1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/snapshot/serialize.h"
6 
7 #include "src/accessors.h"
8 #include "src/api.h"
9 #include "src/base/platform/platform.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/deoptimizer.h"
13 #include "src/execution.h"
14 #include "src/global-handles.h"
15 #include "src/ic/ic.h"
16 #include "src/ic/stub-cache.h"
17 #include "src/objects.h"
18 #include "src/parsing/parser.h"
19 #include "src/profiler/cpu-profiler.h"
20 #include "src/runtime/runtime.h"
21 #include "src/snapshot/natives.h"
22 #include "src/snapshot/snapshot.h"
23 #include "src/snapshot/snapshot-source-sink.h"
24 #include "src/v8.h"
25 #include "src/v8threads.h"
26 #include "src/version.h"
27 
28 namespace v8 {
29 namespace internal {
30 
31 
32 // -----------------------------------------------------------------------------
33 // Coding of external references.
34 
35 
instance(Isolate * isolate)36 ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
37   ExternalReferenceTable* external_reference_table =
38       isolate->external_reference_table();
39   if (external_reference_table == NULL) {
40     external_reference_table = new ExternalReferenceTable(isolate);
41     isolate->set_external_reference_table(external_reference_table);
42   }
43   return external_reference_table;
44 }
45 
46 
ExternalReferenceTable(Isolate * isolate)47 ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
48   // Miscellaneous
49   Add(ExternalReference::roots_array_start(isolate).address(),
50       "Heap::roots_array_start()");
51   Add(ExternalReference::address_of_stack_limit(isolate).address(),
52       "StackGuard::address_of_jslimit()");
53   Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
54       "StackGuard::address_of_real_jslimit()");
55   Add(ExternalReference::new_space_start(isolate).address(),
56       "Heap::NewSpaceStart()");
57   Add(ExternalReference::new_space_mask(isolate).address(),
58       "Heap::NewSpaceMask()");
59   Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
60       "Heap::NewSpaceAllocationLimitAddress()");
61   Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
62       "Heap::NewSpaceAllocationTopAddress()");
63   Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
64       "mod_two_doubles");
65   // Keyed lookup cache.
66   Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
67       "KeyedLookupCache::keys()");
68   Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
69       "KeyedLookupCache::field_offsets()");
70   Add(ExternalReference::handle_scope_next_address(isolate).address(),
71       "HandleScope::next");
72   Add(ExternalReference::handle_scope_limit_address(isolate).address(),
73       "HandleScope::limit");
74   Add(ExternalReference::handle_scope_level_address(isolate).address(),
75       "HandleScope::level");
76   Add(ExternalReference::new_deoptimizer_function(isolate).address(),
77       "Deoptimizer::New()");
78   Add(ExternalReference::compute_output_frames_function(isolate).address(),
79       "Deoptimizer::ComputeOutputFrames()");
80   Add(ExternalReference::address_of_min_int().address(),
81       "LDoubleConstant::min_int");
82   Add(ExternalReference::address_of_one_half().address(),
83       "LDoubleConstant::one_half");
84   Add(ExternalReference::isolate_address(isolate).address(), "isolate");
85   Add(ExternalReference::address_of_negative_infinity().address(),
86       "LDoubleConstant::negative_infinity");
87   Add(ExternalReference::power_double_double_function(isolate).address(),
88       "power_double_double_function");
89   Add(ExternalReference::power_double_int_function(isolate).address(),
90       "power_double_int_function");
91   Add(ExternalReference::math_log_double_function(isolate).address(),
92       "std::log");
93   Add(ExternalReference::store_buffer_top(isolate).address(),
94       "store_buffer_top");
95   Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
96   Add(ExternalReference::get_date_field_function(isolate).address(),
97       "JSDate::GetField");
98   Add(ExternalReference::date_cache_stamp(isolate).address(),
99       "date_cache_stamp");
100   Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
101       "address_of_pending_message_obj");
102   Add(ExternalReference::get_make_code_young_function(isolate).address(),
103       "Code::MakeCodeYoung");
104   Add(ExternalReference::cpu_features().address(), "cpu_features");
105   Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
106       "Heap::OldSpaceAllocationTopAddress");
107   Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
108       "Heap::OldSpaceAllocationLimitAddress");
109   Add(ExternalReference::allocation_sites_list_address(isolate).address(),
110       "Heap::allocation_sites_list_address()");
111   Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
112   Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
113       "Code::MarkCodeAsExecuted");
114   Add(ExternalReference::is_profiling_address(isolate).address(),
115       "CpuProfiler::is_profiling");
116   Add(ExternalReference::scheduled_exception_address(isolate).address(),
117       "Isolate::scheduled_exception");
118   Add(ExternalReference::invoke_function_callback(isolate).address(),
119       "InvokeFunctionCallback");
120   Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
121       "InvokeAccessorGetterCallback");
122   Add(ExternalReference::log_enter_external_function(isolate).address(),
123       "Logger::EnterExternal");
124   Add(ExternalReference::log_leave_external_function(isolate).address(),
125       "Logger::LeaveExternal");
126   Add(ExternalReference::address_of_minus_one_half().address(),
127       "double_constants.minus_one_half");
128   Add(ExternalReference::stress_deopt_count(isolate).address(),
129       "Isolate::stress_deopt_count_address()");
130   Add(ExternalReference::virtual_handler_register(isolate).address(),
131       "Isolate::virtual_handler_register()");
132   Add(ExternalReference::virtual_slot_register(isolate).address(),
133       "Isolate::virtual_slot_register()");
134   Add(ExternalReference::runtime_function_table_address(isolate).address(),
135       "Runtime::runtime_function_table_address()");
136 
137   // Debug addresses
138   Add(ExternalReference::debug_after_break_target_address(isolate).address(),
139       "Debug::after_break_target_address()");
140   Add(ExternalReference::debug_is_active_address(isolate).address(),
141       "Debug::is_active_address()");
142   Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
143       "Debug::step_in_enabled_address()");
144 
145 #ifndef V8_INTERPRETED_REGEXP
146   Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
147       "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
148   Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
149       "RegExpMacroAssembler*::CheckStackGuardState()");
150   Add(ExternalReference::re_grow_stack(isolate).address(),
151       "NativeRegExpMacroAssembler::GrowStack()");
152   Add(ExternalReference::re_word_character_map().address(),
153       "NativeRegExpMacroAssembler::word_character_map");
154   Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
155       "RegExpStack::limit_address()");
156   Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
157           .address(),
158       "RegExpStack::memory_address()");
159   Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
160       "RegExpStack::memory_size()");
161   Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
162       "OffsetsVector::static_offsets_vector");
163 #endif  // V8_INTERPRETED_REGEXP
164 
165   // The following populates all of the different type of external references
166   // into the ExternalReferenceTable.
167   //
168   // NOTE: This function was originally 100k of code.  It has since been
169   // rewritten to be mostly table driven, as the callback macro style tends to
170   // very easily cause code bloat.  Please be careful in the future when adding
171   // new references.
172 
173   struct RefTableEntry {
174     uint16_t id;
175     const char* name;
176   };
177 
178   static const RefTableEntry c_builtins[] = {
179 #define DEF_ENTRY_C(name, ignored)           \
180   { Builtins::c_##name, "Builtins::" #name } \
181   ,
182       BUILTIN_LIST_C(DEF_ENTRY_C)
183 #undef DEF_ENTRY_C
184   };
185 
186   for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
187     ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
188                           isolate);
189     Add(ref.address(), c_builtins[i].name);
190   }
191 
192   static const RefTableEntry builtins[] = {
193 #define DEF_ENTRY_C(name, ignored)          \
194   { Builtins::k##name, "Builtins::" #name } \
195   ,
196 #define DEF_ENTRY_A(name, i1, i2, i3)       \
197   { Builtins::k##name, "Builtins::" #name } \
198   ,
199       BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
200           BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
201 #undef DEF_ENTRY_C
202 #undef DEF_ENTRY_A
203   };
204 
205   for (unsigned i = 0; i < arraysize(builtins); ++i) {
206     ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
207     Add(ref.address(), builtins[i].name);
208   }
209 
210   static const RefTableEntry runtime_functions[] = {
211 #define RUNTIME_ENTRY(name, i1, i2)       \
212   { Runtime::k##name, "Runtime::" #name } \
213   ,
214       FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
215 #undef RUNTIME_ENTRY
216   };
217 
218   for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
219     ExternalReference ref(
220         static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
221     Add(ref.address(), runtime_functions[i].name);
222   }
223 
224   // Stat counters
225   struct StatsRefTableEntry {
226     StatsCounter* (Counters::*counter)();
227     const char* name;
228   };
229 
230   static const StatsRefTableEntry stats_ref_table[] = {
231 #define COUNTER_ENTRY(name, caption)      \
232   { &Counters::name, "Counters::" #name } \
233   ,
234       STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
235 #undef COUNTER_ENTRY
236   };
237 
238   Counters* counters = isolate->counters();
239   for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
240     // To make sure the indices are not dependent on whether counters are
241     // enabled, use a dummy address as filler.
