoubleRegister());
1777 DoubleRegister result = ToDoubleRegister(instr->result());
1778 #if V8_HOST_ARCH_IA32
1779 // Need some crappy work-around for x87 sNaN -> qNaN breakage in simulator
1780 // builds.
1781 uint64_t bits = instr->bits();
1782 if ((bits & V8_UINT64_C(0x7FF8000000000000)) ==
1783 V8_UINT64_C(0x7FF0000000000000)) {
1784 uint32_t lo = static_cast<uint32_t>(bits);
1785 uint32_t hi = static_cast<uint32_t>(bits >> 32);
1786 __ mov(ip, Operand(lo));
1787 __ mov(scratch0(), Operand(hi));
1788 __ MovInt64ToDouble(result, scratch0(), ip);
1789 return;
1790 }
1791 #endif
1792 double v = instr->value();
1793 __ LoadDoubleLiteral(result, v, scratch0());
1794 }
1795
1796
1797 void LCodeGen::DoConstantE(LConstantE* instr) {
1798 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1799 }
1800
1801
1802 void LCodeGen::DoConstantT(LConstantT* instr) {
1803 Handle<Object> object = instr->value(isolate());
1804 AllowDeferredHandleDereference smi_check;
1805 __ Move(ToRegister(instr->result()), object);
1806 }
1807
1808
1809 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1810 Register result = ToRegister(instr->result());
1811 Register map = ToRegister(instr->value());
1812 __ EnumLength(result, map);
1813 }
1814
1815
1816 MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
1817 String::Encoding encoding) {
1818 if (index->IsConstantOperand()) {
1819 int offset = ToInteger32(LConstantOperand::cast(index));
1820 if (encoding == String::TWO_BYTE_ENCODING) {
1821 offset *= kUC16Size;
1822 }
1823 STATIC_ASSERT(kCharSize == 1);
1824 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1825 }
1826 Register scratch = scratch0();
1827 DCHECK(!scratch.is(string));
1828 DCHECK(!scratch.is(ToRegister(index)));
1829 if (encoding == String::ONE_BYTE_ENCODING) {
1830 __ add(scratch, string, ToRegister(index));
1831 } else {
1832 STATIC_ASSERT(kUC16Size == 2);
1833 __ ShiftLeftImm(scratch, ToRegister(index), Operand(1));
1834 __ add(scratch, string, scratch);
1835 }
1836 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1837 }
1838
1839
1840 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1841 String::Encoding encoding = instr->hydrogen()->encoding();
1842 Register string = ToRegister(instr->string());
1843 Register result = ToRegister(instr->result());
1844
1845 if (FLAG_debug_code) {
1846 Register scratch = scratch0();
1847 __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1848 __ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1849
1850 __ andi(scratch, scratch,
1851 Operand(kStringRepresentationMask | kStringEncodingMask));
1852 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1853 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1854 __ cmpi(scratch,
1855 Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
1856 : two_byte_seq_type));
1857 __ Check(eq, kUnexpectedStringType);
1858 }
1859
1860 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1861 if (encoding == String::ONE_BYTE_ENCODING) {
1862 __ lbz(result, operand);
1863 } else {
1864 __ lhz(result, operand);
1865 }
1866 }
1867
1868
1869 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1870 String::Encoding encoding = instr->hydrogen()->encoding();
1871 Register string = ToRegister(instr->string());
1872 Register value = ToRegister(instr->value());
1873
1874 if (FLAG_debug_code) {
1875 Register index = ToRegister(instr->index());
1876 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1877 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1878 int encoding_mask =
1879 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1880 ? one_byte_seq_type
1881 : two_byte_seq_type;
1882 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1883 }
1884
1885 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1886 if (encoding == String::ONE_BYTE_ENCODING) {
1887 __ stb(value, operand);
1888 } else {
1889 __ sth(value, operand);
1890 }
1891 }
1892
1893
1894 void LCodeGen::DoAddI(LAddI* instr) {
1895 LOperand* right = instr->right();
1896 Register left = ToRegister(instr->left());
1897 Register result = ToRegister(instr->result());
1898 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1899 #if V8_TARGET_ARCH_PPC64
1900 const bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
1901 instr->hydrogen()->representation().IsExternal());
1902 #else
1903 const bool isInteger = false;
1904 #endif
1905
1906 if (!can_overflow || isInteger) {
1907 if (right->IsConstantOperand()) {
1908 __ Add(result, left, ToOperand(right).immediate(), r0);
1909 } else {
1910 __ add(result, left, EmitLoadRegister(right, ip));
1911 }
1912 #if V8_TARGET_ARCH_PPC64
1913 if (can_overflow) {
1914 __ TestIfInt32(result, r0);
1915 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
1916 }
1917 #endif
1918 } else {
1919 if (right->IsConstantOperand()) {
1920 __ AddAndCheckForOverflow(result, left, ToOperand(right).immediate(),
1921 scratch0(), r0);
1922 } else {
1923 __ AddAndCheckForOverflow(result, left, EmitLoadRegister(right, ip),
1924 scratch0(), r0);
1925 }
1926 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
1927 }
1928 }
1929
1930
1931 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1932 LOperand* left = instr->left();
1933 LOperand* right = instr->right();
1934 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1935 Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
1936 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1937 Register left_reg = ToRegister(left);
1938 Register right_reg = EmitLoadRegister(right, ip);
1939 Register result_reg = ToRegister(instr->result());
1940 Label return_left, done;
1941 #if V8_TARGET_ARCH_PPC64
1942 if (instr->hydrogen_value()->representation().IsSmi()) {
1943 #endif
1944 __ cmp(left_reg, right_reg);
1945 #if V8_TARGET_ARCH_PPC64
1946 } else {
1947 __ cmpw(left_reg, right_reg);
1948 }
1949 #endif
1950 if (CpuFeatures::IsSupported(ISELECT)) {
1951 __ isel(cond, result_reg, left_reg, right_reg);
1952 } else {
1953 __ b(cond, &return_left);
1954 __ Move(result_reg, right_reg);
1955 __ b(&done);
1956 __ bind(&return_left);
1957 __ Move(result_reg, left_reg);
1958 __ bind(&done);
1959 }
1960 } else {
1961 DCHECK(instr->hydrogen()->representation().IsDouble());
1962 DoubleRegister left_reg = ToDoubleRegister(left);
1963 DoubleRegister right_reg = ToDoubleRegister(right);
1964 DoubleRegister result_reg = ToDoubleRegister(instr->result());
1965 Label check_nan_left, check_zero, return_left, return_right, done;
1966 __ fcmpu(left_reg, right_reg);
1967 __ bunordered(&check_nan_left);
1968 __ beq(&check_zero);
1969 __ b(cond, &return_left);
1970 __ b(&return_right);
1971
1972 __ bind(&check_zero);
1973 __ fcmpu(left_reg, kDoubleRegZero);
1974 __ bne(&return_left); // left == right != 0.
1975
1976 // At this point, both left and right are either 0 or -0.
1977 // N.B. The following works because +0 + -0 == +0
1978 if (operation == HMathMinMax::kMathMin) {
1979 // For min we want logical-or of sign bit: -(-L + -R)
1980 __ fneg(left_reg, left_reg);
1981 __ fsub(result_reg, left_reg, right_reg);
1982 __ fneg(result_reg, result_reg);
1983 } else {
1984 // For max we want logical-and of sign bit: (L + R)
1985 __ fadd(result_reg, left_reg, right_reg);
1986 }
1987 __ b(&done);
1988
1989 __ bind(&check_nan_left);
1990 __ fcmpu(left_reg, left_reg);
1991 __ bunordered(&return_left); // left == NaN.
1992
1993 __ bind(&return_right);
1994 if (!right_reg.is(result_reg)) {
1995 __ fmr(result_reg, right_reg);
1996 }
1997 __ b(&done);
1998
1999 __ bind(&return_left);
2000 if (!left_reg.is(result_reg)) {
2001 __ fmr(result_reg, left_reg);
2002 }
2003 __ bind(&done);
2004 }
2005 }
2006
2007
2008 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
2009 DoubleRegister left = ToDoubleRegister(instr->left());
2010 DoubleRegister right = ToDoubleRegister(instr->right());
2011 DoubleRegister result = ToDoubleRegister(instr->result());
2012 switch (instr->op()) {
2013 case Token::ADD:
2014 __ fadd(result, left, right);
2015 break;
2016 case Token::SUB:
2017 __ fsub(result, left, right);
2018 break;
2019 case Token::MUL:
2020 __ fmul(result, left, right);
2021 break;
2022 case Token::DIV:
2023 __ fdiv(result, left, right);
2024 break;
2025 case Token::MOD: {
2026 __ PrepareCallCFunction(0, 2, scratch0());
2027 __ MovToFloatParameters(left, right);
2028 __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
2029 0, 2);
2030 // Move the result in the double result register.
2031 __ MovFromFloatResult(result);
2032 break;
2033 }
2034 default:
2035 UNREACHABLE();
2036 break;
2037 }
2038 }
2039
2040
2041 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2042 DCHECK(ToRegister(instr->context()).is(cp));
2043 DCHECK(ToRegister(instr->left()).is(r4));
2044 DCHECK(ToRegister(instr->right()).is(r3));
2045 DCHECK(ToRegister(instr->result()).is(r3));
2046
2047 Handle<Code> code =
2048 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
2049 CallCode(code, RelocInfo::CODE_TARGET, instr);
2050 }
2051
2052
2053 template <class InstrType>
2054 void LCodeGen::EmitBranch(InstrType instr, Condition cond, CRegister cr) {
2055 int left_block = instr->TrueDestination(chunk_);
2056 int right_block = instr->FalseDestination(chunk_);
2057
2058 int next_block = GetNextEmittedBlock();
2059
2060 if (right_block == left_block || cond == al) {
2061 EmitGoto(left_block);
2062 } else if (left_block == next_block) {
2063 __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block), cr);
2064 } else if (right_block == next_block) {
2065 __ b(cond, chunk_->GetAssemblyLabel(left_block), cr);
2066 } else {
2067 __ b(cond, chunk_->GetAssemblyLabel(left_block), cr);
2068 __ b(chunk_->GetAssemblyLabel(right_block));
2069 }
2070 }
2071
2072
2073 template <class InstrType>
2074 void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond, CRegister cr) {
2075 int true_block = instr->TrueDestination(chunk_);
2076 __ b(cond, chunk_->GetAssemblyLabel(true_block), cr);
2077 }
2078
2079
2080 template <class InstrType>
2081 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond, CRegister cr) {
2082 int false_block = instr->FalseDestination(chunk_);
2083 __ b(cond, chunk_->GetAssemblyLabel(false_block), cr);
2084 }
2085
2086
2087 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }
2088
2089
2090 void LCodeGen::DoBranch(LBranch* instr) {
2091 Representation r = instr->hydrogen()->value()->representation();
2092 DoubleRegister dbl_scratch = double_scratch0();
2093 const uint crZOrNaNBits = (1 << (31 - Assembler::encode_crbit(cr7, CR_EQ)) |
2094 1 << (31 - Assembler::encode_crbit(cr7, CR_FU)));
2095
2096 if (r.IsInteger32()) {
2097 DCHECK(!info()->IsStub());
2098 Register reg = ToRegister(instr->value());
2099 __ cmpwi(reg, Operand::Zero());
2100 EmitBranch(instr, ne);
2101 } else if (r.IsSmi()) {
2102 DCHECK(!info()->IsStub());
2103 Register reg = ToRegister(instr->value());
2104 __ cmpi(reg, Operand::Zero());
2105 EmitBranch(instr, ne);
2106 } else if (r.IsDouble()) {
2107 DCHECK(!info()->IsStub());
2108 DoubleRegister reg = ToDoubleRegister(instr->value());
2109 // Test the double value. Zero and NaN are false.
2110 __ fcmpu(reg, kDoubleRegZero, cr7);
2111 __ mfcr(r0);
2112 __ andi(r0, r0, Operand(crZOrNaNBits));
2113 EmitBranch(instr, eq, cr0);
2114 } else {
2115 DCHECK(r.IsTagged());
2116 Register reg = ToRegister(instr->value());
2117 HType type = instr->hydrogen()->value()->type();
2118 if (type.IsBoolean()) {
2119 DCHECK(!info()->IsStub());
2120 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2121 EmitBranch(instr, eq);
2122 } else if (type.IsSmi()) {
2123 DCHECK(!info()->IsStub());
2124 __ cmpi(reg, Operand::Zero());
2125 EmitBranch(instr, ne);
2126 } else if (type.IsJSArray()) {
2127 DCHECK(!info()->IsStub());
2128 EmitBranch(instr, al);
2129 } else if (type.IsHeapNumber()) {
2130 DCHECK(!info()->IsStub());
2131 __ lfd(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2132 // Test the double value. Zero and NaN are false.
2133 __ fcmpu(dbl_scratch, kDoubleRegZero, cr7);
2134 __ mfcr(r0);
2135 __ andi(r0, r0, Operand(crZOrNaNBits));
2136 EmitBranch(instr, eq, cr0);
2137 } else if (type.IsString()) {
2138 DCHECK(!info()->IsStub());
2139 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2140 __ cmpi(ip, Operand::Zero());
2141 EmitBranch(instr, ne);
2142 } else {
2143 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2144 // Avoid deopts in the case where we've never executed this path before.
2145 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2146
2147 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2148 // undefined -> false.
2149 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2150 __ beq(instr->FalseLabel(chunk_));
2151 }
2152 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2153 // Boolean -> its value.
2154 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2155 __ beq(instr->TrueLabel(chunk_));
2156 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2157 __ beq(instr->FalseLabel(chunk_));
2158 }
2159 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2160 // 'null' -> false.
2161 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2162 __ beq(instr->FalseLabel(chunk_));
2163 }
2164
2165 if (expected.Contains(ToBooleanStub::SMI)) {
2166 // Smis: 0 -> false, all other -> true.
2167 __ cmpi(reg, Operand::Zero());
2168 __ beq(instr->FalseLabel(chunk_));
2169 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2170 } else if (expected.NeedsMap()) {
2171 // If we need a map later and have a Smi -> deopt.
2172 __ TestIfSmi(reg, r0);
2173 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
2174 }
2175
2176 const Register map = scratch0();
2177 if (expected.NeedsMap()) {
2178 __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2179
2180 if (expected.CanBeUndetectable()) {
2181 // Undetectable -> false.
2182 __ lbz(ip, FieldMemOperand(map, Map::kBitFieldOffset));
2183 __ TestBit(ip, Map::kIsUndetectable, r0);
2184 __ bne(instr->FalseLabel(chunk_), cr0);
2185 }
2186 }
2187
2188 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2189 // spec object -> true.
2190 __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
2191 __ bge(instr->TrueLabel(chunk_));
2192 }
2193
2194 if (expected.Contains(ToBooleanStub::STRING)) {
2195 // String value -> false iff empty.
2196 Label not_string;
2197 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
2198 __ bge(¬_string);
2199 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2200 __ cmpi(ip, Operand::Zero());
2201 __ bne(instr->TrueLabel(chunk_));
2202 __ b(instr->FalseLabel(chunk_));
2203 __ bind(¬_string);
2204 }
2205
2206 if (expected.Contains(ToBooleanStub::SYMBOL)) {
2207 // Symbol value -> true.
2208 __ CompareInstanceType(map, ip, SYMBOL_TYPE);
2209 __ beq(instr->TrueLabel(chunk_));
2210 }
2211
2212 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
2213 // SIMD value -> true.
2214 Label not_simd;
2215 __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
2216 __ beq(instr->TrueLabel(chunk_));
2217 }
2218
2219 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2220 // heap number -> false iff +0, -0, or NaN.
2221 Label not_heap_number;
2222 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2223 __ bne(¬_heap_number);
2224 __ lfd(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2225 // Test the double value. Zero and NaN are false.
2226 __ fcmpu(dbl_scratch, kDoubleRegZero, cr7);
2227 __ mfcr(r0);
2228 __ andi(r0, r0, Operand(crZOrNaNBits));
2229 __ bne(instr->FalseLabel(chunk_), cr0);
2230 __ b(instr->TrueLabel(chunk_));
2231 __ bind(¬_heap_number);
2232 }
2233
2234 if (!expected.IsGeneric()) {
2235 // We've seen something for the first time -> deopt.
2236 // This can only happen if we are not generic already.