242     Address address = NotAvailable();
243     StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
244     if (counter->Enabled()) {
245       address = reinterpret_cast<Address>(counter->GetInternalPointer());
246     }
247     Add(address, stats_ref_table[i].name);
248   }
249 
250   // Top addresses
251   static const char* address_names[] = {
252 #define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
253       FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
254 #undef BUILD_NAME_LITERAL
255   };
256 
257   for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
258     Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
259         address_names[i]);
260   }
261 
262   // Accessors
263   struct AccessorRefTable {
264     Address address;
265     const char* name;
266   };
267 
268   static const AccessorRefTable accessors[] = {
269 #define ACCESSOR_INFO_DECLARATION(name)                                     \
270   { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
271   , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"},
272       ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
273 #undef ACCESSOR_INFO_DECLARATION
274   };
275 
276   for (unsigned i = 0; i < arraysize(accessors); ++i) {
277     Add(accessors[i].address, accessors[i].name);
278   }
279 
280   StubCache* stub_cache = isolate->stub_cache();
281 
282   // Stub cache tables
283   Add(stub_cache->key_reference(StubCache::kPrimary).address(),
284       "StubCache::primary_->key");
285   Add(stub_cache->value_reference(StubCache::kPrimary).address(),
286       "StubCache::primary_->value");
287   Add(stub_cache->map_reference(StubCache::kPrimary).address(),
288       "StubCache::primary_->map");
289   Add(stub_cache->key_reference(StubCache::kSecondary).address(),
290       "StubCache::secondary_->key");
291   Add(stub_cache->value_reference(StubCache::kSecondary).address(),
292       "StubCache::secondary_->value");
293   Add(stub_cache->map_reference(StubCache::kSecondary).address(),
294       "StubCache::secondary_->map");
295 
296   // Runtime entries
297   Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
298       "HandleScope::DeleteExtensions");
299   Add(ExternalReference::incremental_marking_record_write_function(isolate)
300           .address(),
301       "IncrementalMarking::RecordWrite");
302   Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
303       "StoreBuffer::StoreBufferOverflow");
304 
305   // Add a small set of deopt entry addresses to encoder without generating the
306   // deopt table code, which isn't possible at deserialization time.
307   HandleScope scope(isolate);
308   for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
309     Address address = Deoptimizer::GetDeoptimizationEntry(
310         isolate,
311         entry,
312         Deoptimizer::LAZY,
313         Deoptimizer::CALCULATE_ENTRY_ADDRESS);
314     Add(address, "lazy_deopt");
315   }
316 }
317 
318 
ExternalReferenceEncoder(Isolate * isolate)319 ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
320   map_ = isolate->external_reference_map();
321   if (map_ != NULL) return;
322   map_ = new HashMap(HashMap::PointersMatch);
323   ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
324   for (int i = 0; i < table->size(); ++i) {
325     Address addr = table->address(i);
326     if (addr == ExternalReferenceTable::NotAvailable()) continue;
327     // We expect no duplicate external references entries in the table.
328     DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
329     map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
330   }
331   isolate->set_external_reference_map(map_);
332 }
333 
334 
Encode(Address address) const335 uint32_t ExternalReferenceEncoder::Encode(Address address) const {
336   DCHECK_NOT_NULL(address);
337   HashMap::Entry* entry =
338       const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
339   DCHECK_NOT_NULL(entry);
340   return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
341 }
342 
343 
NameOfAddress(Isolate * isolate,Address address) const344 const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
345                                                     Address address) const {
346   HashMap::Entry* entry =
347       const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
348   if (entry == NULL) return "<unknown>";
349   uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
350   return ExternalReferenceTable::instance(isolate)->name(i);
351 }
352 
353 
354 class CodeAddressMap: public CodeEventLogger {
355  public:
CodeAddressMap(Isolate * isolate)356   explicit CodeAddressMap(Isolate* isolate)
357       : isolate_(isolate) {
358     isolate->logger()->addCodeEventListener(this);
359   }
360 
~CodeAddressMap()361   ~CodeAddressMap() override {
362     isolate_->logger()->removeCodeEventListener(this);
363   }
364 
CodeMoveEvent(Address from,Address to)365   void CodeMoveEvent(Address from, Address to) override {
366     address_to_name_map_.Move(from, to);
367   }
368 
CodeDisableOptEvent(Code * code,SharedFunctionInfo * shared)369   void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) override {}
370 
CodeDeleteEvent(Address from)371   void CodeDeleteEvent(Address from) override {
372     address_to_name_map_.Remove(from);
373   }
374 
Lookup(Address address)375   const char* Lookup(Address address) {
376     return address_to_name_map_.Lookup(address);
377   }
378 
379  private:
380   class NameMap {
381    public:
NameMap()382     NameMap() : impl_(HashMap::PointersMatch) {}
383 
~NameMap()384     ~NameMap() {
385       for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
386         DeleteArray(static_cast<const char*>(p->value));
387       }
388     }
389 
Insert(Address code_address,const char * name,int name_size)390     void Insert(Address code_address, const char* name, int name_size) {
391       HashMap::Entry* entry = FindOrCreateEntry(code_address);
392       if (entry->value == NULL) {
393         entry->value = CopyName(name, name_size);
394       }
395     }
396 
Lookup(Address code_address)397     const char* Lookup(Address code_address) {
398       HashMap::Entry* entry = FindEntry(code_address);
399       return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
400     }
401 
Remove(Address code_address)402     void Remove(Address code_address) {
403       HashMap::Entry* entry = FindEntry(code_address);
404       if (entry != NULL) {
405         DeleteArray(static_cast<char*>(entry->value));
406         RemoveEntry(entry);
407       }
408     }
409 
Move(Address from,Address to)410     void Move(Address from, Address to) {
411       if (from == to) return;
412       HashMap::Entry* from_entry = FindEntry(from);
413       DCHECK(from_entry != NULL);
414       void* value = from_entry->value;
415       RemoveEntry(from_entry);
416       HashMap::Entry* to_entry = FindOrCreateEntry(to);
417       DCHECK(to_entry->value == NULL);
418       to_entry->value = value;
419     }
420 
421    private:
CopyName(const char * name,int name_size)422     static char* CopyName(const char* name, int name_size) {
423       char* result = NewArray<char>(name_size + 1);
424       for (int i = 0; i < name_size; ++i) {
425         char c = name[i];
426         if (c == '\0') c = ' ';
427         result[i] = c;
428       }
429       result[name_size] = '\0';
430       return result;
431     }
432 
FindOrCreateEntry(Address code_address)433     HashMap::Entry* FindOrCreateEntry(Address code_address) {
434       return impl_.LookupOrInsert(code_address,
435                                   ComputePointerHash(code_address));
436     }
437 
FindEntry(Address code_address)438     HashMap::Entry* FindEntry(Address code_address) {
439       return impl_.Lookup(code_address, ComputePointerHash(code_address));
440     }
441 
RemoveEntry(HashMap::Entry * entry)442     void RemoveEntry(HashMap::Entry* entry) {
443       impl_.Remove(entry->key, entry->hash);
444     }
445 
446     HashMap impl_;
447 
448     DISALLOW_COPY_AND_ASSIGN(NameMap);
449   };
450 
LogRecordedBuffer(Code * code,SharedFunctionInfo *,const char * name,int length)451   void LogRecordedBuffer(Code* code, SharedFunctionInfo*, const char* name,
452                          int length) override {
453     address_to_name_map_.Insert(code->address(), name, length);
454   }
455 
456   NameMap address_to_name_map_;
457   Isolate* isolate_;
458 };
459 
460 
DecodeReservation(Vector<const SerializedData::Reservation> res)461 void Deserializer::DecodeReservation(
462     Vector<const SerializedData::Reservation> res) {
463   DCHECK_EQ(0, reservations_[NEW_SPACE].length());
464   STATIC_ASSERT(NEW_SPACE == 0);
465   int current_space = NEW_SPACE;
466   for (auto& r : res) {
467     reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
468     if (r.is_last()) current_space++;
469   }
470   DCHECK_EQ(kNumberOfSpaces, current_space);
471   for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
472 }
473 
474 
FlushICacheForNewIsolate()475 void Deserializer::FlushICacheForNewIsolate() {
476   DCHECK(!deserializing_user_code_);
477   // The entire isolate is newly deserialized. Simply flush all code pages.
478   PageIterator it(isolate_->heap()->code_space());
479   while (it.has_next()) {
480     Page* p = it.next();
481     Assembler::FlushICache(isolate_, p->area_start(),
482                            p->area_end() - p->area_start());
483   }
484 }
485 
486 
FlushICacheForNewCodeObjects()487 void Deserializer::FlushICacheForNewCodeObjects() {
488   DCHECK(deserializing_user_code_);
489   for (Code* code : new_code_objects_) {
490     Assembler::FlushICache(isolate_, code->instruction_start(),
491                            code->instruction_size());
492   }
493 }
494 
495 
ReserveSpace()496 bool Deserializer::ReserveSpace() {
497 #ifdef DEBUG
498   for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
499     CHECK(reservations_[i].length() > 0);
500   }
501 #endif  // DEBUG
502   if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
503   for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
504     high_water_[i] = reservations_[i][0].start;
505   }
506   return true;
507 }
508 
509 
Initialize(Isolate * isolate)510 void Deserializer::Initialize(Isolate* isolate) {
511   DCHECK_NULL(isolate_);
512   DCHECK_NOT_NULL(isolate);
513   isolate_ = isolate;
514   DCHECK_NULL(external_reference_table_);
515   external_reference_table_ = ExternalReferenceTable::instance(isolate);
516   CHECK_EQ(magic_number_,
517            SerializedData::ComputeMagicNumber(external_reference_table_));
518 }
519 
520 
Deserialize(Isolate * isolate)521 void Deserializer::Deserialize(Isolate* isolate) {
522   Initialize(isolate);
523   if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
524   // No active threads.
525   DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
526   // No active handles.
527   DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
528 
529   {
530     DisallowHeapAllocation no_gc;
531     isolate_->heap()->IterateSmiRoots(this);
532     isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
533     isolate_->heap()->RepairFreeListsAfterDeserialization();
534     isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
535     DeserializeDeferredObjects();
536     FlushICacheForNewIsolate();
537   }
538 
539   isolate_->heap()->set_native_contexts_list(
540       isolate_->heap()->undefined_value());
541   // The allocation site list is build during root iteration, but if no sites
542   // were encountered then it needs to be initialized to undefined.
543   if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
544     isolate_->heap()->set_allocation_sites_list(
545         isolate_->heap()->undefined_value());
546   }
547 
548   // Update data pointers to the external strings containing natives sources.
549   Natives::UpdateSourceCache(isolate_->heap());
550   ExtraNatives::UpdateSourceCache(isolate_->heap());
551 
552   // Issue code events for newly deserialized code objects.
553   LOG_CODE_EVENT(isolate_, LogCodeObjects());
554   LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
555 }
556 
557 
DeserializePartial(Isolate * isolate,Handle<JSGlobalProxy> global_proxy)558 MaybeHandle<Object> Deserializer::DeserializePartial(
559     Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
560   Initialize(isolate);
561   if (!ReserveSpace()) {
562     V8::FatalProcessOutOfMemory("deserialize context");
563     return MaybeHandle<Object>();
564   }
565 
566   Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
567   attached_objects[kGlobalProxyReference] = global_proxy;
568   SetAttachedObjects(attached_objects);
569 
570   DisallowHeapAllocation no_gc;
571   // Keep track of the code space start and end pointers in case new
572   // code objects were unserialized
573   OldSpace* code_space = isolate_->heap()->code_space();
574   Address start_address = code_space->top();
575   Object* root;
576   VisitPointer(&root);
577   DeserializeDeferredObjects();
578 
579   // There's no code deserialized here. If this assert fires then that's
580   // changed and logging should be added to notify the profiler et al of the
581   // new code, which also has to be flushed from instruction cache.
582   CHECK_EQ(start_address, code_space->top());
583   return Handle<Object>(root, isolate);
584 }
585 
586 
DeserializeCode(Isolate * isolate)587 MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
588     Isolate* isolate) {
589   Initialize(isolate);
590   if (!ReserveSpace()) {
591     return Handle<SharedFunctionInfo>();
592   } else {
593     deserializing_user_code_ = true;
594     HandleScope scope(isolate);
595     Handle<SharedFunctionInfo> result;
596     {
597       DisallowHeapAllocation no_gc;
598       Object* root;
599       VisitPointer(&root);
600       DeserializeDeferredObjects();
601       FlushICacheForNewCodeObjects();
602       result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
603     }
604     CommitPostProcessedObjects(isolate);
605     return scope.CloseAndEscape(result);
606   }
607 }
608 
609 
~Deserializer()610 Deserializer::~Deserializer() {
611   // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
612   // DCHECK(source_.AtEOF());
613   attached_objects_.Dispose();
614 }
615 
616 
617 // This is called on the roots.  It is the driver of the deserialization
618 // process.  It is also called on the body of each function.
VisitPointers(Object ** start,Object ** end)619 void Deserializer::VisitPointers(Object** start, Object** end) {
620   // The space must be new space.  Any other space would cause ReadChunk to try
621   // to update the remembered using NULL as the address.
622   ReadData(start, end, NEW_SPACE, NULL);
623 }
624 
625 
DeserializeDeferredObjects()626 void Deserializer::DeserializeDeferredObjects() {
627   for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
628     switch (code) {
629       case kAlignmentPrefix:
630       case kAlignmentPrefix + 1:
631       case kAlignmentPrefix + 2:
632         SetAlignment(code);
633         break;
634       default: {
635         int space = code & kSpaceMask;
636         DCHECK(space <= kNumberOfSpaces);
637         DCHECK(code - space == kNewObject);
638         HeapObject* object = GetBackReferencedObject(space);
639         int size = source_.GetInt() << kPointerSizeLog2;
640         Address obj_address = object->address();
641         Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
642         Object** end = reinterpret_cast<Object**>(obj_address + size);
643         bool filled = ReadData(start, end, space, obj_address);
644         CHECK(filled);
645         DCHECK(CanBeDeferred(object));
646         PostProcessNewObject(object, space);
647       }
648     }
649   }
650 }
651 
652 
653 // Used to insert a deserialized internalized string into the string table.
654 class StringTableInsertionKey : public HashTableKey {
655  public:
StringTableInsertionKey(String * string)656   explicit StringTableInsertionKey(String* string)
657       : string_(string), hash_(HashForObject(string)) {
658     DCHECK(string->IsInternalizedString());
659   }
660 
IsMatch(Object * string)661   bool IsMatch(Object* string) override {
662     // We know that all entries in a hash table had their hash keys created.
663     // Use that knowledge to have fast failure.
664     if (hash_ != HashForObject(string)) return false;
665     // We want to compare the content of two internalized strings here.
666     return string_->SlowEquals(String::cast(string));
667   }
668 
Hash()669   uint32_t Hash() override { return hash_; }
670 
HashForObject(Object * key)671   uint32_t HashForObject(Object* key) override {
672     return String::cast(key)->Hash();
673   }
674 
AsHandle(Isolate * isolate)675   MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
676     return handle(string_, isolate);
677   }
678 
679  private:
680   String* string_;
681   uint32_t hash_;
682   DisallowHeapAllocation no_gc;
683 };
684 
685 
PostProcessNewObject(HeapObject * obj,int space)686 HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
687   if (deserializing_user_code()) {
688     if (obj->IsString()) {
689       String* string = String::cast(obj);
690       // Uninitialize hash field as the hash seed may have changed.
691       string->set_hash_field(String::kEmptyHashField);
692       if (string->IsInternalizedString()) {
693         // Canonicalize the internalized string. If it already exists in the
694         // string table, set it to forward to the existing one.
695         StringTableInsertionKey key(string);
696         String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
697         if (canonical == NULL) {
698           new_internalized_strings_.Add(handle(string));
699           return string;
700         } else {
701           string->SetForwardedInternalizedString(canonical);
702           return canonical;
703         }
704       }
705     } else if (obj->IsScript()) {
706       new_scripts_.Add(handle(Script::cast(obj)));
707     } else {
708       DCHECK(CanBeDeferred(obj));
709     }
710   }
711   if (obj->IsAllocationSite()) {
712     DCHECK(obj->IsAllocationSite());
713     // Allocation sites are present in the snapshot, and must be linked into
714     // a list at deserialization time.
715     AllocationSite* site = AllocationSite::cast(obj);
716     // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
717     // as a (weak) root. If this root is relocated correctly, this becomes
718     // unnecessary.
719     if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
720       site->set_weak_next(isolate_->heap()->undefined_value());
721     } else {
722       site->set_weak_next(isolate_->heap()->allocation_sites_list());
723     }
724     isolate_->heap()->set_allocation_sites_list(site);
725   } else if (obj->IsCode()) {
726     // We flush all code pages after deserializing the startup snapshot. In that
727     // case, we only need to remember code objects in the large object space.
728     // When deserializing user code, remember each individual code object.
729     if (deserializing_user_code() || space == LO_SPACE) {
730       new_code_objects_.Add(Code::cast(obj));
731     }
732   }
733   // Check alignment.
734   DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
735   return obj;
736 }
737 
738 
CommitPostProcessedObjects(Isolate * isolate)739 void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
740   StringTable::EnsureCapacityForDeserialization(
741       isolate, new_internalized_strings_.length());
742   for (Handle<String> string : new_internalized_strings_) {
743     StringTableInsertionKey key(*string);
744     DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
745     StringTable::LookupKey(isolate, &key);
746   }
747 
748   Heap* heap = isolate->heap();
749   Factory* factory = isolate->factory();
750   for (Handle<Script> script : new_scripts_) {
751     // Assign a new script id to avoid collision.
752     script->set_id(isolate_->heap()->NextScriptId());
753     // Add script to list.