2237 DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject);
2238 }
2239 }
2240 }
2241 }
2242
2243
2244 void LCodeGen::EmitGoto(int block) {
2245 if (!IsNextEmittedBlock(block)) {
2246 __ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
2247 }
2248 }
2249
2250
2251 void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }
2252
2253
2254 Condition LCodeGen::TokenToCondition(Token::Value op) {
2255 Condition cond = kNoCondition;
2256 switch (op) {
2257 case Token::EQ:
2258 case Token::EQ_STRICT:
2259 cond = eq;
2260 break;
2261 case Token::NE:
2262 case Token::NE_STRICT:
2263 cond = ne;
2264 break;
2265 case Token::LT:
2266 cond = lt;
2267 break;
2268 case Token::GT:
2269 cond = gt;
2270 break;
2271 case Token::LTE:
2272 cond = le;
2273 break;
2274 case Token::GTE:
2275 cond = ge;
2276 break;
2277 case Token::IN:
2278 case Token::INSTANCEOF:
2279 default:
2280 UNREACHABLE();
2281 }
2282 return cond;
2283 }
2284
2285
2286 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2287 LOperand* left = instr->left();
2288 LOperand* right = instr->right();
2289 bool is_unsigned =
2290 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2291 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2292 Condition cond = TokenToCondition(instr->op());
2293
2294 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2295 // We can statically evaluate the comparison.
2296 double left_val = ToDouble(LConstantOperand::cast(left));
2297 double right_val = ToDouble(LConstantOperand::cast(right));
2298 int next_block = EvalComparison(instr->op(), left_val, right_val)
2299 ? instr->TrueDestination(chunk_)
2300 : instr->FalseDestination(chunk_);
2301 EmitGoto(next_block);
2302 } else {
2303 if (instr->is_double()) {
2304 // Compare left and right operands as doubles and load the
2305 // resulting flags into the normal status register.
2306 __ fcmpu(ToDoubleRegister(left), ToDoubleRegister(right));
2307 // If a NaN is involved, i.e. the result is unordered,
2308 // jump to false block label.
2309 __ bunordered(instr->FalseLabel(chunk_));
2310 } else {
2311 if (right->IsConstantOperand()) {
2312 int32_t value = ToInteger32(LConstantOperand::cast(right));
2313 if (instr->hydrogen_value()->representation().IsSmi()) {
2314 if (is_unsigned) {
2315 __ CmplSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2316 } else {
2317 __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2318 }
2319 } else {
2320 if (is_unsigned) {
2321 __ Cmplwi(ToRegister(left), Operand(value), r0);
2322 } else {
2323 __ Cmpwi(ToRegister(left), Operand(value), r0);
2324 }
2325 }
2326 } else if (left->IsConstantOperand()) {
2327 int32_t value = ToInteger32(LConstantOperand::cast(left));
2328 if (instr->hydrogen_value()->representation().IsSmi()) {
2329 if (is_unsigned) {
2330 __ CmplSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2331 } else {
2332 __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2333 }
2334 } else {
2335 if (is_unsigned) {
2336 __ Cmplwi(ToRegister(right), Operand(value), r0);
2337 } else {
2338 __ Cmpwi(ToRegister(right), Operand(value), r0);
2339 }
2340 }
2341 // We commuted the operands, so commute the condition.
2342 cond = CommuteCondition(cond);
2343 } else if (instr->hydrogen_value()->representation().IsSmi()) {
2344 if (is_unsigned) {
2345 __ cmpl(ToRegister(left), ToRegister(right));
2346 } else {
2347 __ cmp(ToRegister(left), ToRegister(right));
2348 }
2349 } else {
2350 if (is_unsigned) {
2351 __ cmplw(ToRegister(left), ToRegister(right));
2352 } else {
2353 __ cmpw(ToRegister(left), ToRegister(right));
2354 }
2355 }
2356 }
2357 EmitBranch(instr, cond);
2358 }
2359 }
2360
2361
2362 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2363 Register left = ToRegister(instr->left());
2364 Register right = ToRegister(instr->right());
2365
2366 __ cmp(left, right);
2367 EmitBranch(instr, eq);
2368 }
2369
2370
2371 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2372 if (instr->hydrogen()->representation().IsTagged()) {
2373 Register input_reg = ToRegister(instr->object());
2374 __ mov(ip, Operand(factory()->the_hole_value()));
2375 __ cmp(input_reg, ip);
2376 EmitBranch(instr, eq);
2377 return;
2378 }
2379
2380 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2381 __ fcmpu(input_reg, input_reg);
2382 EmitFalseBranch(instr, ordered);
2383
2384 Register scratch = scratch0();
2385 __ MovDoubleHighToInt(scratch, input_reg);
2386 __ Cmpi(scratch, Operand(kHoleNanUpper32), r0);
2387 EmitBranch(instr, eq);
2388 }
2389
2390
2391 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2392 Representation rep = instr->hydrogen()->value()->representation();
2393 DCHECK(!rep.IsInteger32());
2394 Register scratch = ToRegister(instr->temp());
2395
2396 if (rep.IsDouble()) {
2397 DoubleRegister value = ToDoubleRegister(instr->value());
2398 __ fcmpu(value, kDoubleRegZero);
2399 EmitFalseBranch(instr, ne);
2400 #if V8_TARGET_ARCH_PPC64
2401 __ MovDoubleToInt64(scratch, value);
2402 #else
2403 __ MovDoubleHighToInt(scratch, value);
2404 #endif
2405 __ cmpi(scratch, Operand::Zero());
2406 EmitBranch(instr, lt);
2407 } else {
2408 Register value = ToRegister(instr->value());
2409 __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
2410 instr->FalseLabel(chunk()), DO_SMI_CHECK);
2411 #if V8_TARGET_ARCH_PPC64
2412 __ LoadP(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
2413 __ li(ip, Operand(1));
2414 __ rotrdi(ip, ip, 1); // ip = 0x80000000_00000000
2415 __ cmp(scratch, ip);
2416 #else
2417 __ lwz(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
2418 __ lwz(ip, FieldMemOperand(value, HeapNumber::kMantissaOffset));
2419 Label skip;
2420 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
2421 __ cmp(scratch, r0);
2422 __ bne(&skip);
2423 __ cmpi(ip, Operand::Zero());
2424 __ bind(&skip);
2425 #endif
2426 EmitBranch(instr, eq);
2427 }
2428 }
2429
2430
2431 Condition LCodeGen::EmitIsString(Register input, Register temp1,
2432 Label* is_not_string,
2433 SmiCheck check_needed = INLINE_SMI_CHECK) {
2434 if (check_needed == INLINE_SMI_CHECK) {
2435 __ JumpIfSmi(input, is_not_string);
2436 }
2437 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2438
2439 return lt;
2440 }
2441
2442
2443 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2444 Register reg = ToRegister(instr->value());
2445 Register temp1 = ToRegister(instr->temp());
2446
2447 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
2448 ? OMIT_SMI_CHECK
2449 : INLINE_SMI_CHECK;
2450 Condition true_cond =
2451 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2452
2453 EmitBranch(instr, true_cond);
2454 }
2455
2456
2457 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2458 Register input_reg = EmitLoadRegister(instr->value(), ip);
2459 __ TestIfSmi(input_reg, r0);
2460 EmitBranch(instr, eq, cr0);
2461 }
2462
2463
2464 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2465 Register input = ToRegister(instr->value());
2466 Register temp = ToRegister(instr->temp());
2467
2468 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2469 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2470 }
2471 __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2472 __ lbz(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2473 __ TestBit(temp, Map::kIsUndetectable, r0);
2474 EmitBranch(instr, ne, cr0);
2475 }
2476
2477
2478 static Condition ComputeCompareCondition(Token::Value op) {
2479 switch (op) {
2480 case Token::EQ_STRICT:
2481 case Token::EQ:
2482 return eq;
2483 case Token::LT:
2484 return lt;
2485 case Token::GT:
2486 return gt;
2487 case Token::LTE:
2488 return le;
2489 case Token::GTE:
2490 return ge;
2491 default:
2492 UNREACHABLE();
2493 return kNoCondition;
2494 }
2495 }
2496
2497
2498 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2499 DCHECK(ToRegister(instr->context()).is(cp));
2500 DCHECK(ToRegister(instr->left()).is(r4));
2501 DCHECK(ToRegister(instr->right()).is(r3));
2502
2503 Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
2504 CallCode(code, RelocInfo::CODE_TARGET, instr);
2505 __ cmpi(r3, Operand::Zero());
2506
2507 EmitBranch(instr, ComputeCompareCondition(instr->op()));
2508 }
2509
2510
2511 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2512 InstanceType from = instr->from();
2513 InstanceType to = instr->to();
2514 if (from == FIRST_TYPE) return to;
2515 DCHECK(from == to || to == LAST_TYPE);
2516 return from;
2517 }
2518
2519
2520 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2521 InstanceType from = instr->from();
2522 InstanceType to = instr->to();
2523 if (from == to) return eq;
2524 if (to == LAST_TYPE) return ge;
2525 if (from == FIRST_TYPE) return le;
2526 UNREACHABLE();
2527 return eq;
2528 }
2529
2530
2531 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2532 Register scratch = scratch0();
2533 Register input = ToRegister(instr->value());
2534
2535 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2536 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2537 }
2538
2539 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2540 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2541 }
2542
2543
2544 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2545 Register input = ToRegister(instr->value());
2546 Register result = ToRegister(instr->result());
2547
2548 __ AssertString(input);
2549
2550 __ lwz(result, FieldMemOperand(input, String::kHashFieldOffset));
2551 __ IndexFromHash(result, result);
2552 }
2553
2554
2555 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2556 LHasCachedArrayIndexAndBranch* instr) {
2557 Register input = ToRegister(instr->value());
2558 Register scratch = scratch0();
2559
2560 __ lwz(scratch, FieldMemOperand(input, String::kHashFieldOffset));
2561 __ mov(r0, Operand(String::kContainsCachedArrayIndexMask));
2562 __ and_(r0, scratch, r0, SetRC);
2563 EmitBranch(instr, eq, cr0);
2564 }
2565
2566
2567 // Branches to a label or falls through with the answer in flags. Trashes
2568 // the temp registers, but not the input.
2569 void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
2570 Handle<String> class_name, Register input,
2571 Register temp, Register temp2) {
2572 DCHECK(!input.is(temp));
2573 DCHECK(!input.is(temp2));
2574 DCHECK(!temp.is(temp2));
2575
2576 __ JumpIfSmi(input, is_false);
2577
2578 __ CompareObjectType(input, temp, temp2, JS_FUNCTION_TYPE);
2579 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2580 __ beq(is_true);
2581 } else {
2582 __ beq(is_false);
2583 }
2584
2585 // Check if the constructor in the map is a function.
2586 Register instance_type = ip;
2587 __ GetMapConstructor(temp, temp, temp2, instance_type);
2588
2589 // Objects with a non-function constructor have class 'Object'.
2590 __ cmpi(instance_type, Operand(JS_FUNCTION_TYPE));
2591 if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
2592 __ bne(is_true);
2593 } else {
2594 __ bne(is_false);
2595 }
2596
2597 // temp now contains the constructor function. Grab the
2598 // instance class name from there.
2599 __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2600 __ LoadP(temp,
2601 FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset));
2602 // The class name we are testing against is internalized since it's a literal.
2603 // The name in the constructor is internalized because of the way the context
2604 // is booted. This routine isn't expected to work for random API-created
2605 // classes and it doesn't have to because you can't access it with natives
2606 // syntax. Since both sides are internalized it is sufficient to use an
2607 // identity comparison.
2608 __ Cmpi(temp, Operand(class_name), r0);
2609 // End with the answer in flags.
2610 }
2611
2612
2613 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2614 Register input = ToRegister(instr->value());
2615 Register temp = scratch0();
2616 Register temp2 = ToRegister(instr->temp());
2617 Handle<String> class_name = instr->hydrogen()->class_name();
2618
2619 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2620 class_name, input, temp, temp2);
2621
2622 EmitBranch(instr, eq);
2623 }
2624
2625
2626 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2627 Register reg = ToRegister(instr->value());
2628 Register temp = ToRegister(instr->temp());
2629
2630 __ LoadP(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2631 __ Cmpi(temp, Operand(instr->map()), r0);
2632 EmitBranch(instr, eq);
2633 }
2634
2635
2636 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2637 DCHECK(ToRegister(instr->context()).is(cp));
2638 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2639 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2640 DCHECK(ToRegister(instr->result()).is(r3));
2641 InstanceOfStub stub(isolate());
2642 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2643 }
2644
2645
2646 void LCodeGen::DoHasInPrototypeChainAndBranch(
2647 LHasInPrototypeChainAndBranch* instr) {
2648 Register const object = ToRegister(instr->object());
2649 Register const object_map = scratch0();
2650 Register const object_instance_type = ip;
2651 Register const object_prototype = object_map;
2652 Register const prototype = ToRegister(instr->prototype());
2653
2654 // The {object} must be a spec object. It's sufficient to know that {object}
2655 // is not a smi, since all other non-spec objects have {null} prototypes and
2656 // will be ruled out below.
2657 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2658 __ TestIfSmi(object, r0);
2659 EmitFalseBranch(instr, eq, cr0);
2660 }
2661
2662 // Loop through the {object}s prototype chain looking for the {prototype}.
2663 __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2664 Label loop;
2665 __ bind(&loop);
2666
2667 // Deoptimize if the object needs to be access checked.
2668 __ lbz(object_instance_type,
2669 FieldMemOperand(object_map, Map::kBitFieldOffset));
2670 __ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0);
2671 DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck, cr0);
2672 // Deoptimize for proxies.
2673 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
2674 DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
2675 __ LoadP(object_prototype,
2676 FieldMemOperand(object_map, Map::kPrototypeOffset));
2677 __ cmp(object_prototype, prototype);
2678 EmitTrueBranch(instr, eq);
2679 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2680 EmitFalseBranch(instr, eq);
2681 __ LoadP(object_map,
2682 FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2683 __ b(&loop);
2684 }
2685
2686
2687 void LCodeGen::DoCmpT(LCmpT* instr) {
2688 DCHECK(ToRegister(instr->context()).is(cp));
2689 Token::Value op = instr->op();
2690
2691 Handle<Code> ic =
2692 CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
2693 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2694 // This instruction also signals no smi code inlined
2695 __ cmpi(r3, Operand::Zero());
2696
2697 Condition condition = ComputeCompareCondition(op);
2698 if (CpuFeatures::IsSupported(ISELECT)) {
2699 __ LoadRoot(r4, Heap::kTrueValueRootIndex);
2700 __ LoadRoot(r5, Heap::kFalseValueRootIndex);
2701 __ isel(condition, ToRegister(instr->result()), r4, r5);
2702 } else {
2703 Label true_value, done;
2704
2705 __ b(condition, &true_value);
2706
2707 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2708 __ b(&done);
2709
2710 __ bind(&true_value);
2711 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2712
2713 __ bind(&done);
2714 }
2715 }
2716
2717
2718 void LCodeGen::DoReturn(LReturn* instr) {
2719 if (FLAG_trace && info()->IsOptimizing()) {
2720 // Push the return value on the stack as the parameter.
2721 // Runtime::TraceExit returns its parameter in r3. We're leaving the code
2722 // managed by the register allocator and tearing down the frame, it's
2723 // safe to write to the context register.
2724 __ push(r3);
2725 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2726 __ CallRuntime(Runtime::kTraceExit);
2727 }
2728 if (info()->saves_caller_doubles()) {
2729 RestoreCallerDoubles();
2730 }
2731 if (instr->has_constant_parameter_count()) {
2732 int parameter_count = ToInteger32(instr->constant_parameter_count());
2733 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2734 if (NeedsEagerFrame()) {
2735 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
2736 } else if (sp_delta != 0) {
2737 __ addi(sp, sp, Operand(sp_delta));
2738 }
2739 } else {
2740 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2741 Register reg = ToRegister(instr->parameter_count());
2742 // The argument count parameter is a smi
2743 if (NeedsEagerFrame()) {
2744 masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
2745 }
2746 __ SmiToPtrArrayOffset(r0, reg);
2747 __ add(sp, sp, r0);
2748 }
2749
2750 __ blr();
2751 }
2752
2753
2754 template <class T>
2755 void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2756 Register vector_register = ToRegister(instr->temp_vector());
2757 Register slot_register = LoadDescriptor::SlotRegister();
2758 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2759 DCHECK(slot_register.is(r3));
2760
2761 AllowDeferredHandleDereference vector_structure_check;
2762 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2763 __ Move(vector_register, vector);
2764 // No need to allocate this register.