754     Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
755     heap->SetRootScriptList(*list);
756   }
757 }
758 
759 
GetBackReferencedObject(int space)760 HeapObject* Deserializer::GetBackReferencedObject(int space) {
761   HeapObject* obj;
762   BackReference back_reference(source_.GetInt());
763   if (space == LO_SPACE) {
764     CHECK(back_reference.chunk_index() == 0);
765     uint32_t index = back_reference.large_object_index();
766     obj = deserialized_large_objects_[index];
767   } else {
768     DCHECK(space < kNumberOfPreallocatedSpaces);
769     uint32_t chunk_index = back_reference.chunk_index();
770     DCHECK_LE(chunk_index, current_chunk_[space]);
771     uint32_t chunk_offset = back_reference.chunk_offset();
772     Address address = reservations_[space][chunk_index].start + chunk_offset;
773     if (next_alignment_ != kWordAligned) {
774       int padding = Heap::GetFillToAlign(address, next_alignment_);
775       next_alignment_ = kWordAligned;
776       DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
777       address += padding;
778     }
779     obj = HeapObject::FromAddress(address);
780   }
781   if (deserializing_user_code() && obj->IsInternalizedString()) {
782     obj = String::cast(obj)->GetForwardedInternalizedString();
783   }
784   hot_objects_.Add(obj);
785   return obj;
786 }
787 
788 
789 // This routine writes the new object into the pointer provided and then
790 // returns true if the new object was in young space and false otherwise.
791 // The reason for this strange interface is that otherwise the object is
792 // written very late, which means the FreeSpace map is not set up by the
793 // time we need to use it to mark the space at the end of a page free.
ReadObject(int space_number,Object ** write_back)794 void Deserializer::ReadObject(int space_number, Object** write_back) {
795   Address address;
796   HeapObject* obj;
797   int size = source_.GetInt() << kObjectAlignmentBits;
798 
799   if (next_alignment_ != kWordAligned) {
800     int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
801     address = Allocate(space_number, reserved);
802     obj = HeapObject::FromAddress(address);
803     // If one of the following assertions fails, then we are deserializing an
804     // aligned object when the filler maps have not been deserialized yet.
805     // We require filler maps as padding to align the object.
806     Heap* heap = isolate_->heap();
807     DCHECK(heap->free_space_map()->IsMap());
808     DCHECK(heap->one_pointer_filler_map()->IsMap());
809     DCHECK(heap->two_pointer_filler_map()->IsMap());
810     obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
811     address = obj->address();
812     next_alignment_ = kWordAligned;
813   } else {
814     address = Allocate(space_number, size);
815     obj = HeapObject::FromAddress(address);
816   }
817 
818   isolate_->heap()->OnAllocationEvent(obj, size);
819   Object** current = reinterpret_cast<Object**>(address);
820   Object** limit = current + (size >> kPointerSizeLog2);
821   if (FLAG_log_snapshot_positions) {
822     LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
823   }
824 
825   if (ReadData(current, limit, space_number, address)) {
826     // Only post process if object content has not been deferred.
827     obj = PostProcessNewObject(obj, space_number);
828   }
829 
830   Object* write_back_obj = obj;
831   UnalignedCopy(write_back, &write_back_obj);
832 #ifdef DEBUG
833   if (obj->IsCode()) {
834     DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
835   } else {
836     DCHECK(space_number != CODE_SPACE);
837   }
838 #endif  // DEBUG
839 }
840 
841 
842 // We know the space requirements before deserialization and can
843 // pre-allocate that reserved space. During deserialization, all we need
844 // to do is to bump up the pointer for each space in the reserved
845 // space. This is also used for fixing back references.
846 // We may have to split up the pre-allocation into several chunks
847 // because it would not fit onto a single page. We do not have to keep
848 // track of when to move to the next chunk. An opcode will signal this.
849 // Since multiple large objects cannot be folded into one large object
850 // space allocation, we have to do an actual allocation when deserializing
851 // each large object. Instead of tracking offset for back references, we
852 // reference large objects by index.
Allocate(int space_index,int size)853 Address Deserializer::Allocate(int space_index, int size) {
854   if (space_index == LO_SPACE) {
855     AlwaysAllocateScope scope(isolate_);
856     LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
857     Executability exec = static_cast<Executability>(source_.Get());
858     AllocationResult result = lo_space->AllocateRaw(size, exec);
859     HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
860     deserialized_large_objects_.Add(obj);
861     return obj->address();
862   } else {
863     DCHECK(space_index < kNumberOfPreallocatedSpaces);
864     Address address = high_water_[space_index];
865     DCHECK_NOT_NULL(address);
866     high_water_[space_index] += size;
867 #ifdef DEBUG
868     // Assert that the current reserved chunk is still big enough.
869     const Heap::Reservation& reservation = reservations_[space_index];
870     int chunk_index = current_chunk_[space_index];
871     CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
872 #endif
873     return address;
874   }
875 }
876 
877 
CopyInNativesSource(Vector<const char> source_vector,Object ** current)878 Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
879                                            Object** current) {
880   DCHECK(!isolate_->heap()->deserialization_complete());
881   NativesExternalStringResource* resource = new NativesExternalStringResource(
882       source_vector.start(), source_vector.length());
883   Object* resource_obj = reinterpret_cast<Object*>(resource);
884   UnalignedCopy(current++, &resource_obj);
885   return current;
886 }
887 
888 
ReadData(Object ** current,Object ** limit,int source_space,Address current_object_address)889 bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
890                             Address current_object_address) {
891   Isolate* const isolate = isolate_;
892   // Write barrier support costs around 1% in startup time.  In fact there
893   // are no new space objects in current boot snapshots, so it's not needed,
894   // but that may change.
895   bool write_barrier_needed =
896       (current_object_address != NULL && source_space != NEW_SPACE &&
897        source_space != CODE_SPACE);
898   while (current < limit) {
899     byte data = source_.Get();
900     switch (data) {
901 #define CASE_STATEMENT(where, how, within, space_number) \
902   case where + how + within + space_number:              \
903     STATIC_ASSERT((where & ~kWhereMask) == 0);           \
904     STATIC_ASSERT((how & ~kHowToCodeMask) == 0);         \
905     STATIC_ASSERT((within & ~kWhereToPointMask) == 0);   \
906     STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
907 
908 #define CASE_BODY(where, how, within, space_number_if_any)                     \
909   {                                                                            \
910     bool emit_write_barrier = false;                                           \
911     bool current_was_incremented = false;                                      \
912     int space_number = space_number_if_any == kAnyOldSpace                     \
913                            ? (data & kSpaceMask)                               \
914                            : space_number_if_any;                              \
915     if (where == kNewObject && how == kPlain && within == kStartOfObject) {    \
916       ReadObject(space_number, current);                                       \
917       emit_write_barrier = (space_number == NEW_SPACE);                        \
918     } else {                                                                   \
919       Object* new_object = NULL; /* May not be a real Object pointer. */       \
920       if (where == kNewObject) {                                               \
921         ReadObject(space_number, &new_object);                                 \
922       } else if (where == kBackref) {                                          \
923         emit_write_barrier = (space_number == NEW_SPACE);                      \
924         new_object = GetBackReferencedObject(data & kSpaceMask);               \
925       } else if (where == kBackrefWithSkip) {                                  \
926         int skip = source_.GetInt();                                           \
927         current = reinterpret_cast<Object**>(                                  \
928             reinterpret_cast<Address>(current) + skip);                        \
929         emit_write_barrier = (space_number == NEW_SPACE);                      \
930         new_object = GetBackReferencedObject(data & kSpaceMask);               \
931       } else if (where == kRootArray) {                                        \
932         int id = source_.GetInt();                                             \
933         Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
934         new_object = isolate->heap()->root(root_index);                        \
935         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
936       } else if (where == kPartialSnapshotCache) {                             \
937         int cache_index = source_.GetInt();                                    \
938         new_object = isolate->partial_snapshot_cache()->at(cache_index);       \
939         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
940       } else if (where == kExternalReference) {                                \
941         int skip = source_.GetInt();                                           \
942         current = reinterpret_cast<Object**>(                                  \
943             reinterpret_cast<Address>(current) + skip);                        \
944         int reference_id = source_.GetInt();                                   \
945         Address address = external_reference_table_->address(reference_id);    \
946         new_object = reinterpret_cast<Object*>(address);                       \
947       } else if (where == kAttachedReference) {                                \
948         int index = source_.GetInt();                                          \
949         DCHECK(deserializing_user_code() || index == kGlobalProxyReference);   \
950         new_object = *attached_objects_[index];                                \
951         emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
952       } else {                                                                 \
953         DCHECK(where == kBuiltin);                                             \
954         DCHECK(deserializing_user_code());                                     \
955         int builtin_id = source_.GetInt();                                     \
956         DCHECK_LE(0, builtin_id);                                              \
957         DCHECK_LT(builtin_id, Builtins::builtin_count);                        \
958         Builtins::Name name = static_cast<Builtins::Name>(builtin_id);         \
959         new_object = isolate->builtins()->builtin(name);                       \
960         emit_write_barrier = false;                                            \
961       }                                                                        \
962       if (within == kInnerPointer) {                                           \
963         if (space_number != CODE_SPACE || new_object->IsCode()) {              \
964           Code* new_code_object = reinterpret_cast<Code*>(new_object);         \
965           new_object =                                                         \
966               reinterpret_cast<Object*>(new_code_object->instruction_start()); \
967         } else {                                                               \
968           DCHECK(space_number == CODE_SPACE);                                  \
969           Cell* cell = Cell::cast(new_object);                                 \
970           new_object = reinterpret_cast<Object*>(cell->ValueAddress());        \
971         }                                                                      \
972       }                                                                        \
973       if (how == kFromCode) {                                                  \
974         Address location_of_branch_data = reinterpret_cast<Address>(current);  \
975         Assembler::deserialization_set_special_target_at(                      \
976             isolate, location_of_branch_data,                                  \
977             Code::cast(HeapObject::FromAddress(current_object_address)),       \
978             reinterpret_cast<Address>(new_object));                            \
979         location_of_branch_data += Assembler::kSpecialTargetSize;              \
980         current = reinterpret_cast<Object**>(location_of_branch_data);         \
981         current_was_incremented = true;                                        \
982       } else {                                                                 \
983         UnalignedCopy(current, &new_object);                                   \
984       }                                                                        \
985     }                                                                          \
986     if (emit_write_barrier && write_barrier_needed) {                          \
987       Address current_address = reinterpret_cast<Address>(current);            \
988       isolate->heap()->RecordWrite(                                            \
989           current_object_address,                                              \
990           static_cast<int>(current_address - current_object_address));         \
991     }                                                                          \
992     if (!current_was_incremented) {                                            \
993       current++;                                                               \
994     }                                                                          \
995     break;                                                                     \
996   }
997 
998 // This generates a case and a body for the new space (which has to do extra
999 // write barrier handling) and handles the other spaces with fall-through cases
1000 // and one body.
1001 #define ALL_SPACES(where, how, within)           \
1002   CASE_STATEMENT(where, how, within, NEW_SPACE)  \
1003   CASE_BODY(where, how, within, NEW_SPACE)       \
1004   CASE_STATEMENT(where, how, within, OLD_SPACE)  \
1005   CASE_STATEMENT(where, how, within, CODE_SPACE) \
1006   CASE_STATEMENT(where, how, within, MAP_SPACE)  \
1007   CASE_STATEMENT(where, how, within, LO_SPACE)   \
1008   CASE_BODY(where, how, within, kAnyOldSpace)
1009 
1010 #define FOUR_CASES(byte_code)             \
1011   case byte_code:                         \
1012   case byte_code + 1:                     \
1013   case byte_code + 2:                     \
1014   case byte_code + 3:
1015 
1016 #define SIXTEEN_CASES(byte_code)          \
1017   FOUR_CASES(byte_code)                   \
1018   FOUR_CASES(byte_code + 4)               \
1019   FOUR_CASES(byte_code + 8)               \
1020   FOUR_CASES(byte_code + 12)
1021 
1022 #define SINGLE_CASE(where, how, within, space) \
1023   CASE_STATEMENT(where, how, within, space)    \
1024   CASE_BODY(where, how, within, space)
1025 
1026       // Deserialize a new object and write a pointer to it to the current
1027       // object.
1028       ALL_SPACES(kNewObject, kPlain, kStartOfObject)
1029       // Support for direct instruction pointers in functions.  It's an inner
1030       // pointer because it points at the entry point, not at the start of the
1031       // code object.
1032       SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
1033       // Deserialize a new code object and write a pointer to its first
1034       // instruction to the current code object.
1035       ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
1036       // Find a recently deserialized object using its offset from the current
1037       // allocation point and write a pointer to it to the current object.
1038       ALL_SPACES(kBackref, kPlain, kStartOfObject)
1039       ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
1040 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
1041     defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
1042       // Deserialize a new object from pointer found in code and write
1043       // a pointer to it to the current object. Required only for MIPS, PPC or
1044       // ARM with embedded constant pool, and omitted on the other architectures
1045       // because it is fully unrolled and would cause bloat.
1046       ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
1047       // Find a recently deserialized code object using its offset from the
1048       // current allocation point and write a pointer to it to the current
1049       // object. Required only for MIPS, PPC or ARM with embedded constant pool.
1050       ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1051       ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
1052 #endif
1053       // Find a recently deserialized code object using its offset from the
1054       // current allocation point and write a pointer to its first instruction
1055       // to the current code object or the instruction pointer in a function
1056       // object.
1057       ALL_SPACES(kBackref, kFromCode, kInnerPointer)
1058       ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
1059       ALL_SPACES(kBackref, kPlain, kInnerPointer)
1060       ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
1061       // Find an object in the roots array and write a pointer to it to the
1062       // current object.
1063       SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
1064 #if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
1065     defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
1066       // Find an object in the roots array and write a pointer to it to in code.
1067       SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
1068 #endif
1069       // Find an object in the partial snapshots cache and write a pointer to it
1070       // to the current object.
1071       SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1072       // Find an code entry in the partial snapshots cache and
1073       // write a pointer to it to the current object.
1074       SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
1075       // Find an external reference and write a pointer to it to the current
1076       // object.
1077       SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
1078       // Find an external reference and write a pointer to it in the current
1079       // code object.
1080       SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
1081       // Find an object in the attached references and write a pointer to it to
1082       // the current object.
1083       SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
1084       SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
1085       SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
1086       // Find a builtin and write a pointer to it to the current object.
1087       SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
1088       SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
1089       SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
1090 
1091 #undef CASE_STATEMENT
1092 #undef CASE_BODY
1093 #undef ALL_SPACES
1094 
1095       case kSkip: {
1096         int size = source_.GetInt();
1097         current = reinterpret_cast<Object**>(
1098             reinterpret_cast<intptr_t>(current) + size);
1099         break;
1100       }
1101 
1102       case kInternalReferenceEncoded:
1103       case kInternalReference: {
1104         // Internal reference address is not encoded via skip, but by offset
1105         // from code entry.
1106         int pc_offset = source_.GetInt();
1107         int target_offset = source_.GetInt();
1108         Code* code =
1109             Code::cast(HeapObject::FromAddress(current_object_address));
1110         DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
1111         DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
1112         Address pc = code->entry() + pc_offset;
1113         Address target = code->entry() + target_offset;
1114         Assembler::deserialization_set_target_internal_reference_at(
1115             isolate, pc, target, data == kInternalReference
1116                                      ? RelocInfo::INTERNAL_REFERENCE
1117                                      : RelocInfo::INTERNAL_REFERENCE_ENCODED);
1118         break;
1119       }
1120 
1121       case kNop:
1122         break;
1123 
1124       case kNextChunk: {
1125         int space = source_.Get();
1126         DCHECK(space < kNumberOfPreallocatedSpaces);
1127         int chunk_index = current_chunk_[space];
1128         const Heap::Reservation& reservation = reservations_[space];
1129         // Make sure the current chunk is indeed exhausted.
1130         CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
1131         // Move to next reserved chunk.
1132         chunk_index = ++current_chunk_[space];
1133         CHECK_LT(chunk_index, reservation.length());
1134         high_water_[space] = reservation[chunk_index].start;
1135         break;
1136       }
1137 
1138       case kDeferred: {
1139         // Deferred can only occur right after the heap object header.
1140         DCHECK(current == reinterpret_cast<Object**>(current_object_address +
1141                                                      kPointerSize));
1142         HeapObject* obj = HeapObject::FromAddress(current_object_address);
1143         // If the deferred object is a map, its instance type may be used
1144         // during deserialization. Initialize it with a temporary value.
1145         if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
1146         current = limit;
1147         return false;
1148       }
1149 
1150       case kSynchronize:
1151         // If we get here then that indicates that you have a mismatch between
1152         // the number of GC roots when serializing and deserializing.
1153         CHECK(false);
1154         break;
1155 
1156       case kNativesStringResource:
1157         current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
1158                                       current);
1159         break;
1160 
1161       case kExtraNativesStringResource:
1162         current = CopyInNativesSource(
1163             ExtraNatives::GetScriptSource(source_.Get()), current);
1164         break;
1165 
1166       // Deserialize raw data of variable length.
1167       case kVariableRawData: {
1168         int size_in_bytes = source_.GetInt();
1169         byte* raw_data_out = reinterpret_cast<byte*>(current);
1170         source_.CopyRaw(raw_data_out, size_in_bytes);
1171         break;
1172       }
1173 
1174       case kVariableRepeat: {
1175         int repeats = source_.GetInt();
1176         Object* object = current[-1];
1177         DCHECK(!isolate->heap()->InNewSpace(object));
1178         for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1179         break;
1180       }
1181 
1182       case kAlignmentPrefix:
1183       case kAlignmentPrefix + 1:
1184       case kAlignmentPrefix + 2:
1185         SetAlignment(data);
1186         break;
1187 
1188       STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
1189       STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
1190       SIXTEEN_CASES(kRootArrayConstantsWithSkip)
1191       SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
1192         int skip = source_.GetInt();
1193         current = reinterpret_cast<Object**>(
1194             reinterpret_cast<intptr_t>(current) + skip);
1195         // Fall through.