2765 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2766 int index = vector->GetIndex(slot);
2767 __ LoadSmiLiteral(slot_register, Smi::FromInt(index));
2768 }
2769
2770
2771 template <class T>
2772 void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2773 Register vector_register = ToRegister(instr->temp_vector());
2774 Register slot_register = ToRegister(instr->temp_slot());
2775
2776 AllowDeferredHandleDereference vector_structure_check;
2777 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2778 __ Move(vector_register, vector);
2779 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2780 int index = vector->GetIndex(slot);
2781 __ LoadSmiLiteral(slot_register, Smi::FromInt(index));
2782 }
2783
2784
2785 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2786 DCHECK(ToRegister(instr->context()).is(cp));
2787 DCHECK(ToRegister(instr->global_object())
2788 .is(LoadDescriptor::ReceiverRegister()));
2789 DCHECK(ToRegister(instr->result()).is(r3));
2790
2791 __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
2792 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2793 Handle<Code> ic =
2794 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
2795 SLOPPY, PREMONOMORPHIC).code();
2796 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2797 }
2798
2799
2800 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2801 Register context = ToRegister(instr->context());
2802 Register result = ToRegister(instr->result());
2803 __ LoadP(result, ContextMemOperand(context, instr->slot_index()));
2804 if (instr->hydrogen()->RequiresHoleCheck()) {
2805 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2806 if (instr->hydrogen()->DeoptimizesOnHole()) {
2807 __ cmp(result, ip);
2808 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2809 } else {
2810 if (CpuFeatures::IsSupported(ISELECT)) {
2811 Register scratch = scratch0();
2812 __ mov(scratch, Operand(factory()->undefined_value()));
2813 __ cmp(result, ip);
2814 __ isel(eq, result, scratch, result);
2815 } else {
2816 Label skip;
2817 __ cmp(result, ip);
2818 __ bne(&skip);
2819 __ mov(result, Operand(factory()->undefined_value()));
2820 __ bind(&skip);
2821 }
2822 }
2823 }
2824 }
2825
2826
2827 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2828 Register context = ToRegister(instr->context());
2829 Register value = ToRegister(instr->value());
2830 Register scratch = scratch0();
2831 MemOperand target = ContextMemOperand(context, instr->slot_index());
2832
2833 Label skip_assignment;
2834
2835 if (instr->hydrogen()->RequiresHoleCheck()) {
2836 __ LoadP(scratch, target);
2837 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2838 __ cmp(scratch, ip);
2839 if (instr->hydrogen()->DeoptimizesOnHole()) {
2840 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2841 } else {
2842 __ bne(&skip_assignment);
2843 }
2844 }
2845
2846 __ StoreP(value, target, r0);
2847 if (instr->hydrogen()->NeedsWriteBarrier()) {
2848 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
2849 ? OMIT_SMI_CHECK
2850 : INLINE_SMI_CHECK;
2851 __ RecordWriteContextSlot(context, target.offset(), value, scratch,
2852 GetLinkRegisterState(), kSaveFPRegs,
2853 EMIT_REMEMBERED_SET, check_needed);
2854 }
2855
2856 __ bind(&skip_assignment);
2857 }
2858
2859
2860 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2861 HObjectAccess access = instr->hydrogen()->access();
2862 int offset = access.offset();
2863 Register object = ToRegister(instr->object());
2864
2865 if (access.IsExternalMemory()) {
2866 Register result = ToRegister(instr->result());
2867 MemOperand operand = MemOperand(object, offset);
2868 __ LoadRepresentation(result, operand, access.representation(), r0);
2869 return;
2870 }
2871
2872 if (instr->hydrogen()->representation().IsDouble()) {
2873 DCHECK(access.IsInobject());
2874 DoubleRegister result = ToDoubleRegister(instr->result());
2875 __ lfd(result, FieldMemOperand(object, offset));
2876 return;
2877 }
2878
2879 Register result = ToRegister(instr->result());
2880 if (!access.IsInobject()) {
2881 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2882 object = result;
2883 }
2884
2885 Representation representation = access.representation();
2886
2887 #if V8_TARGET_ARCH_PPC64
2888 // 64-bit Smi optimization
2889 if (representation.IsSmi() &&
2890 instr->hydrogen()->representation().IsInteger32()) {
2891 // Read int value directly from upper half of the smi.
2892 offset = SmiWordOffset(offset);
2893 representation = Representation::Integer32();
2894 }
2895 #endif
2896
2897 __ LoadRepresentation(result, FieldMemOperand(object, offset), representation,
2898 r0);
2899 }
2900
2901
2902 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2903 DCHECK(ToRegister(instr->context()).is(cp));
2904 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2905 DCHECK(ToRegister(instr->result()).is(r3));
2906
2907 // Name is always in r5.
2908 __ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
2909 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
2910 Handle<Code> ic =
2911 CodeFactory::LoadICInOptimizedCode(
2912 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
2913 instr->hydrogen()->initialization_state()).code();
2914 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2915 }
2916
2917
2918 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2919 Register scratch = scratch0();
2920 Register function = ToRegister(instr->function());
2921 Register result = ToRegister(instr->result());
2922
2923 // Get the prototype or initial map from the function.
2924 __ LoadP(result,
2925 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2926
2927 // Check that the function has a prototype or an initial map.
2928 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2929 __ cmp(result, ip);
2930 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
2931
2932 // If the function does not have an initial map, we're done.
2933 if (CpuFeatures::IsSupported(ISELECT)) {
2934 // Get the prototype from the initial map (optimistic).
2935 __ LoadP(ip, FieldMemOperand(result, Map::kPrototypeOffset));
2936 __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2937 __ isel(eq, result, ip, result);
2938 } else {
2939 Label done;
2940 __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2941 __ bne(&done);
2942
2943 // Get the prototype from the initial map.
2944 __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
2945
2946 // All done.
2947 __ bind(&done);
2948 }
2949 }
2950
2951
2952 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2953 Register result = ToRegister(instr->result());
2954 __ LoadRoot(result, instr->index());
2955 }
2956
2957
2958 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2959 Register arguments = ToRegister(instr->arguments());
2960 Register result = ToRegister(instr->result());
2961 // There are two words between the frame pointer and the last argument.
2962 // Subtracting from length accounts for one of them add one more.
2963 if (instr->length()->IsConstantOperand()) {
2964 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2965 if (instr->index()->IsConstantOperand()) {
2966 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2967 int index = (const_length - const_index) + 1;
2968 __ LoadP(result, MemOperand(arguments, index * kPointerSize), r0);
2969 } else {
2970 Register index = ToRegister(instr->index());
2971 __ subfic(result, index, Operand(const_length + 1));
2972 __ ShiftLeftImm(result, result, Operand(kPointerSizeLog2));
2973 __ LoadPX(result, MemOperand(arguments, result));
2974 }
2975 } else if (instr->index()->IsConstantOperand()) {
2976 Register length = ToRegister(instr->length());
2977 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2978 int loc = const_index - 1;
2979 if (loc != 0) {
2980 __ subi(result, length, Operand(loc));
2981 __ ShiftLeftImm(result, result, Operand(kPointerSizeLog2));
2982 __ LoadPX(result, MemOperand(arguments, result));
2983 } else {
2984 __ ShiftLeftImm(result, length, Operand(kPointerSizeLog2));
2985 __ LoadPX(result, MemOperand(arguments, result));
2986 }
2987 } else {
2988 Register length = ToRegister(instr->length());
2989 Register index = ToRegister(instr->index());
2990 __ sub(result, length, index);
2991 __ addi(result, result, Operand(1));
2992 __ ShiftLeftImm(result, result, Operand(kPointerSizeLog2));
2993 __ LoadPX(result, MemOperand(arguments, result));
2994 }
2995 }
2996
2997
2998 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2999 Register external_pointer = ToRegister(instr->elements());
3000 Register key = no_reg;
3001 ElementsKind elements_kind = instr->elements_kind();
3002 bool key_is_constant = instr->key()->IsConstantOperand();
3003 int constant_key = 0;
3004 if (key_is_constant) {
3005 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3006 if (constant_key & 0xF0000000) {
3007 Abort(kArrayIndexConstantValueTooBig);
3008 }
3009 } else {
3010 key = ToRegister(instr->key());
3011 }
3012 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3013 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3014 int base_offset = instr->base_offset();
3015
3016 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3017 DoubleRegister result = ToDoubleRegister(instr->result());
3018 if (key_is_constant) {
3019 __ Add(scratch0(), external_pointer, constant_key << element_size_shift,
3020 r0);
3021 } else {
3022 __ IndexToArrayOffset(r0, key, element_size_shift, key_is_smi);
3023 __ add(scratch0(), external_pointer, r0);
3024 }
3025 if (elements_kind == FLOAT32_ELEMENTS) {
3026 __ lfs(result, MemOperand(scratch0(), base_offset));
3027 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
3028 __ lfd(result, MemOperand(scratch0(), base_offset));
3029 }
3030 } else {
3031 Register result = ToRegister(instr->result());
3032 MemOperand mem_operand =
3033 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
3034 constant_key, element_size_shift, base_offset);
3035 switch (elements_kind) {
3036 case INT8_ELEMENTS:
3037 if (key_is_constant) {
3038 __ LoadByte(result, mem_operand, r0);
3039 } else {
3040 __ lbzx(result, mem_operand);
3041 }
3042 __ extsb(result, result);
3043 break;
3044 case UINT8_ELEMENTS:
3045 case UINT8_CLAMPED_ELEMENTS:
3046 if (key_is_constant) {
3047 __ LoadByte(result, mem_operand, r0);
3048 } else {
3049 __ lbzx(result, mem_operand);
3050 }
3051 break;
3052 case INT16_ELEMENTS:
3053 if (key_is_constant) {
3054 __ LoadHalfWordArith(result, mem_operand, r0);
3055 } else {
3056 __ lhax(result, mem_operand);
3057 }
3058 break;
3059 case UINT16_ELEMENTS:
3060 if (key_is_constant) {
3061 __ LoadHalfWord(result, mem_operand, r0);
3062 } else {
3063 __ lhzx(result, mem_operand);
3064 }
3065 break;
3066 case INT32_ELEMENTS:
3067 if (key_is_constant) {
3068 __ LoadWordArith(result, mem_operand, r0);
3069 } else {
3070 __ lwax(result, mem_operand);
3071 }
3072 break;
3073 case UINT32_ELEMENTS:
3074 if (key_is_constant) {
3075 __ LoadWord(result, mem_operand, r0);
3076 } else {
3077 __ lwzx(result, mem_operand);
3078 }
3079 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3080 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
3081 __ cmplw(result, r0);
3082 DeoptimizeIf(ge, instr, Deoptimizer::kNegativeValue);
3083 }
3084 break;
3085 case FLOAT32_ELEMENTS:
3086 case FLOAT64_ELEMENTS:
3087 case FAST_HOLEY_DOUBLE_ELEMENTS:
3088 case FAST_HOLEY_ELEMENTS:
3089 case FAST_HOLEY_SMI_ELEMENTS:
3090 case FAST_DOUBLE_ELEMENTS:
3091 case FAST_ELEMENTS:
3092 case FAST_SMI_ELEMENTS:
3093 case DICTIONARY_ELEMENTS:
3094 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3095 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3096 UNREACHABLE();
3097 break;
3098 }
3099 }
3100 }
3101
3102
3103 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3104 Register elements = ToRegister(instr->elements());
3105 bool key_is_constant = instr->key()->IsConstantOperand();
3106 Register key = no_reg;
3107 DoubleRegister result = ToDoubleRegister(instr->result());
3108 Register scratch = scratch0();
3109
3110 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3111 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3112 int constant_key = 0;
3113 if (key_is_constant) {
3114 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3115 if (constant_key & 0xF0000000) {
3116 Abort(kArrayIndexConstantValueTooBig);
3117 }
3118 } else {
3119 key = ToRegister(instr->key());
3120 }
3121
3122 int base_offset = instr->base_offset() + constant_key * kDoubleSize;
3123 if (!key_is_constant) {
3124 __ IndexToArrayOffset(r0, key, element_size_shift, key_is_smi);
3125 __ add(scratch, elements, r0);
3126 elements = scratch;
3127 }
3128 if (!is_int16(base_offset)) {
3129 __ Add(scratch, elements, base_offset, r0);
3130 base_offset = 0;
3131 elements = scratch;
3132 }
3133 __ lfd(result, MemOperand(elements, base_offset));
3134
3135 if (instr->hydrogen()->RequiresHoleCheck()) {
3136 if (is_int16(base_offset + Register::kExponentOffset)) {
3137 __ lwz(scratch,
3138 MemOperand(elements, base_offset + Register::kExponentOffset));
3139 } else {
3140 __ addi(scratch, elements, Operand(base_offset));
3141 __ lwz(scratch, MemOperand(scratch, Register::kExponentOffset));
3142 }
3143 __ Cmpi(scratch, Operand(kHoleNanUpper32), r0);
3144 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
3145 }
3146 }
3147
3148
3149 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3150 HLoadKeyed* hinstr = instr->hydrogen();
3151 Register elements = ToRegister(instr->elements());
3152 Register result = ToRegister(instr->result());
3153 Register scratch = scratch0();
3154 Register store_base = scratch;
3155 int offset = instr->base_offset();
3156
3157 if (instr->key()->IsConstantOperand()) {
3158 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3159 offset += ToInteger32(const_operand) * kPointerSize;
3160 store_base = elements;
3161 } else {
3162 Register key = ToRegister(instr->key());
3163 // Even though the HLoadKeyed instruction forces the input
3164 // representation for the key to be an integer, the input gets replaced
3165 // during bound check elimination with the index argument to the bounds
3166 // check, which can be tagged, so that case must be handled here, too.
3167 if (hinstr->key()->representation().IsSmi()) {
3168 __ SmiToPtrArrayOffset(r0, key);
3169 } else {
3170 __ ShiftLeftImm(r0, key, Operand(kPointerSizeLog2));
3171 }
3172 __ add(scratch, elements, r0);
3173 }
3174
3175 bool requires_hole_check = hinstr->RequiresHoleCheck();
3176 Representation representation = hinstr->representation();
3177
3178 #if V8_TARGET_ARCH_PPC64
3179 // 64-bit Smi optimization
3180 if (representation.IsInteger32() &&
3181 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
3182 DCHECK(!requires_hole_check);
3183 // Read int value directly from upper half of the smi.
3184 offset = SmiWordOffset(offset);
3185 }
3186 #endif
3187
3188 __ LoadRepresentation(result, MemOperand(store_base, offset), representation,
3189 r0);
3190
3191 // Check for the hole value.
3192 if (requires_hole_check) {
3193 if (IsFastSmiElementsKind(hinstr->elements_kind())) {
3194 __ TestIfSmi(result, r0);
3195 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
3196 } else {
3197 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3198 __ cmp(result, scratch);
3199 DeoptimizeIf(eq, instr, Deoptimizer::kHole);
3200 }
3201 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
3202 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
3203 Label done;
3204 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3205 __ cmp(result, scratch);
3206 __ bne(&done);
3207 if (info()->IsStub()) {
3208 // A stub can safely convert the hole to undefined only if the array
3209 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
3210 // it needs to bail out.
3211 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
3212 __ LoadP(result, FieldMemOperand(result, Cell::kValueOffset));
3213 __ CmpSmiLiteral(result, Smi::FromInt(Isolate::kArrayProtectorValid), r0);
3214 DeoptimizeIf(ne, instr, Deoptimizer::kHole);
3215 }
3216 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3217 __ bind(&done);
3218 }
3219 }
3220
3221
3222 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3223 if (instr->is_fixed_typed_array()) {
3224 DoLoadKeyedExternalArray(instr);
3225 } else if (instr->hydrogen()->representation().IsDouble()) {
3226 DoLoadKeyedFixedDoubleArray(instr);
3227 } else {
3228 DoLoadKeyedFixedArray(instr);
3229 }
3230 }
3231
3232
3233 MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base,
3234 bool key_is_constant, bool key_is_smi,
3235 int constant_key,
3236 int element_size_shift,
3237 int base_offset) {
3238 Register scratch = scratch0();
3239
3240 if (key_is_constant) {
3241 return MemOperand(base, (constant_key << element_size_shift) + base_offset);
3242 }
3243
3244 bool needs_shift =
3245 (element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0));
3246
3247 if (!(base_offset || needs_shift)) {
3248 return MemOperand(base, key);
3249 }
3250
3251 if (needs_shift) {
3252 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
3253 key = scratch;
3254 }
3255
3256 if (base_offset) {
3257 __ Add(scratch, key, base_offset, r0);
3258 }
3259
3260 return MemOperand(base, scratch);
3261 }
3262
3263
3264 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3265 DCHECK(ToRegister(instr->context()).is(cp));
3266 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3267 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3268
3269 if (instr->hydrogen()->HasVectorAndSlot()) {
3270 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3271 }
3272
3273 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
3274 isolate(), instr->hydrogen()->language_mode(),
3275 instr->hydrogen()->initialization_state()).code();
3276 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3277 }
3278
3279
3280 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3281 Register scratch = scratch0();
3282 Register result = ToRegister(instr->result());
3283
3284 if (instr->hydrogen()->from_inlined()) {
3285 __ subi(result, sp, Operand(2 * kPointerSize));
3286 } else {
3287 // Check if the calling frame is an arguments adaptor frame.