1196       }
1197 
1198       SIXTEEN_CASES(kRootArrayConstants)
1199       SIXTEEN_CASES(kRootArrayConstants + 16) {
1200         int id = data & kRootArrayConstantsMask;
1201         Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
1202         Object* object = isolate->heap()->root(root_index);
1203         DCHECK(!isolate->heap()->InNewSpace(object));
1204         UnalignedCopy(current++, &object);
1205         break;
1206       }
1207 
1208       STATIC_ASSERT(kNumberOfHotObjects == 8);
1209       FOUR_CASES(kHotObjectWithSkip)
1210       FOUR_CASES(kHotObjectWithSkip + 4) {
1211         int skip = source_.GetInt();
1212         current = reinterpret_cast<Object**>(
1213             reinterpret_cast<Address>(current) + skip);
1214         // Fall through.
1215       }
1216 
1217       FOUR_CASES(kHotObject)
1218       FOUR_CASES(kHotObject + 4) {
1219         int index = data & kHotObjectMask;
1220         Object* hot_object = hot_objects_.Get(index);
1221         UnalignedCopy(current, &hot_object);
1222         if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
1223           Address current_address = reinterpret_cast<Address>(current);
1224           isolate->heap()->RecordWrite(
1225               current_object_address,
1226               static_cast<int>(current_address - current_object_address));
1227         }
1228         current++;
1229         break;
1230       }
1231 
1232       // Deserialize raw data of fixed length from 1 to 32 words.
1233       STATIC_ASSERT(kNumberOfFixedRawData == 32);
1234       SIXTEEN_CASES(kFixedRawData)
1235       SIXTEEN_CASES(kFixedRawData + 16) {
1236         byte* raw_data_out = reinterpret_cast<byte*>(current);
1237         int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
1238         source_.CopyRaw(raw_data_out, size_in_bytes);
1239         current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
1240         break;
1241       }
1242 
1243       STATIC_ASSERT(kNumberOfFixedRepeat == 16);
1244       SIXTEEN_CASES(kFixedRepeat) {
1245         int repeats = data - kFixedRepeatStart;
1246         Object* object;
1247         UnalignedCopy(&object, current - 1);
1248         DCHECK(!isolate->heap()->InNewSpace(object));
1249         for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
1250         break;
1251       }
1252 
1253 #undef SIXTEEN_CASES
1254 #undef FOUR_CASES
1255 #undef SINGLE_CASE
1256 
1257       default:
1258         CHECK(false);
1259     }
1260   }
1261   CHECK_EQ(limit, current);
1262   return true;
1263 }
1264 
1265 
Serializer(Isolate * isolate,SnapshotByteSink * sink)1266 Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
1267     : isolate_(isolate),
1268       sink_(sink),
1269       external_reference_encoder_(isolate),
1270       root_index_map_(isolate),
1271       recursion_depth_(0),
1272       code_address_map_(NULL),
1273       large_objects_total_size_(0),
1274       seen_large_objects_index_(0) {
1275   // The serializer is meant to be used only to generate initial heap images
1276   // from a context in which there is only one isolate.
1277   for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1278     pending_chunk_[i] = 0;
1279     max_chunk_size_[i] = static_cast<uint32_t>(
1280         MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
1281   }
1282 
1283 #ifdef OBJECT_PRINT
1284   if (FLAG_serialization_statistics) {
1285     instance_type_count_ = NewArray<int>(kInstanceTypes);
1286     instance_type_size_ = NewArray<size_t>(kInstanceTypes);
1287     for (int i = 0; i < kInstanceTypes; i++) {
1288       instance_type_count_[i] = 0;
1289       instance_type_size_[i] = 0;
1290     }
1291   } else {
1292     instance_type_count_ = NULL;
1293     instance_type_size_ = NULL;
1294   }
1295 #endif  // OBJECT_PRINT
1296 }
1297 
1298 
~Serializer()1299 Serializer::~Serializer() {
1300   if (code_address_map_ != NULL) delete code_address_map_;
1301 #ifdef OBJECT_PRINT
1302   if (instance_type_count_ != NULL) {
1303     DeleteArray(instance_type_count_);
1304     DeleteArray(instance_type_size_);
1305   }
1306 #endif  // OBJECT_PRINT
1307 }
1308 
1309 
1310 #ifdef OBJECT_PRINT
CountInstanceType(Map * map,int size)1311 void Serializer::CountInstanceType(Map* map, int size) {
1312   int instance_type = map->instance_type();
1313   instance_type_count_[instance_type]++;
1314   instance_type_size_[instance_type] += size;
1315 }
1316 #endif  // OBJECT_PRINT
1317 
1318 
OutputStatistics(const char * name)1319 void Serializer::OutputStatistics(const char* name) {
1320   if (!FLAG_serialization_statistics) return;
1321   PrintF("%s:\n", name);
1322   PrintF("  Spaces (bytes):\n");
1323   for (int space = 0; space < kNumberOfSpaces; space++) {
1324     PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
1325   }
1326   PrintF("\n");
1327   for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
1328     size_t s = pending_chunk_[space];
1329     for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
1330     PrintF("%16" V8_PTR_PREFIX "d", s);
1331   }
1332   PrintF("%16d\n", large_objects_total_size_);
1333 #ifdef OBJECT_PRINT
1334   PrintF("  Instance types (count and bytes):\n");
1335 #define PRINT_INSTANCE_TYPE(Name)                                          \
1336   if (instance_type_count_[Name]) {                                        \
1337     PrintF("%10d %10" V8_PTR_PREFIX "d  %s\n", instance_type_count_[Name], \
1338            instance_type_size_[Name], #Name);                              \
1339   }
1340   INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
1341 #undef PRINT_INSTANCE_TYPE
1342   PrintF("\n");
1343 #endif  // OBJECT_PRINT
1344 }
1345 
1346 
1347 class Serializer::ObjectSerializer : public ObjectVisitor {
1348  public:
ObjectSerializer(Serializer * serializer,Object * o,SnapshotByteSink * sink,HowToCode how_to_code,WhereToPoint where_to_point)1349   ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink,
1350                    HowToCode how_to_code, WhereToPoint where_to_point)
1351       : serializer_(serializer),
1352         object_(HeapObject::cast(o)),
1353         sink_(sink),
1354         reference_representation_(how_to_code + where_to_point),
1355         bytes_processed_so_far_(0),
1356         is_code_object_(o->IsCode()),
1357         code_has_been_output_(false) {}
1358   void Serialize();
1359   void SerializeDeferred();
1360   void VisitPointers(Object** start, Object** end) override;
1361   void VisitEmbeddedPointer(RelocInfo* target) override;
1362   void VisitExternalReference(Address* p) override;
1363   void VisitExternalReference(RelocInfo* rinfo) override;
1364   void VisitInternalReference(RelocInfo* rinfo) override;
1365   void VisitCodeTarget(RelocInfo* target) override;
1366   void VisitCodeEntry(Address entry_address) override;
1367   void VisitCell(RelocInfo* rinfo) override;
1368   void VisitRuntimeEntry(RelocInfo* reloc) override;
1369   // Used for seralizing the external strings that hold the natives source.
1370   void VisitExternalOneByteString(
1371       v8::String::ExternalOneByteStringResource** resource) override;
1372   // We can't serialize a heap with external two byte strings.
VisitExternalTwoByteString(v8::String::ExternalStringResource ** resource)1373   void VisitExternalTwoByteString(
1374       v8::String::ExternalStringResource** resource) override {
1375     UNREACHABLE();
1376   }
1377 
1378  private:
1379   void SerializePrologue(AllocationSpace space, int size, Map* map);
1380 
1381   bool SerializeExternalNativeSourceString(
1382       int builtin_count,
1383       v8::String::ExternalOneByteStringResource** resource_pointer,
1384       FixedArray* source_cache, int resource_index);
1385 
1386   enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
1387   // This function outputs or skips the raw data between the last pointer and
1388   // up to the current position.  It optionally can just return the number of
1389   // bytes to skip instead of performing a skip instruction, in case the skip
1390   // can be merged into the next instruction.
1391   int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
1392   // External strings are serialized in a way to resemble sequential strings.
1393   void SerializeExternalString();
1394 
1395   Address PrepareCode();
1396 
1397   Serializer* serializer_;
1398   HeapObject* object_;
1399   SnapshotByteSink* sink_;
1400   int reference_representation_;
1401   int bytes_processed_so_far_;
1402   bool is_code_object_;
1403   bool code_has_been_output_;
1404 };
1405 
1406 
SerializeDeferredObjects()1407 void Serializer::SerializeDeferredObjects() {
1408   while (deferred_objects_.length() > 0) {
1409     HeapObject* obj = deferred_objects_.RemoveLast();
1410     ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
1411     obj_serializer.SerializeDeferred();
1412   }
1413   sink_->Put(kSynchronize, "Finished with deferred objects");
1414 }
1415 
1416 
SerializeStrongReferences()1417 void StartupSerializer::SerializeStrongReferences() {
1418   Isolate* isolate = this->isolate();
1419   // No active threads.