3288 __ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3289 __ LoadP(result,
3290 MemOperand(scratch, StandardFrameConstants::kContextOffset));
3291 __ CmpSmiLiteral(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3292
3293 // Result is the frame pointer for the frame if not adapted and for the real
3294 // frame below the adaptor frame if adapted.
3295 if (CpuFeatures::IsSupported(ISELECT)) {
3296 __ isel(eq, result, scratch, fp);
3297 } else {
3298 Label done, adapted;
3299 __ beq(&adapted);
3300 __ mr(result, fp);
3301 __ b(&done);
3302
3303 __ bind(&adapted);
3304 __ mr(result, scratch);
3305 __ bind(&done);
3306 }
3307 }
3308 }
3309
3310
3311 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3312 Register elem = ToRegister(instr->elements());
3313 Register result = ToRegister(instr->result());
3314
3315 Label done;
3316
3317 // If no arguments adaptor frame the number of arguments is fixed.
3318 __ cmp(fp, elem);
3319 __ mov(result, Operand(scope()->num_parameters()));
3320 __ beq(&done);
3321
3322 // Arguments adaptor frame present. Get argument length from there.
3323 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3324 __ LoadP(result,
3325 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3326 __ SmiUntag(result);
3327
3328 // Argument length is in result register.
3329 __ bind(&done);
3330 }
3331
3332
3333 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3334 Register receiver = ToRegister(instr->receiver());
3335 Register function = ToRegister(instr->function());
3336 Register result = ToRegister(instr->result());
3337 Register scratch = scratch0();
3338
3339 // If the receiver is null or undefined, we have to pass the global
3340 // object as a receiver to normal functions. Values have to be
3341 // passed unchanged to builtins and strict-mode functions.
3342 Label global_object, result_in_receiver;
3343
3344 if (!instr->hydrogen()->known_function()) {
3345 // Do not transform the receiver to object for strict mode
3346 // functions or builtins.
3347 __ LoadP(scratch,
3348 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3349 __ lwz(scratch,
3350 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3351 __ andi(r0, scratch, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
3352 (1 << SharedFunctionInfo::kNativeBit)));
3353 __ bne(&result_in_receiver, cr0);
3354 }
3355
3356 // Normal function. Replace undefined or null with global receiver.
3357 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3358 __ cmp(receiver, scratch);
3359 __ beq(&global_object);
3360 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3361 __ cmp(receiver, scratch);
3362 __ beq(&global_object);
3363
3364 // Deoptimize if the receiver is not a JS object.
3365 __ TestIfSmi(receiver, r0);
3366 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
3367 __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
3368 DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject);
3369
3370 __ b(&result_in_receiver);
3371 __ bind(&global_object);
3372 __ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset));
3373 __ LoadP(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3374 __ LoadP(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3375
3376 if (result.is(receiver)) {
3377 __ bind(&result_in_receiver);
3378 } else {
3379 Label result_ok;
3380 __ b(&result_ok);
3381 __ bind(&result_in_receiver);
3382 __ mr(result, receiver);
3383 __ bind(&result_ok);
3384 }
3385 }
3386
3387
3388 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3389 Register receiver = ToRegister(instr->receiver());
3390 Register function = ToRegister(instr->function());
3391 Register length = ToRegister(instr->length());
3392 Register elements = ToRegister(instr->elements());
3393 Register scratch = scratch0();
3394 DCHECK(receiver.is(r3)); // Used for parameter count.
3395 DCHECK(function.is(r4)); // Required by InvokeFunction.
3396 DCHECK(ToRegister(instr->result()).is(r3));
3397
3398 // Copy the arguments to this function possibly from the
3399 // adaptor frame below it.
3400 const uint32_t kArgumentsLimit = 1 * KB;
3401 __ cmpli(length, Operand(kArgumentsLimit));
3402 DeoptimizeIf(gt, instr, Deoptimizer::kTooManyArguments);
3403
3404 // Push the receiver and use the register to keep the original
3405 // number of arguments.
3406 __ push(receiver);
3407 __ mr(receiver, length);
3408 // The arguments are at a one pointer size offset from elements.
3409 __ addi(elements, elements, Operand(1 * kPointerSize));
3410
3411 // Loop through the arguments pushing them onto the execution
3412 // stack.
3413 Label invoke, loop;
3414 // length is a small non-negative integer, due to the test above.
3415 __ cmpi(length, Operand::Zero());
3416 __ beq(&invoke);
3417 __ mtctr(length);
3418 __ bind(&loop);
3419 __ ShiftLeftImm(r0, length, Operand(kPointerSizeLog2));
3420 __ LoadPX(scratch, MemOperand(elements, r0));
3421 __ push(scratch);
3422 __ addi(length, length, Operand(-1));
3423 __ bdnz(&loop);
3424
3425 __ bind(&invoke);
3426 DCHECK(instr->HasPointerMap());
3427 LPointerMap* pointers = instr->pointer_map();
3428 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3429 // The number of arguments is stored in receiver which is r3, as expected
3430 // by InvokeFunction.
3431 ParameterCount actual(receiver);
3432 __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
3433 safepoint_generator);
3434 }
3435
3436
3437 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3438 LOperand* argument = instr->value();
3439 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3440 Abort(kDoPushArgumentNotImplementedForDoubleType);
3441 } else {
3442 Register argument_reg = EmitLoadRegister(argument, ip);
3443 __ push(argument_reg);
3444 }
3445 }
3446
3447
3448 void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); }
3449
3450
3451 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3452 Register result = ToRegister(instr->result());
3453 __ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3454 }
3455
3456
3457 void LCodeGen::DoContext(LContext* instr) {
3458 // If there is a non-return use, the context must be moved to a register.
3459 Register result = ToRegister(instr->result());
3460 if (info()->IsOptimizing()) {
3461 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3462 } else {
3463 // If there is no frame, the context must be in cp.
3464 DCHECK(result.is(cp));
3465 }
3466 }
3467
3468
3469 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3470 DCHECK(ToRegister(instr->context()).is(cp));
3471 __ Move(scratch0(), instr->hydrogen()->pairs());
3472 __ push(scratch0());
3473 __ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags()));
3474 __ push(scratch0());
3475 CallRuntime(Runtime::kDeclareGlobals, instr);
3476 }
3477
3478
3479 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3480 int formal_parameter_count, int arity,
3481 LInstruction* instr) {
3482 bool dont_adapt_arguments =
3483 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3484 bool can_invoke_directly =
3485 dont_adapt_arguments || formal_parameter_count == arity;
3486
3487 Register function_reg = r4;
3488
3489 LPointerMap* pointers = instr->pointer_map();
3490
3491 if (can_invoke_directly) {
3492 // Change context.
3493 __ LoadP(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3494
3495 // Always initialize new target and number of actual arguments.
3496 __ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
3497 __ mov(r3, Operand(arity));
3498
3499 bool is_self_call = function.is_identical_to(info()->closure());
3500
3501 // Invoke function.
3502 if (is_self_call) {
3503 __ CallSelf();
3504 } else {
3505 __ LoadP(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3506 __ CallJSEntry(ip);
3507 }
3508
3509 // Set up deoptimization.
3510 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3511 } else {
3512 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3513 ParameterCount count(arity);
3514 ParameterCount expected(formal_parameter_count);
3515 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
3516 }
3517 }
3518
3519
3520 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3521 DCHECK(instr->context() != NULL);
3522 DCHECK(ToRegister(instr->context()).is(cp));
3523 Register input = ToRegister(instr->value());
3524 Register result = ToRegister(instr->result());
3525 Register scratch = scratch0();
3526
3527 // Deoptimize if not a heap number.
3528 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3529 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3530 __ cmp(scratch, ip);
3531 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
3532
3533 Label done;
3534 Register exponent = scratch0();
3535 scratch = no_reg;
3536 __ lwz(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3537 // Check the sign of the argument. If the argument is positive, just
3538 // return it.
3539 __ cmpwi(exponent, Operand::Zero());
3540 // Move the input to the result if necessary.
3541 __ Move(result, input);
3542 __ bge(&done);
3543
3544 // Input is negative. Reverse its sign.
3545 // Preserve the value of all registers.
3546 {
3547 PushSafepointRegistersScope scope(this);
3548
3549 // Registers were saved at the safepoint, so we can use
3550 // many scratch registers.
3551 Register tmp1 = input.is(r4) ? r3 : r4;
3552 Register tmp2 = input.is(r5) ? r3 : r5;
3553 Register tmp3 = input.is(r6) ? r3 : r6;
3554 Register tmp4 = input.is(r7) ? r3 : r7;
3555
3556 // exponent: floating point exponent value.
3557
3558 Label allocated, slow;
3559 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3560 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3561 __ b(&allocated);
3562
3563 // Slow case: Call the runtime system to do the number allocation.
3564 __ bind(&slow);
3565
3566 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3567 instr->context());
3568 // Set the pointer to the new heap number in tmp.
3569 if (!tmp1.is(r3)) __ mr(tmp1, r3);
3570 // Restore input_reg after call to runtime.
3571 __ LoadFromSafepointRegisterSlot(input, input);
3572 __ lwz(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3573
3574 __ bind(&allocated);
3575 // exponent: floating point exponent value.
3576 // tmp1: allocated heap number.
3577 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
3578 __ clrlwi(exponent, exponent, Operand(1)); // clear sign bit
3579 __ stw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3580 __ lwz(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3581 __ stw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3582
3583 __ StoreToSafepointRegisterSlot(tmp1, result);
3584 }
3585
3586 __ bind(&done);
3587 }
3588
3589
3590 void LCodeGen::EmitMathAbs(LMathAbs* instr) {
3591 Register input = ToRegister(instr->value());
3592 Register result = ToRegister(instr->result());
3593 Label done;
3594 __ cmpi(input, Operand::Zero());
3595 __ Move(result, input);
3596 __ bge(&done);
3597 __ li(r0, Operand::Zero()); // clear xer
3598 __ mtxer(r0);
3599 __ neg(result, result, SetOE, SetRC);
3600 // Deoptimize on overflow.
3601 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
3602 __ bind(&done);
3603 }
3604
3605
3606 #if V8_TARGET_ARCH_PPC64
3607 void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) {
3608 Register input = ToRegister(instr->value());
3609 Register result = ToRegister(instr->result());
3610 Label done;
3611 __ cmpwi(input, Operand::Zero());
3612 __ Move(result, input);
3613 __ bge(&done);
3614
3615 // Deoptimize on overflow.
3616 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
3617 __ cmpw(input, r0);
3618 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
3619
3620 __ neg(result, result);
3621 __ bind(&done);
3622 }
3623 #endif
3624
3625
3626 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3627 // Class for deferred case.
3628 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3629 public:
3630 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3631 : LDeferredCode(codegen), instr_(instr) {}
3632 void Generate() override {
3633 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3634 }
3635 LInstruction* instr() override { return instr_; }
3636
3637 private:
3638 LMathAbs* instr_;
3639 };
3640
3641 Representation r = instr->hydrogen()->value()->representation();
3642 if (r.IsDouble()) {
3643 DoubleRegister input = ToDoubleRegister(instr->value());
3644 DoubleRegister result = ToDoubleRegister(instr->result());
3645 __ fabs(result, input);
3646 #if V8_TARGET_ARCH_PPC64
3647 } else if (r.IsInteger32()) {
3648 EmitInteger32MathAbs(instr);
3649 } else if (r.IsSmi()) {
3650 #else
3651 } else if (r.IsSmiOrInteger32()) {
3652 #endif
3653 EmitMathAbs(instr);
3654 } else {
3655 // Representation is tagged.
3656 DeferredMathAbsTaggedHeapNumber* deferred =
3657 new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3658 Register input = ToRegister(instr->value());
3659 // Smi check.
3660 __ JumpIfNotSmi(input, deferred->entry());
3661 // If smi, handle it directly.
3662 EmitMathAbs(instr);
3663 __ bind(deferred->exit());
3664 }
3665 }
3666
3667
3668 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3669 DoubleRegister input = ToDoubleRegister(instr->value());
3670 Register result = ToRegister(instr->result());
3671 Register input_high = scratch0();
3672 Register scratch = ip;
3673 Label done, exact;
3674
3675 __ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done,
3676 &exact);
3677 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
3678
3679 __ bind(&exact);
3680 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3681 // Test for -0.
3682 __ cmpi(result, Operand::Zero());
3683 __ bne(&done);
3684 __ cmpwi(input_high, Operand::Zero());
3685 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
3686 }
3687 __ bind(&done);
3688 }
3689
3690
3691 void LCodeGen::DoMathRound(LMathRound* instr) {
3692 DoubleRegister input = ToDoubleRegister(instr->value());
3693 Register result = ToRegister(instr->result());
3694 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3695 DoubleRegister input_plus_dot_five = double_scratch1;
3696 Register scratch1 = scratch0();
3697 Register scratch2 = ip;
3698 DoubleRegister dot_five = double_scratch0();
3699 Label convert, done;
3700
3701 __ LoadDoubleLiteral(dot_five, 0.5, r0);
3702 __ fabs(double_scratch1, input);
3703 __ fcmpu(double_scratch1, dot_five);
3704 DeoptimizeIf(unordered, instr, Deoptimizer::kLostPrecisionOrNaN);
3705 // If input is in [-0.5, -0], the result is -0.
3706 // If input is in [+0, +0.5[, the result is +0.
3707 // If the input is +0.5, the result is 1.
3708 __ bgt(&convert); // Out of [-0.5, +0.5].
3709 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3710 #if V8_TARGET_ARCH_PPC64
3711 __ MovDoubleToInt64(scratch1, input);
3712 #else
3713 __ MovDoubleHighToInt(scratch1, input);
3714 #endif
3715 __ cmpi(scratch1, Operand::Zero());
3716 // [-0.5, -0].
3717 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
3718 }
3719 __ fcmpu(input, dot_five);
3720 if (CpuFeatures::IsSupported(ISELECT)) {
3721 __ li(result, Operand(1));
3722 __ isel(lt, result, r0, result);
3723 __ b(&done);
3724 } else {
3725 Label return_zero;
3726 __ bne(&return_zero);
3727 __ li(result, Operand(1)); // +0.5.
3728 __ b(&done);
3729 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
3730 // flag kBailoutOnMinusZero.
3731 __ bind(&return_zero);
3732 __ li(result, Operand::Zero());
3733 __ b(&done);
3734 }
3735
3736 __ bind(&convert);
3737 __ fadd(input_plus_dot_five, input, dot_five);
3738 // Reuse dot_five (double_scratch0) as we no longer need this value.
3739 __ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2,
3740 double_scratch0(), &done, &done);
3741 DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
3742 __ bind(&done);
3743 }
3744
3745
3746 void LCodeGen::DoMathFround(LMathFround* instr) {
3747 DoubleRegister input_reg = ToDoubleRegister(instr->value());
3748 DoubleRegister output_reg = ToDoubleRegister(instr->result());
3749 __ frsp(output_reg, input_reg);
3750 }
3751
3752
3753 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3754 DoubleRegister input = ToDoubleRegister(instr->value());
3755 DoubleRegister result = ToDoubleRegister(instr->result());
3756 __ fsqrt(result, input);
3757 }
3758
3759
3760 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3761 DoubleRegister input = ToDoubleRegister(instr->value());
3762 DoubleRegister result = ToDoubleRegister(instr->result());
3763 DoubleRegister temp = double_scratch0();
3764
3765 // Note that according to ECMA-262 15.8.2.13:
3766 // Math.pow(-Infinity, 0.5) == Infinity
3767 // Math.sqrt(-Infinity) == NaN
3768 Label skip, done;
3769
3770 __ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0());
3771 __ fcmpu(input, temp);
3772 __ bne(&skip);
3773 __ fneg(result, temp);
3774 __ b(&done);
3775
3776 // Add +0 to convert -0 to +0.
3777 __ bind(&skip);
3778 __ fadd(result, input, kDoubleRegZero);
3779 __ fsqrt(result, result);
3780 __ bind(&done);
3781 }
3782
3783
3784 void LCodeGen::DoPower(LPower* instr) {
3785 Representation exponent_type = instr->hydrogen()->right()->representation();
3786 // Having marked this as a call, we can use any registers.
3787 // Just make sure that the input/output registers are the expected ones.