1420   CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
1421   // No active or weak handles.
1422   CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1423   CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1424   CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
1425   // We don't support serializing installed extensions.
1426   CHECK(!isolate->has_installed_extensions());
1427   isolate->heap()->IterateSmiRoots(this);
1428   isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1429 }
1430 
1431 
VisitPointers(Object ** start,Object ** end)1432 void StartupSerializer::VisitPointers(Object** start, Object** end) {
1433   for (Object** current = start; current < end; current++) {
1434     if (start == isolate()->heap()->roots_array_start()) {
1435       root_index_wave_front_ =
1436           Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1437     }
1438     if (ShouldBeSkipped(current)) {
1439       sink_->Put(kSkip, "Skip");
1440       sink_->PutInt(kPointerSize, "SkipOneWord");
1441     } else if ((*current)->IsSmi()) {
1442       sink_->Put(kOnePointerRawData, "Smi");
1443       for (int i = 0; i < kPointerSize; i++) {
1444         sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1445       }
1446     } else {
1447       SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1448     }
1449   }
1450 }
1451 
1452 
Serialize(Object ** o)1453 void PartialSerializer::Serialize(Object** o) {
1454   if ((*o)->IsContext()) {
1455     Context* context = Context::cast(*o);
1456     global_object_ = context->global_object();
1457     back_reference_map()->AddGlobalProxy(context->global_proxy());
1458     // The bootstrap snapshot has a code-stub context. When serializing the
1459     // partial snapshot, it is chained into the weak context list on the isolate
1460     // and it's next context pointer may point to the code-stub context.  Clear
1461     // it before serializing, it will get re-added to the context list
1462     // explicitly when it's loaded.
1463     if (context->IsNativeContext()) {
1464       context->set(Context::NEXT_CONTEXT_LINK,
1465                    isolate_->heap()->undefined_value());
1466       DCHECK(!context->global_object()->IsUndefined());
1467     }
1468   }
1469   VisitPointer(o);
1470   SerializeDeferredObjects();
1471   Pad();
1472 }
1473 
1474 
ShouldBeSkipped(Object ** current)1475 bool Serializer::ShouldBeSkipped(Object** current) {
1476   Object** roots = isolate()->heap()->roots_array_start();
1477   return current == &roots[Heap::kStoreBufferTopRootIndex]
1478       || current == &roots[Heap::kStackLimitRootIndex]
1479       || current == &roots[Heap::kRealStackLimitRootIndex];
1480 }
1481 
1482 
VisitPointers(Object ** start,Object ** end)1483 void Serializer::VisitPointers(Object** start, Object** end) {
1484   for (Object** current = start; current < end; current++) {
1485     if ((*current)->IsSmi()) {
1486       sink_->Put(kOnePointerRawData, "Smi");
1487       for (int i = 0; i < kPointerSize; i++) {
1488         sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1489       }
1490     } else {
1491       SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
1492     }
1493   }
1494 }
1495 
1496 
EncodeReservations(List<SerializedData::Reservation> * out) const1497 void Serializer::EncodeReservations(
1498     List<SerializedData::Reservation>* out) const {
1499   for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
1500     for (int j = 0; j < completed_chunks_[i].length(); j++) {
1501       out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
1502     }
1503 
1504     if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
1505       out->Add(SerializedData::Reservation(pending_chunk_[i]));
1506     }
1507     out->last().mark_as_last();
1508   }
1509 
1510   out->Add(SerializedData::Reservation(large_objects_total_size_));
1511   out->last().mark_as_last();
1512 }
1513 
1514 
1515 // This ensures that the partial snapshot cache keeps things alive during GC and
1516 // tracks their movement.  When it is called during serialization of the startup
1517 // snapshot nothing happens.  When the partial (context) snapshot is created,
1518 // this array is populated with the pointers that the partial snapshot will
1519 // need. As that happens we emit serialized objects to the startup snapshot
1520 // that correspond to the elements of this cache array.  On deserialization we
1521 // therefore need to visit the cache array.  This fills it up with pointers to
1522 // deserialized objects.
Iterate(Isolate * isolate,ObjectVisitor * visitor)1523 void SerializerDeserializer::Iterate(Isolate* isolate,
1524                                      ObjectVisitor* visitor) {
1525   if (isolate->serializer_enabled()) return;
1526   List<Object*>* cache = isolate->partial_snapshot_cache();
1527   for (int i = 0;; ++i) {
1528     // Extend the array ready to get a value when deserializing.
1529     if (cache->length() <= i) cache->Add(Smi::FromInt(0));
1530     visitor->VisitPointer(&cache->at(i));
1531     // Sentinel is the undefined object, which is a root so it will not normally
1532     // be found in the cache.
1533     if (cache->at(i)->IsUndefined()) break;
1534   }
1535 }
1536 
1537 
CanBeDeferred(HeapObject * o)1538 bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
1539   return !o->IsString() && !o->IsScript();
1540 }
1541 
1542 
PartialSnapshotCacheIndex(HeapObject * heap_object)1543 int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1544   Isolate* isolate = this->isolate();
1545   List<Object*>* cache = isolate->partial_snapshot_cache();
1546   int new_index = cache->length();
1547 
1548   int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
1549   if (index == PartialCacheIndexMap::kInvalidIndex) {
1550     // We didn't find the object in the cache.  So we add it to the cache and
1551     // then visit the pointer so that it becomes part of the startup snapshot
1552     // and we can refer to it from the partial snapshot.
1553     cache->Add(heap_object);
1554     startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
1555     // We don't recurse from the startup snapshot generator into the partial
1556     // snapshot generator.
1557     return new_index;
1558   }
1559   return index;
1560 }
1561 
1562 
ShouldBeInThePartialSnapshotCache(HeapObject * o)1563 bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
1564   // Scripts should be referred only through shared function infos.  We can't
1565   // allow them to be part of the partial snapshot because they contain a
1566   // unique ID, and deserializing several partial snapshots containing script
1567   // would cause dupes.
1568   DCHECK(!o->IsScript());
1569   return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
1570          o->IsCode() || o->IsScopeInfo() || o->IsExecutableAccessorInfo() ||
1571          o->map() ==
1572              startup_serializer_->isolate()->heap()->fixed_cow_array_map();
1573 }
1574 
1575 
1576 #ifdef DEBUG
BackReferenceIsAlreadyAllocated(BackReference reference)1577 bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
1578   DCHECK(reference.is_valid());
1579   DCHECK(!reference.is_source());
1580   DCHECK(!reference.is_global_proxy());
1581   AllocationSpace space = reference.space();
1582   int chunk_index = reference.chunk_index();
1583   if (space == LO_SPACE) {
1584     return chunk_index == 0 &&
1585            reference.large_object_index() < seen_large_objects_index_;
1586   } else if (chunk_index == completed_chunks_[space].length()) {
1587     return reference.chunk_offset() < pending_chunk_[space];
1588   } else {
1589     return chunk_index < completed_chunks_[space].length() &&
1590            reference.chunk_offset() < completed_chunks_[space][chunk_index];
1591   }
1592 }
1593 #endif  // DEBUG
1594 
1595 
SerializeKnownObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1596 bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
1597                                       WhereToPoint where_to_point, int skip) {
1598   if (how_to_code == kPlain && where_to_point == kStartOfObject) {
1599     // Encode a reference to a hot object by its index in the working set.
1600     int index = hot_objects_.Find(obj);
1601     if (index != HotObjectsList::kNotFound) {
1602       DCHECK(index >= 0 && index < kNumberOfHotObjects);
1603       if (FLAG_trace_serializer) {
1604         PrintF(" Encoding hot object %d:", index);
1605         obj->ShortPrint();
1606         PrintF("\n");
1607       }
1608       if (skip != 0) {
1609         sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
1610         sink_->PutInt(skip, "HotObjectSkipDistance");
1611       } else {
1612         sink_->Put(kHotObject + index, "HotObject");
1613       }
1614       return true;
1615     }
1616   }
1617   BackReference back_reference = back_reference_map_.Lookup(obj);
1618   if (back_reference.is_valid()) {
1619     // Encode the location of an already deserialized object in order to write
1620     // its location into a later object.  We can encode the location as an
1621     // offset fromthe start of the deserialized objects or as an offset
1622     // backwards from thecurrent allocation pointer.