3788 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3789 DCHECK(!instr->right()->IsDoubleRegister() ||
3790 ToDoubleRegister(instr->right()).is(d2));
3791 DCHECK(!instr->right()->IsRegister() ||
3792 ToRegister(instr->right()).is(tagged_exponent));
3793 DCHECK(ToDoubleRegister(instr->left()).is(d1));
3794 DCHECK(ToDoubleRegister(instr->result()).is(d3));
3795
3796 if (exponent_type.IsSmi()) {
3797 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3798 __ CallStub(&stub);
3799 } else if (exponent_type.IsTagged()) {
3800 Label no_deopt;
3801 __ JumpIfSmi(tagged_exponent, &no_deopt);
3802 DCHECK(!r10.is(tagged_exponent));
3803 __ LoadP(r10, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3804 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3805 __ cmp(r10, ip);
3806 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
3807 __ bind(&no_deopt);
3808 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3809 __ CallStub(&stub);
3810 } else if (exponent_type.IsInteger32()) {
3811 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3812 __ CallStub(&stub);
3813 } else {
3814 DCHECK(exponent_type.IsDouble());
3815 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3816 __ CallStub(&stub);
3817 }
3818 }
3819
3820
3821 void LCodeGen::DoMathExp(LMathExp* instr) {
3822 DoubleRegister input = ToDoubleRegister(instr->value());
3823 DoubleRegister result = ToDoubleRegister(instr->result());
3824 DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
3825 DoubleRegister double_scratch2 = double_scratch0();
3826 Register temp1 = ToRegister(instr->temp1());
3827 Register temp2 = ToRegister(instr->temp2());
3828
3829 MathExpGenerator::EmitMathExp(masm(), input, result, double_scratch1,
3830 double_scratch2, temp1, temp2, scratch0());
3831 }
3832
3833
3834 void LCodeGen::DoMathLog(LMathLog* instr) {
3835 __ PrepareCallCFunction(0, 1, scratch0());
3836 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3837 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 0,
3838 1);
3839 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3840 }
3841
3842
3843 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3844 Register input = ToRegister(instr->value());
3845 Register result = ToRegister(instr->result());
3846 __ cntlzw_(result, input);
3847 }
3848
3849
3850 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3851 DCHECK(ToRegister(instr->context()).is(cp));
3852 DCHECK(ToRegister(instr->function()).is(r4));
3853 DCHECK(instr->HasPointerMap());
3854
3855 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3856 if (known_function.is_null()) {
3857 LPointerMap* pointers = instr->pointer_map();
3858 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3859 ParameterCount count(instr->arity());
3860 __ InvokeFunction(r4, no_reg, count, CALL_FUNCTION, generator);
3861 } else {
3862 CallKnownFunction(known_function,
3863 instr->hydrogen()->formal_parameter_count(),
3864 instr->arity(), instr);
3865 }
3866 }
3867
3868
3869 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3870 DCHECK(ToRegister(instr->result()).is(r3));
3871
3872 if (instr->hydrogen()->IsTailCall()) {
3873 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3874
3875 if (instr->target()->IsConstantOperand()) {
3876 LConstantOperand* target = LConstantOperand::cast(instr->target());
3877 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3878 __ Jump(code, RelocInfo::CODE_TARGET);
3879 } else {
3880 DCHECK(instr->target()->IsRegister());
3881 Register target = ToRegister(instr->target());
3882 __ addi(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3883 __ JumpToJSEntry(ip);
3884 }
3885 } else {
3886 LPointerMap* pointers = instr->pointer_map();
3887 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3888
3889 if (instr->target()->IsConstantOperand()) {
3890 LConstantOperand* target = LConstantOperand::cast(instr->target());
3891 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3892 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3893 __ Call(code, RelocInfo::CODE_TARGET);
3894 } else {
3895 DCHECK(instr->target()->IsRegister());
3896 Register target = ToRegister(instr->target());
3897 generator.BeforeCall(__ CallSize(target));
3898 __ addi(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3899 __ CallJSEntry(ip);
3900 }
3901 generator.AfterCall();
3902 }
3903 }
3904
3905
3906 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3907 DCHECK(ToRegister(instr->function()).is(r4));
3908 DCHECK(ToRegister(instr->result()).is(r3));
3909
3910 // Change context.
3911 __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
3912
3913 // Always initialize new target and number of actual arguments.
3914 __ LoadRoot(r6, Heap::kUndefinedValueRootIndex);
3915 __ mov(r3, Operand(instr->arity()));
3916
3917 bool is_self_call = false;
3918 if (instr->hydrogen()->function()->IsConstant()) {
3919 HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
3920 Handle<JSFunction> jsfun =
3921 Handle<JSFunction>::cast(fun_const->handle(isolate()));
3922 is_self_call = jsfun.is_identical_to(info()->closure());
3923 }
3924
3925 if (is_self_call) {
3926 __ CallSelf();
3927 } else {
3928 __ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
3929 __ CallJSEntry(ip);
3930 }
3931
3932 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3933 }
3934
3935
3936 void LCodeGen::DoCallFunction(LCallFunction* instr) {
3937 DCHECK(ToRegister(instr->context()).is(cp));
3938 DCHECK(ToRegister(instr->function()).is(r4));
3939 DCHECK(ToRegister(instr->result()).is(r3));
3940
3941 int arity = instr->arity();
3942 ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
3943 if (instr->hydrogen()->HasVectorAndSlot()) {
3944 Register slot_register = ToRegister(instr->temp_slot());
3945 Register vector_register = ToRegister(instr->temp_vector());
3946 DCHECK(slot_register.is(r6));
3947 DCHECK(vector_register.is(r5));
3948
3949 AllowDeferredHandleDereference vector_structure_check;
3950 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3951 int index = vector->GetIndex(instr->hydrogen()->slot());
3952
3953 __ Move(vector_register, vector);
3954 __ LoadSmiLiteral(slot_register, Smi::FromInt(index));
3955
3956 Handle<Code> ic =
3957 CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
3958 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3959 } else {
3960 __ mov(r3, Operand(arity));
3961 CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
3962 }
3963 }
3964
3965
3966 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3967 DCHECK(ToRegister(instr->context()).is(cp));
3968 DCHECK(ToRegister(instr->constructor()).is(r4));
3969 DCHECK(ToRegister(instr->result()).is(r3));
3970
3971 __ mov(r3, Operand(instr->arity()));
3972 if (instr->arity() == 1) {
3973 // We only need the allocation site for the case we have a length argument.
3974 // The case may bail out to the runtime, which will determine the correct
3975 // elements kind with the site.
3976 __ Move(r5, instr->hydrogen()->site());
3977 } else {
3978 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
3979 }
3980 ElementsKind kind = instr->hydrogen()->elements_kind();
3981 AllocationSiteOverrideMode override_mode =
3982 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3983 ? DISABLE_ALLOCATION_SITES
3984 : DONT_OVERRIDE;
3985
3986 if (instr->arity() == 0) {
3987 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3988 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3989 } else if (instr->arity() == 1) {
3990 Label done;
3991 if (IsFastPackedElementsKind(kind)) {
3992 Label packed_case;
3993 // We might need a change here
3994 // look at the first argument
3995 __ LoadP(r8, MemOperand(sp, 0));
3996 __ cmpi(r8, Operand::Zero());
3997 __ beq(&packed_case);
3998
3999 ElementsKind holey_kind = GetHoleyElementsKind(kind);
4000 ArraySingleArgumentConstructorStub stub(isolate(), holey_kind,
4001 override_mode);
4002 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4003 __ b(&done);
4004 __ bind(&packed_case);
4005 }
4006
4007 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
4008 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4009 __ bind(&done);
4010 } else {
4011 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
4012 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4013 }
4014 }
4015
4016
4017 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
4018 CallRuntime(instr->function(), instr->arity(), instr);
4019 }
4020
4021
4022 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4023 Register function = ToRegister(instr->function());
4024 Register code_object = ToRegister(instr->code_object());
4025 __ addi(code_object, code_object,
4026 Operand(Code::kHeaderSize - kHeapObjectTag));
4027 __ StoreP(code_object,
4028 FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0);
4029 }
4030
4031
4032 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
4033 Register result = ToRegister(instr->result());
4034 Register base = ToRegister(instr->base_object());
4035 if (instr->offset()->IsConstantOperand()) {
4036 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
4037 __ Add(result, base, ToInteger32(offset), r0);
4038 } else {
4039 Register offset = ToRegister(instr->offset());
4040 __ add(result, base, offset);
4041 }
4042 }
4043
4044
4045 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
4046 HStoreNamedField* hinstr = instr->hydrogen();
4047 Representation representation = instr->representation();
4048
4049 Register object = ToRegister(instr->object());
4050 Register scratch = scratch0();
4051 HObjectAccess access = hinstr->access();
4052 int offset = access.offset();
4053
4054 if (access.IsExternalMemory()) {
4055 Register value = ToRegister(instr->value());
4056 MemOperand operand = MemOperand(object, offset);
4057 __ StoreRepresentation(value, operand, representation, r0);
4058 return;
4059 }
4060
4061 __ AssertNotSmi(object);
4062
4063 #if V8_TARGET_ARCH_PPC64
4064 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
4065 IsInteger32(LConstantOperand::cast(instr->value())));
4066 #else
4067 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
4068 IsSmi(LConstantOperand::cast(instr->value())));
4069 #endif
4070 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
4071 DCHECK(access.IsInobject());
4072 DCHECK(!hinstr->has_transition());
4073 DCHECK(!hinstr->NeedsWriteBarrier());
4074 DoubleRegister value = ToDoubleRegister(instr->value());
4075 __ stfd(value, FieldMemOperand(object, offset));
4076 return;
4077 }
4078
4079 if (hinstr->has_transition()) {
4080 Handle<Map> transition = hinstr->transition_map();
4081 AddDeprecationDependency(transition);
4082 __ mov(scratch, Operand(transition));
4083 __ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0);
4084 if (hinstr->NeedsWriteBarrierForMap()) {
4085 Register temp = ToRegister(instr->temp());
4086 // Update the write barrier for the map field.
4087 __ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(),
4088 kSaveFPRegs);
4089 }
4090 }
4091
4092 // Do the store.
4093 Register record_dest = object;
4094 Register record_value = no_reg;
4095 Register record_scratch = scratch;
4096 #if V8_TARGET_ARCH_PPC64
4097 if (FLAG_unbox_double_fields && representation.IsDouble()) {
4098 DCHECK(access.IsInobject());
4099 DoubleRegister value = ToDoubleRegister(instr->value());
4100 __ stfd(value, FieldMemOperand(object, offset));
4101 if (hinstr->NeedsWriteBarrier()) {
4102 record_value = ToRegister(instr->value());
4103 }
4104 } else {
4105 if (representation.IsSmi() &&
4106 hinstr->value()->representation().IsInteger32()) {
4107 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4108 // 64-bit Smi optimization
4109 // Store int value directly to upper half of the smi.
4110 offset = SmiWordOffset(offset);
4111 representation = Representation::Integer32();
4112 }
4113 #endif
4114 if (access.IsInobject()) {
4115 Register value = ToRegister(instr->value());
4116 MemOperand operand = FieldMemOperand(object, offset);
4117 __ StoreRepresentation(value, operand, representation, r0);
4118 record_value = value;
4119 } else {
4120 Register value = ToRegister(instr->value());
4121 __ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
4122 MemOperand operand = FieldMemOperand(scratch, offset);
4123 __ StoreRepresentation(value, operand, representation, r0);
4124 record_dest = scratch;
4125 record_value = value;
4126 record_scratch = object;
4127 }
4128 #if V8_TARGET_ARCH_PPC64
4129 }
4130 #endif
4131
4132 if (hinstr->NeedsWriteBarrier()) {
4133 __ RecordWriteField(record_dest, offset, record_value, record_scratch,
4134 GetLinkRegisterState(), kSaveFPRegs,
4135 EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
4136 hinstr->PointersToHereCheckForValue());
4137 }
4138 }
4139
4140
4141 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
4142 DCHECK(ToRegister(instr->context()).is(cp));
4143 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4144 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4145
4146 if (instr->hydrogen()->HasVectorAndSlot()) {
4147 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
4148 }
4149
4150 __ mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
4151 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
4152 isolate(), instr->language_mode(),
4153 instr->hydrogen()->initialization_state()).code();
4154 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4155 }
4156
4157
4158 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
4159 Representation representation = instr->hydrogen()->length()->representation();
4160 DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
4161 DCHECK(representation.IsSmiOrInteger32());
4162
4163 Condition cc = instr->hydrogen()->allow_equality() ? lt : le;
4164 if (instr->length()->IsConstantOperand()) {
4165 int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
4166 Register index = ToRegister(instr->index());
4167 if (representation.IsSmi()) {
4168 __ Cmpli(index, Operand(Smi::FromInt(length)), r0);
4169 } else {
4170 __ Cmplwi(index, Operand(length), r0);
4171 }
4172 cc = CommuteCondition(cc);
4173 } else if (instr->index()->IsConstantOperand()) {
4174 int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
4175 Register length = ToRegister(instr->length());
4176 if (representation.IsSmi()) {
4177 __ Cmpli(length, Operand(Smi::FromInt(index)), r0);
4178 } else {
4179 __ Cmplwi(length, Operand(index), r0);
4180 }
4181 } else {
4182 Register index = ToRegister(instr->index());
4183 Register length = ToRegister(instr->length());
4184 if (representation.IsSmi()) {
4185 __ cmpl(length, index);
4186 } else {
4187 __ cmplw(length, index);
4188 }
4189 }
4190 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4191 Label done;
4192 __ b(NegateCondition(cc), &done);
4193 __ stop("eliminated bounds check failed");
4194 __ bind(&done);
4195 } else {
4196 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
4197 }
4198 }
4199
4200
4201 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4202 Register external_pointer = ToRegister(instr->elements());
4203 Register key = no_reg;
4204 ElementsKind elements_kind = instr->elements_kind();
4205 bool key_is_constant = instr->key()->IsConstantOperand();
4206 int constant_key = 0;
4207 if (key_is_constant) {
4208 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4209 if (constant_key & 0xF0000000) {
4210 Abort(kArrayIndexConstantValueTooBig);
4211 }
4212 } else {
4213 key = ToRegister(instr->key());
4214 }
4215 int element_size_shift = ElementsKindToShiftSize(elements_kind);
4216 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4217 int base_offset = instr->base_offset();
4218
4219 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
4220 Register address = scratch0();
4221 DoubleRegister value(ToDoubleRegister(instr->value()));
4222 if (key_is_constant) {
4223 if (constant_key != 0) {
4224 __ Add(address, external_pointer, constant_key << element_size_shift,
4225 r0);
4226 } else {
4227 address = external_pointer;
4228 }
4229 } else {
4230 __ IndexToArrayOffset(r0, key, element_size_shift, key_is_smi);
4231 __ add(address, external_pointer, r0);
4232 }
4233 if (elements_kind == FLOAT32_ELEMENTS) {
4234 __ frsp(double_scratch0(), value);
4235 __ stfs(double_scratch0(), MemOperand(address, base_offset));
4236 } else { // Storing doubles, not floats.
4237 __ stfd(value, MemOperand(address, base_offset));
4238 }
4239 } else {
4240 Register value(ToRegister(instr->value()));
4241 MemOperand mem_operand =
4242 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
4243 constant_key, element_size_shift, base_offset);
4244 switch (elements_kind) {
4245 case UINT8_ELEMENTS:
4246 case UINT8_CLAMPED_ELEMENTS:
4247 case INT8_ELEMENTS:
4248 if (key_is_constant) {
4249 __ StoreByte(value, mem_operand, r0);
4250 } else {
4251 __ stbx(value, mem_operand);
4252 }
4253 break;
4254 case INT16_ELEMENTS:
4255 case UINT16_ELEMENTS:
4256 if (key_is_constant) {
4257 __ StoreHalfWord(value, mem_operand, r0);
4258 } else {
4259 __ sthx(value, mem_operand);
4260 }
4261 break;
4262 case INT32_ELEMENTS:
4263 case UINT32_ELEMENTS:
4264 if (key_is_constant) {
4265 __ StoreWord(value, mem_operand, r0);
4266 } else {
4267 __ stwx(value, mem_operand);
4268 }
4269 break;
4270 case FLOAT32_ELEMENTS:
4271 case FLOAT64_ELEMENTS:
4272 case FAST_DOUBLE_ELEMENTS:
4273 case FAST_ELEMENTS:
4274 case FAST_SMI_ELEMENTS:
4275 case FAST_HOLEY_DOUBLE_ELEMENTS:
4276 case FAST_HOLEY_ELEMENTS:
4277 case FAST_HOLEY_SMI_ELEMENTS:
4278 case DICTIONARY_ELEMENTS:
4279 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4280 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
4281 UNREACHABLE();
4282 break;
4283 }
4284 }
4285 }
4286
4287
4288 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4289 DoubleRegister value = ToDoubleRegister(instr->value());
4290 Register elements = ToRegister(instr->elements());
4291 Register key = no_reg;
4292 Register scratch = scratch0();
4293 DoubleRegister double_scratch = double_scratch0();
4294 bool key_is_constant = instr->key()->IsConstantOperand();
4295 int constant_key = 0;
4296
4297 // Calculate the effective address of the slot in the array to store the
4298 // double value.
4299 if (key_is_constant) {
4300 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4301 if (constant_key & 0xF0000000) {
4302 Abort(kArrayIndexConstantValueTooBig);
4303 }
4304 } else {
4305 key = ToRegister(instr->key());
4306 }
4307 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4308 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4309 int base_offset = instr->base_offset() + constant_key * kDoubleSize;
4310 if (!key_is_constant) {
4311 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
4312 __ add(scratch, elements, scratch);
4313 elements = scratch;
4314 }
4315 if (!is_int16(base_offset)) {
4316 __ Add(scratch, elements, base_offset, r0);
4317 base_offset = 0;
4318 elements = scratch;
4319 }
4320
4321 if (instr->NeedsCanonicalization()) {
4322 // Turn potential sNaN value into qNaN.
4323 __ CanonicalizeNaN(double_scratch, value);
4324 __ stfd(double_scratch, MemOperand(elements, base_offset));
4325 } else {
4326 __ stfd(value, MemOperand(elements, base_offset));
4327 }
4328 }
4329
4330
4331 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4332 HStoreKeyed* hinstr = instr->hydrogen();
4333 Register value = ToRegister(instr->value());
4334 Register elements = ToRegister(instr->elements());
4335 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4336 Register scratch = scratch0();
4337 Register store_base = scratch;
4338 int offset = instr->base_offset();
4339
4340 // Do the store.
4341 if (instr->key()->IsConstantOperand()) {
4342 DCHECK(!hinstr->NeedsWriteBarrier());
4343 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4344 offset += ToInteger32(const_operand) * kPointerSize;
4345 store_base = elements;
4346 } else {
4347 // Even though the HLoadKeyed instruction forces the input
4348 // representation for the key to be an integer, the input gets replaced
4349 // during bound check elimination with the index argument to the bounds
4350 // check, which can be tagged, so that case must be handled here, too.
4351 if (hinstr->key()->representation().IsSmi()) {
4352 __ SmiToPtrArrayOffset(scratch, key);
4353 } else {
4354 __ ShiftLeftImm(scratch, key, Operand(kPointerSizeLog2));
4355 }
4356 __ add(scratch, elements, scratch);
4357 }
4358
4359 Representation representation = hinstr->value()->representation();
4360
4361 #if V8_TARGET_ARCH_PPC64
4362 // 64-bit Smi optimization
4363 if (representation.IsInteger32()) {
4364 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4365 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
4366 // Store int value directly to upper half of the smi.
4367 offset = SmiWordOffset(offset);
4368 }
4369 #endif
4370
4371 __ StoreRepresentation(value, MemOperand(store_base, offset), representation,
4372 r0);
4373
4374 if (hinstr->NeedsWriteBarrier()) {
4375 SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4376 ? OMIT_SMI_CHECK
4377 : INLINE_SMI_CHECK;
4378 // Compute address of modified element and store it into key register.
4379 __ Add(key, store_base, offset, r0);
4380 __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
4381 EMIT_REMEMBERED_SET, check_needed,
4382 hinstr->PointersToHereCheckForValue());
4383 }
4384 }
4385
4386
4387 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4388 // By cases: external, fast double
4389 if (instr->is_fixed_typed_array()) {
4390 DoStoreKeyedExternalArray(instr);
4391 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4392 DoStoreKeyedFixedDoubleArray(instr);
4393 } else {
4394 DoStoreKeyedFixedArray(instr);
4395 }
4396 }
4397
4398
4399 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4400 DCHECK(ToRegister(instr->context()).is(cp));
4401 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4402 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4403 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4404
4405 if (instr->hydrogen()->HasVectorAndSlot()) {
4406 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4407 }
4408
4409 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4410 isolate(), instr->language_mode(),
4411 instr->hydrogen()->initialization_state()).code();
4412 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4413 }
4414
4415
4416 void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4417 class DeferredMaybeGrowElements final : public LDeferredCode {
4418 public:
4419 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4420 : LDeferredCode(codegen), instr_(instr) {}
4421 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4422 LInstruction* instr() override { return instr_; }
4423
4424 private:
4425 LMaybeGrowElements* instr_;
4426 };
4427
4428 Register result = r3;
4429 DeferredMaybeGrowElements* deferred =
4430 new (zone()) DeferredMaybeGrowElements(this, instr);
4431 LOperand* key = instr->key();
4432 LOperand* current_capacity = instr->current_capacity();
4433
4434 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4435 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4436 DCHECK(key->IsConstantOperand() || key->IsRegister());
4437 DCHECK(current_capacity->IsConstantOperand() ||
4438 current_capacity->IsRegister());
4439
4440 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4441 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4442 int32_t constant_capacity =
4443 ToInteger32(LConstantOperand::cast(current_capacity));
4444 if (constant_key >= constant_capacity) {
4445 // Deferred case.
4446 __ b(deferred->entry());
4447 }
4448 } else if (key->IsConstantOperand()) {
4449 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4450 __ Cmpwi(ToRegister(current_capacity), Operand(constant_key), r0);
4451 __ ble(deferred->entry());
4452 } else if (current_capacity->IsConstantOperand()) {
4453 int32_t constant_capacity =
4454 ToInteger32(LConstantOperand::cast(current_capacity));
4455 __ Cmpwi(ToRegister(key), Operand(constant_capacity), r0);
4456 __ bge(deferred->entry());
4457 } else {
4458 __ cmpw(ToRegister(key), ToRegister(current_capacity));
4459 __ bge(deferred->entry());
4460 }
4461
4462 if (instr->elements()->IsRegister()) {
4463 __ Move(result, ToRegister(instr->elements()));
4464 } else {
4465 __ LoadP(result, ToMemOperand(instr->elements()));
4466 }
4467
4468 __ bind(deferred->exit());
4469 }
4470
4471
4472 void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4473 // TODO(3095996): Get rid of this. For now, we need to make the
4474 // result register contain a valid pointer because it is already
4475 // contained in the register pointer map.
4476 Register result = r3;
4477 __ li(result, Operand::Zero());
4478
4479 // We have to call a stub.
4480 {
4481 PushSafepointRegistersScope scope(this);
4482 if (instr->object()->IsRegister()) {
4483 __ Move(result, ToRegister(instr->object()));
4484 } else {
4485 __ LoadP(result, ToMemOperand(instr->object()));
4486 }
4487
4488 LOperand* key = instr->key();
4489 if (key->IsConstantOperand()) {
4490 __ LoadSmiLiteral(r6, ToSmi(LConstantOperand::cast(key)));
4491 } else {
4492 __ SmiTag(r6, ToRegister(key));
4493 }
4494
4495 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4496 instr->hydrogen()->kind());
4497 __ CallStub(&stub);
4498 RecordSafepointWithLazyDeopt(
4499 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4500 __ StoreToSafepointRegisterSlot(result, result);
4501 }
4502
4503 // Deopt on smi, which means the elements array changed to dictionary mode.
4504 __ TestIfSmi(result, r0);
4505 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
4506 }
4507
4508
4509 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4510 Register object_reg = ToRegister(instr->object());
4511 Register scratch = scratch0();
4512
4513 Handle<Map> from_map = instr->original_map();
4514 Handle<Map> to_map = instr->transitioned_map();
4515 ElementsKind from_kind = instr->from_kind();
4516 ElementsKind to_kind = instr->to_kind();
4517
4518 Label not_applicable;
4519 __ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4520 __ Cmpi(scratch, Operand(from_map), r0);
4521 __ bne(¬_applicable);
4522
4523 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4524 Register new_map_reg = ToRegister(instr->new_map_temp());
4525 __ mov(new_map_reg, Operand(to_map));
4526 __ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset),
4527 r0);
4528 // Write barrier.
4529 __ RecordWriteForMap(object_reg, new_map_reg, scratch,
4530 GetLinkRegisterState(), kDontSaveFPRegs);
4531 } else {
4532 DCHECK(ToRegister(instr->context()).is(cp));
4533 DCHECK(object_reg.is(r3));
4534 PushSafepointRegistersScope scope(this);
4535 __ Move(r4, to_map);
4536 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4537 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4538 __ CallStub(&stub);
4539 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4540 Safepoint::kLazyDeopt);
4541 }
4542 __ bind(¬_applicable);
4543 }
4544
4545
4546 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4547 Register object = ToRegister(instr->object());
4548 Register temp = ToRegister(instr->temp());
4549 Label no_memento_found;
4550 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4551 DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
4552 __ bind(&no_memento_found);
4553 }
4554
4555
4556 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4557 DCHECK(ToRegister(instr->context()).is(cp));
4558 DCHECK(ToRegister(instr->left()).is(r4));
4559 DCHECK(ToRegister(instr->right()).is(r3));
4560 StringAddStub stub(isolate(), instr->hydrogen()->flags(),
4561 instr->hydrogen()->pretenure_flag());
4562 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4563 }
4564
4565
4566 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4567 class DeferredStringCharCodeAt final : public LDeferredCode {
4568 public:
4569 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4570 : LDeferredCode(codegen), instr_(instr) {}
4571 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4572 LInstruction* instr() override { return instr_; }
4573
4574 private:
4575 LStringCharCodeAt* instr_;
4576 };
4577
4578 DeferredStringCharCodeAt* deferred =
4579 new (zone()) DeferredStringCharCodeAt(this, instr);
4580
4581 StringCharLoadGenerator::Generate(
4582 masm(), ToRegister(instr->string()), ToRegister(instr->index()),
4583 ToRegister(instr->result()), deferred->entry());
4584 __ bind(deferred->exit());
4585 }
4586
4587
4588 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4589 Register string = ToRegister(instr->string());
4590 Register result = ToRegister(instr->result());
4591 Register scratch = scratch0();
4592
4593 // TODO(3095996): Get rid of this. For now, we need to make the
4594 // result register contain a valid pointer because it is already
4595 // contained in the register pointer map.
4596 __ li(result, Operand::Zero());
4597
4598 PushSafepointRegistersScope scope(this);
4599 __ push(string);
4600 // Push the index as a smi. This is safe because of the checks in
4601 // DoStringCharCodeAt above.
4602 if (instr->index()->IsConstantOperand()) {
4603 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4604 __ LoadSmiLiteral(scratch, Smi::FromInt(const_index));
4605 __ push(scratch);
4606 } else {
4607 Register index = ToRegister(instr->index());
4608 __ SmiTag(index);
4609 __ push(index);
4610 }
4611 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4612 instr->context());
4613 __ AssertSmi(r3);
4614 __ SmiUntag(r3);
4615 __ StoreToSafepointRegisterSlot(r3, result);
4616 }
4617
4618
4619 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4620 class DeferredStringCharFromCode final : public LDeferredCode {
4621 public:
4622 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4623 : LDeferredCode(codegen), instr_(instr) {}
4624 void Generate() override {
4625 codegen()->DoDeferredStringCharFromCode(instr_);
4626 }
4627 LInstruction* instr() override { return instr_; }
4628
4629 private:
4630 LStringCharFromCode* instr_;
4631 };
4632
4633 DeferredStringCharFromCode* deferred =
4634 new (zone()) DeferredStringCharFromCode(this, instr);
4635
4636 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4637 Register char_code = ToRegister(instr->char_code());
4638 Register result = ToRegister(instr->result());
4639 DCHECK(!char_code.is(result));
4640
4641 __ cmpli(char_code, Operand(String::kMaxOneByteCharCode));
4642 __ bgt(deferred->entry());
4643 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4644 __ ShiftLeftImm(r0, char_code, Operand(kPointerSizeLog2));
4645 __ add(result, result, r0);
4646 __ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4647 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4648 __ cmp(result, ip);
4649 __ beq(deferred->entry());
4650 __ bind(deferred->exit());
4651 }
4652
4653
4654 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4655 Register char_code = ToRegister(instr->char_code());
4656 Register result = ToRegister(instr->result());
4657
4658 // TODO(3095996): Get rid of this. For now, we need to make the
4659 // result register contain a valid pointer because it is already
4660 // contained in the register pointer map.
4661 __ li(result, Operand::Zero());
4662
4663 PushSafepointRegistersScope scope(this);
4664 __ SmiTag(char_code);
4665 __ push(char_code);
4666 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4667 instr->context());
4668 __ StoreToSafepointRegisterSlot(r3, result);
4669 }
4670
4671
4672 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4673 LOperand* input = instr->value();
4674 DCHECK(input->IsRegister() || input->IsStackSlot());
4675 LOperand* output = instr->result();
4676 DCHECK(output->IsDoubleRegister());
4677 if (input->IsStackSlot()) {
4678 Register scratch = scratch0();
4679 __ LoadP(scratch, ToMemOperand(input));
4680 __ ConvertIntToDouble(scratch, ToDoubleRegister(output));
4681 } else {
4682 __ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output));
4683 }
4684 }
4685
4686
4687 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4688 LOperand* input = instr->value();
4689 LOperand* output = instr->result();
4690 __ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output));
4691 }
4692
4693
4694 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4695 class DeferredNumberTagI final : public LDeferredCode {
4696 public:
4697 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4698 : LDeferredCode(codegen), instr_(instr) {}
4699 void Generate() override {
4700 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4701 instr_->temp2(), SIGNED_INT32);
4702 }
4703 LInstruction* instr() override { return instr_; }
4704
4705 private:
4706 LNumberTagI* instr_;
4707 };
4708
4709 Register src = ToRegister(instr->value());
4710 Register dst = ToRegister(instr->result());
4711
4712 DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr);
4713 #if V8_TARGET_ARCH_PPC64
4714 __ SmiTag(dst, src);
4715 #else
4716 __ SmiTagCheckOverflow(dst, src, r0);
4717 __ BranchOnOverflow(deferred->entry());
4718 #endif
4719 __ bind(deferred->exit());
4720 }
4721
4722
4723 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4724 class DeferredNumberTagU final : public LDeferredCode {
4725 public:
4726 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4727 : LDeferredCode(codegen), instr_(instr) {}
4728 void Generate() override {
4729 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4730 instr_->temp2(), UNSIGNED_INT32);
4731 }
4732 LInstruction* instr() override { return instr_; }
4733
4734 private:
4735 LNumberTagU* instr_;
4736 };
4737
4738 Register input = ToRegister(instr->value());
4739 Register result = ToRegister(instr->result());
4740
4741 DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr);
4742 __ Cmpli(input, Operand(Smi::kMaxValue), r0);
4743 __ bgt(deferred->entry());
4744 __ SmiTag(result, input);
4745 __ bind(deferred->exit());
4746 }
4747
4748
4749 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value,
4750 LOperand* temp1, LOperand* temp2,
4751 IntegerSignedness signedness) {
4752 Label done, slow;
4753 Register src = ToRegister(value);
4754 Register dst = ToRegister(instr->result());
4755 Register tmp1 = scratch0();
4756 Register tmp2 = ToRegister(temp1);
4757 Register tmp3 = ToRegister(temp2);
4758 DoubleRegister dbl_scratch = double_scratch0();
4759
4760 if (signedness == SIGNED_INT32) {
4761 // There was overflow, so bits 30 and 31 of the original integer
4762 // disagree. Try to allocate a heap number in new space and store
4763 // the value in there. If that fails, call the runtime system.
4764 if (dst.is(src)) {
4765 __ SmiUntag(src, dst);
4766 __ xoris(src, src, Operand(HeapNumber::kSignMask >> 16));
4767 }
4768 __ ConvertIntToDouble(src, dbl_scratch);
4769 } else {
4770 __ ConvertUnsignedIntToDouble(src, dbl_scratch);
4771 }
4772
4773 if (FLAG_inline_new) {
4774 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4775 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4776 __ b(&done);
4777 }
4778
4779 // Slow case: Call the runtime system to do the number allocation.
4780 __ bind(&slow);
4781 {
4782 // TODO(3095996): Put a valid pointer value in the stack slot where the
4783 // result register is stored, as this register is in the pointer map, but
4784 // contains an integer value.
4785 __ li(dst, Operand::Zero());
4786
4787 // Preserve the value of all registers.
4788 PushSafepointRegistersScope scope(this);
4789
4790 // NumberTagI and NumberTagD use the context from the frame, rather than
4791 // the environment's HContext or HInlinedContext value.
4792 // They only call Runtime::kAllocateHeapNumber.
4793 // The corresponding HChange instructions are added in a phase that does
4794 // not have easy access to the local context.
4795 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4796 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4797 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4798 Safepoint::kNoLazyDeopt);
4799 __ StoreToSafepointRegisterSlot(r3, dst);
4800 }
4801
4802 // Done. Put the value in dbl_scratch into the value of the allocated heap
4803 // number.
4804 __ bind(&done);
4805 __ stfd(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4806 }
4807
4808
4809 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4810 class DeferredNumberTagD final : public LDeferredCode {
4811 public:
4812 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4813 : LDeferredCode(codegen), instr_(instr) {}
4814 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4815 LInstruction* instr() override { return instr_; }
4816
4817 private:
4818 LNumberTagD* instr_;
4819 };
4820
4821 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4822 Register scratch = scratch0();
4823 Register reg = ToRegister(instr->result());
4824 Register temp1 = ToRegister(instr->temp());
4825 Register temp2 = ToRegister(instr->temp2());
4826
4827 DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr);
4828 if (FLAG_inline_new) {
4829 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4830 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4831 } else {
4832 __ b(deferred->entry());
4833 }
4834 __ bind(deferred->exit());
4835 __ stfd(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4836 }
4837
4838
4839 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4840 // TODO(3095996): Get rid of this. For now, we need to make the
4841 // result register contain a valid pointer because it is already
4842 // contained in the register pointer map.
4843 Register reg = ToRegister(instr->result());
4844 __ li(reg, Operand::Zero());
4845
4846 PushSafepointRegistersScope scope(this);
4847 // NumberTagI and NumberTagD use the context from the frame, rather than
4848 // the environment's HContext or HInlinedContext value.
4849 // They only call Runtime::kAllocateHeapNumber.
4850 // The corresponding HChange instructions are added in a phase that does
4851 // not have easy access to the local context.
4852 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4853 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4854 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4855 Safepoint::kNoLazyDeopt);
4856 __ StoreToSafepointRegisterSlot(r3, reg);
4857 }
4858
4859
4860 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4861 HChange* hchange = instr->hydrogen();
4862 Register input = ToRegister(instr->value());
4863 Register output = ToRegister(instr->result());
4864 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4865 hchange->value()->CheckFlag(HValue::kUint32)) {
4866 __ TestUnsignedSmiCandidate(input, r0);
4867 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, cr0);
4868 }
4869 #if !V8_TARGET_ARCH_PPC64
4870 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4871 !hchange->value()->CheckFlag(HValue::kUint32)) {
4872 __ SmiTagCheckOverflow(output, input, r0);
4873 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
4874 } else {
4875 #endif
4876 __ SmiTag(output, input);
4877 #if !V8_TARGET_ARCH_PPC64
4878 }
4879 #endif
4880 }
4881
4882
4883 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4884 Register scratch = scratch0();
4885 Register input = ToRegister(instr->value());
4886 Register result = ToRegister(instr->result());
4887 if (instr->needs_check()) {
4888 // If the input is a HeapObject, value of scratch won't be zero.
4889 __ andi(scratch, input, Operand(kHeapObjectTag));
4890 __ SmiUntag(result, input);
4891 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
4892 } else {
4893 __ SmiUntag(result, input);
4894 }
4895 }
4896
4897
4898 void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4899 DoubleRegister result_reg,
4900 NumberUntagDMode mode) {
4901 bool can_convert_undefined_to_nan =
4902 instr->hydrogen()->can_convert_undefined_to_nan();
4903 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4904
4905 Register scratch = scratch0();
4906 DCHECK(!result_reg.is(double_scratch0()));
4907
4908 Label convert, load_smi, done;
4909
4910 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4911 // Smi check.
4912 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4913
4914 // Heap number map check.
4915 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4916 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4917 __ cmp(scratch, ip);
4918 if (can_convert_undefined_to_nan) {
4919 __ bne(&convert);
4920 } else {
4921 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
4922 }
4923 // load heap number
4924 __ lfd(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4925 if (deoptimize_on_minus_zero) {
4926 #if V8_TARGET_ARCH_PPC64
4927 __ MovDoubleToInt64(scratch, result_reg);
4928 // rotate left by one for simple compare.
4929 __ rldicl(scratch, scratch, 1, 0);
4930 __ cmpi(scratch, Operand(1));
4931 #else
4932 __ MovDoubleToInt64(scratch, ip, result_reg);
4933 __ cmpi(ip, Operand::Zero());
4934 __ bne(&done);
4935 __ Cmpi(scratch, Operand(HeapNumber::kSignMask), r0);
4936 #endif
4937 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
4938 }
4939 __ b(&done);
4940 if (can_convert_undefined_to_nan) {
4941 __ bind(&convert);
4942 // Convert undefined (and hole) to NaN.
4943 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4944 __ cmp(input_reg, ip);
4945 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
4946 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4947 __ lfd(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4948 __ b(&done);
4949 }
4950 } else {
4951 __ SmiUntag(scratch, input_reg);
4952 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4953 }
4954 // Smi to double register conversion
4955 __ bind(&load_smi);
4956 // scratch: untagged value of input_reg
4957 __ ConvertIntToDouble(scratch, result_reg);
4958 __ bind(&done);
4959 }
4960
4961
4962 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4963 Register input_reg = ToRegister(instr->value());
4964 Register scratch1 = scratch0();
4965 Register scratch2 = ToRegister(instr->temp());
4966 DoubleRegister double_scratch = double_scratch0();
4967 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4968
4969 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4970 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4971
4972 Label done;
4973
4974 // Heap number map check.
4975 __ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4976 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4977 __ cmp(scratch1, ip);
4978
4979 if (instr->truncating()) {
4980 // Performs a truncating conversion of a floating point number as used by
4981 // the JS bitwise operations.
4982 Label no_heap_number, check_bools, check_false;
4983 __ bne(&no_heap_number);
4984 __ mr(scratch2, input_reg);
4985 __ TruncateHeapNumberToI(input_reg, scratch2);
4986 __ b(&done);
4987
4988 // Check for Oddballs. Undefined/False is converted to zero and True to one
4989 // for truncating conversions.
4990 __ bind(&no_heap_number);
4991 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4992 __ cmp(input_reg, ip);
4993 __ bne(&check_bools);
4994 __ li(input_reg, Operand::Zero());
4995 __ b(&done);
4996
4997 __ bind(&check_bools);
4998 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
4999 __ cmp(input_reg, ip);
5000 __ bne(&check_false);
5001 __ li(input_reg, Operand(1));
5002 __ b(&done);
5003
5004 __ bind(&check_false);
5005 __ LoadRoot(ip, Heap::kFalseValueRootIndex);
5006 __ cmp(input_reg, ip);
5007 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean);
5008 __ li(input_reg, Operand::Zero());
5009 } else {
5010 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
5011
5012 __ lfd(double_scratch2,
5013 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5014 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5015 // preserve heap number pointer in scratch2 for minus zero check below
5016 __ mr(scratch2, input_reg);
5017 }
5018 __ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1,
5019 double_scratch);
5020 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
5021
5022 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5023 __ cmpi(input_reg, Operand::Zero());
5024 __ bne(&done);
5025 __ lwz(scratch1,
5026 FieldMemOperand(scratch2, HeapNumber::kValueOffset +
5027 Register::kExponentOffset));
5028 __ cmpwi(scratch1, Operand::Zero());
5029 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
5030 }
5031 }
5032 __ bind(&done);
5033 }
5034
5035
5036 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5037 class DeferredTaggedToI final : public LDeferredCode {
5038 public:
5039 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5040 : LDeferredCode(codegen), instr_(instr) {}
5041 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
5042 LInstruction* instr() override { return instr_; }
5043
5044 private:
5045 LTaggedToI* instr_;
5046 };
5047
5048 LOperand* input = instr->value();
5049 DCHECK(input->IsRegister());
5050 DCHECK(input->Equals(instr->result()));
5051
5052 Register input_reg = ToRegister(input);
5053
5054 if (instr->hydrogen()->value()->representation().IsSmi()) {
5055 __ SmiUntag(input_reg);
5056 } else {
5057 DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr);
5058
5059 // Branch to deferred code if the input is a HeapObject.
5060 __ JumpIfNotSmi(input_reg, deferred->entry());
5061
5062 __ SmiUntag(input_reg);
5063 __ bind(deferred->exit());
5064 }
5065 }
5066
5067
5068 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
5069 LOperand* input = instr->value();
5070 DCHECK(input->IsRegister());
5071 LOperand* result = instr->result();
5072 DCHECK(result->IsDoubleRegister());
5073
5074 Register input_reg = ToRegister(input);
5075 DoubleRegister result_reg = ToDoubleRegister(result);
5076
5077 HValue* value = instr->hydrogen()->value();
5078 NumberUntagDMode mode = value->representation().IsSmi()
5079 ? NUMBER_CANDIDATE_IS_SMI
5080 : NUMBER_CANDIDATE_IS_ANY_TAGGED;
5081
5082 EmitNumberUntagD(instr, input_reg, result_reg, mode);
5083 }
5084
5085
5086 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
5087 Register result_reg = ToRegister(instr->result());
5088 Register scratch1 = scratch0();
5089 DoubleRegister double_input = ToDoubleRegister(instr->value());
5090 DoubleRegister double_scratch = double_scratch0();
5091
5092 if (instr->truncating()) {
5093 __ TruncateDoubleToI(result_reg, double_input);
5094 } else {
5095 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
5096 double_scratch);
5097 // Deoptimize if the input wasn't a int32 (inside a double).
5098 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
5099 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5100 Label done;
5101 __ cmpi(result_reg, Operand::Zero());
5102 __ bne(&done);
5103 #if V8_TARGET_ARCH_PPC64
5104 __ MovDoubleToInt64(scratch1, double_input);
5105 #else
5106 __ MovDoubleHighToInt(scratch1, double_input);
5107 #endif
5108 __ cmpi(scratch1, Operand::Zero());
5109 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
5110 __ bind(&done);
5111 }
5112 }
5113 }
5114
5115
5116 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
5117 Register result_reg = ToRegister(instr->result());
5118 Register scratch1 = scratch0();
5119 DoubleRegister double_input = ToDoubleRegister(instr->value());
5120 DoubleRegister double_scratch = double_scratch0();
5121
5122 if (instr->truncating()) {
5123 __ TruncateDoubleToI(result_reg, double_input);
5124 } else {
5125 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
5126 double_scratch);
5127 // Deoptimize if the input wasn't a int32 (inside a double).
5128 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
5129 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5130 Label done;
5131 __ cmpi(result_reg, Operand::Zero());
5132 __ bne(&done);
5133 #if V8_TARGET_ARCH_PPC64
5134 __ MovDoubleToInt64(scratch1, double_input);
5135 #else
5136 __ MovDoubleHighToInt(scratch1, double_input);
5137 #endif
5138 __ cmpi(scratch1, Operand::Zero());
5139 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
5140 __ bind(&done);
5141 }
5142 }
5143 #if V8_TARGET_ARCH_PPC64
5144 __ SmiTag(result_reg);
5145 #else
5146 __ SmiTagCheckOverflow(result_reg, r0);
5147 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
5148 #endif
5149 }
5150
5151
5152 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
5153 LOperand* input = instr->value();
5154 __ TestIfSmi(ToRegister(input), r0);
5155 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
5156 }
5157
5158
5159 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
5160 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
5161 LOperand* input = instr->value();
5162 __ TestIfSmi(ToRegister(input), r0);
5163 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
5164 }
5165 }
5166
5167
5168 void LCodeGen::DoCheckArrayBufferNotNeutered(
5169 LCheckArrayBufferNotNeutered* instr) {
5170 Register view = ToRegister(instr->view());
5171 Register scratch = scratch0();
5172
5173 __ LoadP(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
5174 __ lwz(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
5175 __ andi(r0, scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
5176 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds, cr0);
5177 }
5178
5179
5180 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
5181 Register input = ToRegister(instr->value());
5182 Register scratch = scratch0();
5183
5184 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5185 __ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
5186
5187 if (instr->hydrogen()->is_interval_check()) {
5188 InstanceType first;
5189 InstanceType last;
5190 instr->hydrogen()->GetCheckInterval(&first, &last);
5191
5192 __ cmpli(scratch, Operand(first));
5193
5194 // If there is only one type in the interval check for equality.
5195 if (first == last) {
5196 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
5197 } else {
5198 DeoptimizeIf(lt, instr, Deoptimizer::kWrongInstanceType);
5199 // Omit check for the last type.
5200 if (last != LAST_TYPE) {
5201 __ cmpli(scratch, Operand(last));
5202 DeoptimizeIf(gt, instr, Deoptimizer::kWrongInstanceType);
5203 }
5204 }
5205 } else {
5206 uint8_t mask;
5207 uint8_t tag;
5208 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
5209
5210 if (base::bits::IsPowerOfTwo32(mask)) {
5211 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
5212 __ andi(r0, scratch, Operand(mask));
5213 DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType,
5214 cr0);
5215 } else {
5216 __ andi(scratch, scratch, Operand(mask));
5217 __ cmpi(scratch, Operand(tag));
5218 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
5219 }
5220 }
5221 }
5222
5223
5224 void LCodeGen::DoCheckValue(LCheckValue* instr) {
5225 Register reg = ToRegister(instr->value());
5226 Handle<HeapObject> object = instr->hydrogen()->object().handle();
5227 AllowDeferredHandleDereference smi_check;
5228 if (isolate()->heap()->InNewSpace(*object)) {
5229 Register reg = ToRegister(instr->value());
5230 Handle<Cell> cell = isolate()->factory()->NewCell(object);
5231 __ mov(ip, Operand(cell));
5232 __ LoadP(ip, FieldMemOperand(ip, Cell::kValueOffset));
5233 __ cmp(reg, ip);
5234 } else {
5235 __ Cmpi(reg, Operand(object), r0);
5236 }
5237 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
5238 }
5239
5240
5241 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
5242 Register temp = ToRegister(instr->temp());
5243 {
5244 PushSafepointRegistersScope scope(this);
5245 __ push(object);
5246 __ li(cp, Operand::Zero());
5247 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
5248 RecordSafepointWithRegisters(instr->pointer_map(), 1,
5249 Safepoint::kNoLazyDeopt);
5250 __ StoreToSafepointRegisterSlot(r3, temp);
5251 }
5252 __ TestIfSmi(temp, r0);
5253 DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, cr0);
5254 }
5255
5256
5257 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5258 class DeferredCheckMaps final : public LDeferredCode {
5259 public:
5260 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
5261 : LDeferredCode(codegen), instr_(instr), object_(object) {
5262 SetExit(check_maps());
5263 }
5264 void Generate() override {
5265 codegen()->DoDeferredInstanceMigration(instr_, object_);
5266 }
5267 Label* check_maps() { return &check_maps_; }
5268 LInstruction* instr() override { return instr_; }
5269
5270 private:
5271 LCheckMaps* instr_;
5272 Label check_maps_;
5273 Register object_;
5274 };
5275
5276 if (instr->hydrogen()->IsStabilityCheck()) {
5277 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5278 for (int i = 0; i < maps->size(); ++i) {
5279 AddStabilityDependency(maps->at(i).handle());
5280 }
5281 return;
5282 }
5283
5284 Register object = ToRegister(instr->value());
5285 Register map_reg = ToRegister(instr->temp());
5286
5287 __ LoadP(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
5288
5289 DeferredCheckMaps* deferred = NULL;
5290 if (instr->hydrogen()->HasMigrationTarget()) {
5291 deferred = new (zone()) DeferredCheckMaps(this, instr, object);
5292 __ bind(deferred->check_maps());
5293 }
5294
5295 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5296 Label success;
5297 for (int i = 0; i < maps->size() - 1; i++) {
5298 Handle<Map> map = maps->at(i).handle();
5299 __ CompareMap(map_reg, map, &success);
5300 __ beq(&success);
5301 }
5302
5303 Handle<Map> map = maps->at(maps->size() - 1).handle();
5304 __ CompareMap(map_reg, map, &success);
5305 if (instr->hydrogen()->HasMigrationTarget()) {
5306 __ bne(deferred->entry());
5307 } else {
5308 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5309 }
5310
5311 __ bind(&success);
5312 }
5313
5314
5315 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5316 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5317 Register result_reg = ToRegister(instr->result());
5318 __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
5319 }
5320
5321
5322 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5323 Register unclamped_reg = ToRegister(instr->unclamped());
5324 Register result_reg = ToRegister(instr->result());
5325 __ ClampUint8(result_reg, unclamped_reg);
5326 }
5327
5328
5329 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5330 Register scratch = scratch0();
5331 Register input_reg = ToRegister(instr->unclamped());
5332 Register result_reg = ToRegister(instr->result());
5333 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5334 Label is_smi, done, heap_number;
5335
5336 // Both smi and heap number cases are handled.
5337 __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
5338
5339 // Check for heap number
5340 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5341 __ Cmpi(scratch, Operand(factory()->heap_number_map()), r0);
5342 __ beq(&heap_number);
5343
5344 // Check for undefined. Undefined is converted to zero for clamping
5345 // conversions.
5346 __ Cmpi(input_reg, Operand(factory()->undefined_value()), r0);
5347 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
5348 __ li(result_reg, Operand::Zero());
5349 __ b(&done);
5350
5351 // Heap number
5352 __ bind(&heap_number);
5353 __ lfd(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5354 __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
5355 __ b(&done);
5356
5357 // smi
5358 __ bind(&is_smi);
5359 __ ClampUint8(result_reg, result_reg);
5360
5361 __ bind(&done);
5362 }
5363
5364
5365 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5366 DoubleRegister value_reg = ToDoubleRegister(instr->value());
5367 Register result_reg = ToRegister(instr->result());
5368
5369 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5370 __ MovDoubleHighToInt(result_reg, value_reg);
5371 } else {
5372 __ MovDoubleLowToInt(result_reg, value_reg);
5373 }
5374 }
5375
5376
5377 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5378 Register hi_reg = ToRegister(instr->hi());
5379 Register lo_reg = ToRegister(instr->lo());
5380 DoubleRegister result_reg = ToDoubleRegister(instr->result());
5381 #if V8_TARGET_ARCH_PPC64
5382 __ MovInt64ComponentsToDouble(result_reg, hi_reg, lo_reg, r0);
5383 #else
5384 __ MovInt64ToDouble(result_reg, hi_reg, lo_reg);
5385 #endif
5386 }
5387
5388
5389 void LCodeGen::DoAllocate(LAllocate* instr) {
5390 class DeferredAllocate final : public LDeferredCode {
5391 public:
5392 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5393 : LDeferredCode(codegen), instr_(instr) {}
5394 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5395 LInstruction* instr() override { return instr_; }
5396
5397 private:
5398 LAllocate* instr_;
5399 };
5400
5401 DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr);
5402
5403 Register result = ToRegister(instr->result());
5404 Register scratch = ToRegister(instr->temp1());
5405 Register scratch2 = ToRegister(instr->temp2());
5406
5407 // Allocate memory for the object.
5408 AllocationFlags flags = TAG_OBJECT;
5409 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5410 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5411 }
5412 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5413 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5414 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5415 }
5416
5417 if (instr->size()->IsConstantOperand()) {
5418 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5419 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5420 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5421 } else {
5422 Register size = ToRegister(instr->size());
5423 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5424 }
5425
5426 __ bind(deferred->exit());
5427
5428 if (instr->hydrogen()->MustPrefillWithFiller()) {
5429 if (instr->size()->IsConstantOperand()) {
5430 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5431 __ LoadIntLiteral(scratch, size - kHeapObjectTag);
5432 } else {
5433 __ subi(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
5434 }
5435 __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5436 Label loop;
5437 __ bind(&loop);
5438 __ subi(scratch, scratch, Operand(kPointerSize));
5439 __ StorePX(scratch2, MemOperand(result, scratch));
5440 __ cmpi(scratch, Operand::Zero());
5441 __ bge(&loop);
5442 }
5443 }
5444
5445
5446 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5447 Register result = ToRegister(instr->result());
5448
5449 // TODO(3095996): Get rid of this. For now, we need to make the
5450 // result register contain a valid pointer because it is already
5451 // contained in the register pointer map.
5452 __ LoadSmiLiteral(result, Smi::FromInt(0));
5453
5454 PushSafepointRegistersScope scope(this);
5455 if (instr->size()->IsRegister()) {
5456 Register size = ToRegister(instr->size());
5457 DCHECK(!size.is(result));
5458 __ SmiTag(size);
5459 __ push(size);
5460 } else {
5461 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5462 #if !V8_TARGET_ARCH_PPC64
5463 if (size >= 0 && size <= Smi::kMaxValue) {
5464 #endif
5465 __ Push(Smi::FromInt(size));
5466 #if !V8_TARGET_ARCH_PPC64
5467 } else {
5468 // We should never get here at runtime => abort
5469 __ stop("invalid allocation size");
5470 return;
5471 }
5472 #endif
5473 }
5474
5475 int flags = AllocateDoubleAlignFlag::encode(
5476 instr->hydrogen()->MustAllocateDoubleAligned());
5477 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5478 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5479 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5480 } else {
5481 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5482 }
5483 __ Push(Smi::FromInt(flags));
5484
5485 CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr,
5486 instr->context());
5487 __ StoreToSafepointRegisterSlot(r3, result);
5488 }
5489
5490
5491 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5492 DCHECK(ToRegister(instr->value()).is(r3));
5493 __ push(r3);
5494 CallRuntime(Runtime::kToFastProperties, 1, instr);
5495 }
5496
5497
5498 void LCodeGen::DoTypeof(LTypeof* instr) {
5499 DCHECK(ToRegister(instr->value()).is(r6));
5500 DCHECK(ToRegister(instr->result()).is(r3));
5501 Label end, do_call;
5502 Register value_register = ToRegister(instr->value());
5503 __ JumpIfNotSmi(value_register, &do_call);
5504 __ mov(r3, Operand(isolate()->factory()->number_string()));
5505 __ b(&end);
5506 __ bind(&do_call);
5507 TypeofStub stub(isolate());
5508 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5509 __ bind(&end);
5510 }
5511
5512
5513 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5514 Register input = ToRegister(instr->value());
5515
5516 Condition final_branch_condition =
5517 EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input,
5518 instr->type_literal());
5519 if (final_branch_condition != kNoCondition) {
5520 EmitBranch(instr, final_branch_condition);
5521 }
5522 }
5523
5524
5525 Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label,
5526 Register input, Handle<String> type_name) {
5527 Condition final_branch_condition = kNoCondition;
5528 Register scratch = scratch0();
5529 Factory* factory = isolate()->factory();
5530 if (String::Equals(type_name, factory->number_string())) {
5531 __ JumpIfSmi(input, true_label);
5532 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5533 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
5534 final_branch_condition = eq;
5535
5536 } else if (String::Equals(type_name, factory->string_string())) {
5537 __ JumpIfSmi(input, false_label);
5538 __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
5539 final_branch_condition = lt;
5540
5541 } else if (String::Equals(type_name, factory->symbol_string())) {
5542 __ JumpIfSmi(input, false_label);
5543 __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
5544 final_branch_condition = eq;
5545
5546 } else if (String::Equals(type_name, factory->boolean_string())) {
5547 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5548 __ beq(true_label);
5549 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5550 final_branch_condition = eq;
5551
5552 } else if (String::Equals(type_name, factory->undefined_string())) {
5553 __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
5554 __ beq(true_label);
5555 __ JumpIfSmi(input, false_label);
5556 // Check for undetectable objects => true.
5557 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5558 __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5559 __ ExtractBit(r0, scratch, Map::kIsUndetectable);
5560 __ cmpi(r0, Operand::Zero());
5561 final_branch_condition = ne;
5562
5563 } else if (String::Equals(type_name, factory->function_string())) {
5564 __ JumpIfSmi(input, false_label);
5565 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5566 __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5567 __ andi(scratch, scratch,
5568 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5569 __ cmpi(scratch, Operand(1 << Map::kIsCallable));
5570 final_branch_condition = eq;
5571
5572 } else if (String::Equals(type_name, factory->object_string())) {
5573 __ JumpIfSmi(input, false_label);
5574 __ CompareRoot(input, Heap::kNullValueRootIndex);
5575 __ beq(true_label);
5576 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5577 __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
5578 __ blt(false_label);
5579 // Check for callable or undetectable objects => false.
5580 __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5581 __ andi(r0, scratch,
5582 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5583 __ cmpi(r0, Operand::Zero());
5584 final_branch_condition = eq;
5585
5586 // clang-format off
5587 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5588 } else if (String::Equals(type_name, factory->type##_string())) { \
5589 __ JumpIfSmi(input, false_label); \
5590 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
5591 __ CompareRoot(scratch, Heap::k##Type##MapRootIndex); \
5592 final_branch_condition = eq;
5593 SIMD128_TYPES(SIMD128_TYPE)
5594 #undef SIMD128_TYPE
5595 // clang-format on
5596
5597 } else {
5598 __ b(false_label);
5599 }
5600
5601 return final_branch_condition;
5602 }
5603
5604
5605 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5606 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5607 // Ensure that we have enough space after the previous lazy-bailout
5608 // instruction for patching the code here.
5609 int current_pc = masm()->pc_offset();
5610 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5611 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5612 DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5613 while (padding_size > 0) {
5614 __ nop();
5615 padding_size -= Assembler::kInstrSize;
5616 }
5617 }
5618 }
5619 last_lazy_deopt_pc_ = masm()->pc_offset();
5620 }
5621
5622
5623 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5624 last_lazy_deopt_pc_ = masm()->pc_offset();
5625 DCHECK(instr->HasEnvironment());
5626 LEnvironment* env = instr->environment();
5627 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5628 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5629 }
5630
5631
5632 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5633 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5634 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5635 // needed return address), even though the implementation of LAZY and EAGER is
5636 // now identical. When LAZY is eventually completely folded into EAGER, remove
5637 // the special case below.
5638 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5639 type = Deoptimizer::LAZY;
5640 }
5641
5642 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
5643 }
5644
5645
5646 void LCodeGen::DoDummy(LDummy* instr) {
5647 // Nothing to see here, move on!
5648 }
5649
5650
5651 void LCodeGen::DoDummyUse(LDummyUse* instr) {
5652 // Nothing to see here, move on!
5653 }
5654
5655
5656 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5657 PushSafepointRegistersScope scope(this);
5658 LoadContextFromDeferred(instr->context());
5659 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5660 RecordSafepointWithLazyDeopt(
5661 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5662 DCHECK(instr->HasEnvironment());
5663 LEnvironment* env = instr->environment();
5664 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5665 }
5666
5667
5668 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5669 class DeferredStackCheck final : public LDeferredCode {
5670 public:
5671 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5672 : LDeferredCode(codegen), instr_(instr) {}
5673 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5674 LInstruction* instr() override { return instr_; }
5675
5676 private:
5677 LStackCheck* instr_;
5678 };
5679
5680 DCHECK(instr->HasEnvironment());
5681 LEnvironment* env = instr->environment();
5682 // There is no LLazyBailout instruction for stack-checks. We have to
5683 // prepare for lazy deoptimization explicitly here.
5684 if (instr->hydrogen()->is_function_entry()) {
5685 // Perform stack overflow check.
5686 Label done;
5687 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5688 __ cmpl(sp, ip);
5689 __ bge(&done);
5690 DCHECK(instr->context()->IsRegister());
5691 DCHECK(ToRegister(instr->context()).is(cp));
5692 CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET,
5693 instr);
5694 __ bind(&done);
5695 } else {
5696 DCHECK(instr->hydrogen()->is_backwards_branch());
5697 // Perform stack overflow check if this goto needs it before jumping.
5698 DeferredStackCheck* deferred_stack_check =
5699 new (zone()) DeferredStackCheck(this, instr);
5700 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5701 __ cmpl(sp, ip);
5702 __ blt(deferred_stack_check->entry());
5703 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5704 __ bind(instr->done_label());
5705 deferred_stack_check->SetExit(instr->done_label());
5706 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5707 // Don't record a deoptimization index for the safepoint here.
5708 // This will be done explicitly when emitting call and the safepoint in
5709 // the deferred code.
5710 }
5711 }
5712
5713
5714 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5715 // This is a pseudo-instruction that ensures that the environment here is
5716 // properly registered for deoptimization and records the assembler's PC
5717 // offset.
5718 LEnvironment* environment = instr->environment();
5719
5720 // If the environment were already registered, we would have no way of
5721 // backpatching it with the spill slot operands.
5722 DCHECK(!environment->HasBeenRegistered());
5723 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5724
5725 GenerateOsrPrologue();
5726 }
5727
5728
5729 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5730 __ TestIfSmi(r3, r0);
5731 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
5732
5733 STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
5734 __ CompareObjectType(r3, r4, r4, JS_PROXY_TYPE);
5735 DeoptimizeIf(le, instr, Deoptimizer::kWrongInstanceType);
5736
5737 Label use_cache, call_runtime;
5738 Register null_value = r8;
5739 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5740 __ CheckEnumCache(null_value, &call_runtime);
5741
5742 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
5743 __ b(&use_cache);
5744
5745 // Get the set of properties to enumerate.
5746 __ bind(&call_runtime);
5747 __ push(r3);
5748 CallRuntime(Runtime::kGetPropertyNamesFast, instr);
5749
5750 __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
5751 __ LoadRoot(ip, Heap::kMetaMapRootIndex);
5752 __ cmp(r4, ip);
5753 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5754 __ bind(&use_cache);
5755 }
5756
5757
5758 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5759 Register map = ToRegister(instr->map());
5760 Register result = ToRegister(instr->result());
5761 Label load_cache, done;
5762 __ EnumLength(result, map);
5763 __ CmpSmiLiteral(result, Smi::FromInt(0), r0);
5764 __ bne(&load_cache);
5765 __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
5766 __ b(&done);
5767
5768 __ bind(&load_cache);
5769 __ LoadInstanceDescriptors(map, result);
5770 __ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5771 __ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5772 __ cmpi(result, Operand::Zero());
5773 DeoptimizeIf(eq, instr, Deoptimizer::kNoCache);
5774
5775 __ bind(&done);
5776 }
5777
5778
5779 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5780 Register object = ToRegister(instr->value());
5781 Register map = ToRegister(instr->map());
5782 __ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5783 __ cmp(map, scratch0());
5784 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
5785 }
5786
5787
5788 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5789 Register result, Register object,
5790 Register index) {
5791 PushSafepointRegistersScope scope(this);
5792 __ Push(object, index);
5793 __ li(cp, Operand::Zero());
5794 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5795 RecordSafepointWithRegisters(instr->pointer_map(), 2,
5796 Safepoint::kNoLazyDeopt);
5797 __ StoreToSafepointRegisterSlot(r3, result);
5798 }
5799
5800
5801 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5802 class DeferredLoadMutableDouble final : public LDeferredCode {
5803 public:
5804 DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr,
5805 Register result, Register object, Register index)
5806 : LDeferredCode(codegen),
5807 instr_(instr),
5808 result_(result),
5809 object_(object),
5810 index_(index) {}
5811 void Generate() override {
5812 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5813 }
5814 LInstruction* instr() override { return instr_; }
5815
5816 private:
5817 LLoadFieldByIndex* instr_;
5818 Register result_;
5819 Register object_;
5820 Register index_;
5821 };
5822
5823 Register object = ToRegister(instr->object());
5824 Register index = ToRegister(instr->index());
5825 Register result = ToRegister(instr->result());
5826 Register scratch = scratch0();
5827
5828 DeferredLoadMutableDouble* deferred;
5829 deferred = new (zone())
5830 DeferredLoadMutableDouble(this, instr, result, object, index);
5831
5832 Label out_of_object, done;
5833
5834 __ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0);
5835 __ bne(deferred->entry(), cr0);
5836 __ ShiftRightArithImm(index, index, 1);
5837
5838 __ cmpi(index, Operand::Zero());
5839 __ blt(&out_of_object);
5840
5841 __ SmiToPtrArrayOffset(r0, index);
5842 __ add(scratch, object, r0);
5843 __ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5844
5845 __ b(&done);
5846
5847 __ bind(&out_of_object);
5848 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5849 // Index is equal to negated out of object property index plus 1.
5850 __ SmiToPtrArrayOffset(r0, index);
5851 __ sub(scratch, result, r0);
5852 __ LoadP(result,
5853 FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize));
5854 __ bind(deferred->exit());
5855 __ bind(&done);
5856 }
5857
5858
5859 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5860 Register context = ToRegister(instr->context());
5861 __ StoreP(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
5862 }
5863
5864
5865 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5866 Handle<ScopeInfo> scope_info = instr->scope_info();
5867 __ Push(scope_info);
5868 __ push(ToRegister(instr->function()));
5869 CallRuntime(Runtime::kPushBlockContext, instr);
5870 RecordSafepoint(Safepoint::kNoLazyDeopt);
5871 }
5872
5873
5874 #undef __
5875 } // namespace internal
5876 } // namespace v8
5877