1623     if (back_reference.is_source()) {
1624       FlushSkip(skip);
1625       if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
1626       DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1627       sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
1628       sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
1629     } else if (back_reference.is_global_proxy()) {
1630       FlushSkip(skip);
1631       if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
1632       DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
1633       sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
1634       sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
1635     } else {
1636       if (FLAG_trace_serializer) {
1637         PrintF(" Encoding back reference to: ");
1638         obj->ShortPrint();
1639         PrintF("\n");
1640       }
1641 
1642       PutAlignmentPrefix(obj);
1643       AllocationSpace space = back_reference.space();
1644       if (skip == 0) {
1645         sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
1646       } else {
1647         sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
1648                    "BackRefWithSkip");
1649         sink_->PutInt(skip, "BackRefSkipDistance");
1650       }
1651       PutBackReference(obj, back_reference);
1652     }
1653     return true;
1654   }
1655   return false;
1656 }
1657 
1658 
StartupSerializer(Isolate * isolate,SnapshotByteSink * sink)1659 StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
1660     : Serializer(isolate, sink), root_index_wave_front_(0) {
1661   // Clear the cache of objects used by the partial snapshot.  After the
1662   // strong roots have been serialized we can create a partial snapshot
1663   // which will repopulate the cache with objects needed by that partial
1664   // snapshot.
1665   isolate->partial_snapshot_cache()->Clear();
1666   InitializeCodeAddressMap();
1667 }
1668 
1669 
SerializeObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1670 void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1671                                         WhereToPoint where_to_point, int skip) {
1672   DCHECK(!obj->IsJSFunction());
1673 
1674   int root_index = root_index_map_.Lookup(obj);
1675   // We can only encode roots as such if it has already been serialized.
1676   // That applies to root indices below the wave front.
1677   if (root_index != RootIndexMap::kInvalidRootIndex &&
1678       root_index < root_index_wave_front_) {
1679     PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1680     return;
1681   }
1682 
1683   if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) {
1684     obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
1685   }
1686 
1687   if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1688 
1689   FlushSkip(skip);
1690 
1691   // Object has not yet been serialized.  Serialize it here.
1692   ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
1693                                      where_to_point);
1694   object_serializer.Serialize();
1695 }
1696 
1697 
SerializeWeakReferencesAndDeferred()1698 void StartupSerializer::SerializeWeakReferencesAndDeferred() {
1699   // This phase comes right after the serialization (of the snapshot).
1700   // After we have done the partial serialization the partial snapshot cache
1701   // will contain some references needed to decode the partial snapshot.  We
1702   // add one entry with 'undefined' which is the sentinel that the deserializer
1703   // uses to know it is done deserializing the array.
1704   Object* undefined = isolate()->heap()->undefined_value();
1705   VisitPointer(&undefined);
1706   isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
1707   SerializeDeferredObjects();
1708   Pad();
1709 }
1710 
1711 
PutRoot(int root_index,HeapObject * object,SerializerDeserializer::HowToCode how_to_code,SerializerDeserializer::WhereToPoint where_to_point,int skip)1712 void Serializer::PutRoot(int root_index,
1713                          HeapObject* object,
1714                          SerializerDeserializer::HowToCode how_to_code,
1715                          SerializerDeserializer::WhereToPoint where_to_point,
1716                          int skip) {
1717   if (FLAG_trace_serializer) {
1718     PrintF(" Encoding root %d:", root_index);
1719     object->ShortPrint();
1720     PrintF("\n");
1721   }
1722 
1723   if (how_to_code == kPlain && where_to_point == kStartOfObject &&
1724       root_index < kNumberOfRootArrayConstants &&
1725       !isolate()->heap()->InNewSpace(object)) {
1726     if (skip == 0) {
1727       sink_->Put(kRootArrayConstants + root_index, "RootConstant");
1728     } else {
1729       sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
1730       sink_->PutInt(skip, "SkipInPutRoot");
1731     }
1732   } else {
1733     FlushSkip(skip);
1734     sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1735     sink_->PutInt(root_index, "root_index");
1736   }
1737 }
1738 
1739 
PutBackReference(HeapObject * object,BackReference reference)1740 void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
1741   DCHECK(BackReferenceIsAlreadyAllocated(reference));
1742   sink_->PutInt(reference.reference(), "BackRefValue");
1743   hot_objects_.Add(object);
1744 }
1745 
1746 
PutAlignmentPrefix(HeapObject * object)1747 int Serializer::PutAlignmentPrefix(HeapObject* object) {
1748   AllocationAlignment alignment = object->RequiredAlignment();
1749   if (alignment != kWordAligned) {
1750     DCHECK(1 <= alignment && alignment <= 3);
1751     byte prefix = (kAlignmentPrefix - 1) + alignment;
1752     sink_->Put(prefix, "Alignment");
1753     return Heap::GetMaximumFillToAlign(alignment);
1754   }
1755   return 0;
1756 }
1757 
1758 
SerializeObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)1759 void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
1760                                         WhereToPoint where_to_point, int skip) {
1761   if (obj->IsMap()) {
1762     // The code-caches link to context-specific code objects, which
1763     // the startup and context serializes cannot currently handle.
1764     DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
1765   }
1766 
1767   // Replace typed arrays by undefined.
1768   if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
1769 
1770   int root_index = root_index_map_.Lookup(obj);
1771   if (root_index != RootIndexMap::kInvalidRootIndex) {
1772     PutRoot(root_index, obj, how_to_code, where_to_point, skip);
1773     return;
1774   }
1775 
1776   if (ShouldBeInThePartialSnapshotCache(obj)) {
1777     FlushSkip(skip);
1778 
1779     int cache_index = PartialSnapshotCacheIndex(obj);
1780     sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1781                "PartialSnapshotCache");
1782     sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1783     return;
1784   }
1785 
1786   // Pointers from the partial snapshot to the objects in the startup snapshot
1787   // should go through the root array or through the partial snapshot cache.
1788   // If this is not the case you may have to add something to the root array.
1789   DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
1790   // All the internalized strings that the partial snapshot needs should be
1791   // either in the root table or in the partial snapshot cache.
1792   DCHECK(!obj->IsInternalizedString());
1793 
1794   if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
1795 
1796   FlushSkip(skip);
1797 
1798   // Clear literal boilerplates.
1799   if (obj->IsJSFunction()) {
1800     FixedArray* literals = JSFunction::cast(obj)->literals();
1801     for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
1802   }
1803 
1804   // Object has not yet been serialized.  Serialize it here.
1805   ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
1806   serializer.Serialize();
1807 }
1808 
1809 
SerializePrologue(AllocationSpace space,int size,Map * map)1810 void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
1811                                                      int size, Map* map) {
1812   if (serializer_->code_address_map_) {
1813     const char* code_name =
1814         serializer_->code_address_map_->Lookup(object_->address());
1815     LOG(serializer_->isolate_,
1816         CodeNameEvent(object_->address(), sink_->Position(), code_name));
1817     LOG(serializer_->isolate_,
1818         SnapshotPositionEvent(object_->address(), sink_->Position()));
1819   }
1820 
1821   BackReference back_reference;
1822   if (space == LO_SPACE) {
1823     sink_->Put(kNewObject + reference_representation_ + space,
1824                "NewLargeObject");
1825     sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1826     if (object_->IsCode()) {
1827       sink_->Put(EXECUTABLE, "executable large object");
1828     } else {
1829       sink_->Put(NOT_EXECUTABLE, "not executable large object");
1830     }
1831     back_reference = serializer_->AllocateLargeObject(size);
1832   } else {
1833     int fill = serializer_->PutAlignmentPrefix(object_);
1834     back_reference = serializer_->Allocate(space, size + fill);
1835     sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
1836     sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
1837   }
1838 
1839 #ifdef OBJECT_PRINT
1840   if (FLAG_serialization_statistics) {
1841     serializer_->CountInstanceType(map, size);
1842   }
1843 #endif  // OBJECT_PRINT
1844 
1845   // Mark this object as already serialized.
1846   serializer_->back_reference_map()->Add(object_, back_reference);
1847 
1848   // Serialize the map (first word of the object).
1849   serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
1850 }
1851 
1852 
SerializeExternalString()1853 void Serializer::ObjectSerializer::SerializeExternalString() {
1854   // Instead of serializing this as an external string, we serialize
1855   // an imaginary sequential string with the same content.
1856   Isolate* isolate = serializer_->isolate();
1857   DCHECK(object_->IsExternalString());
1858   DCHECK(object_->map() != isolate->heap()->native_source_string_map());
1859   ExternalString* string = ExternalString::cast(object_);
1860   int length = string->length();
1861   Map* map;
1862   int content_size;
1863   int allocation_size;
1864   const byte* resource;
1865   // Find the map and size for the imaginary sequential string.
1866   bool internalized = object_->IsInternalizedString();
1867   if (object_->IsExternalOneByteString()) {
1868     map = internalized ? isolate->heap()->one_byte_internalized_string_map()
1869                        : isolate->heap()->one_byte_string_map();
1870     allocation_size = SeqOneByteString::SizeFor(length);
1871     content_size = length * kCharSize;
1872     resource = reinterpret_cast<const byte*>(
1873         ExternalOneByteString::cast(string)->resource()->data());
1874   } else {
1875     map = internalized ? isolate->heap()->internalized_string_map()
1876                        : isolate->heap()->string_map();
1877     allocation_size = SeqTwoByteString::SizeFor(length);
1878     content_size = length * kShortSize;
1879     resource = reinterpret_cast<const byte*>(
1880         ExternalTwoByteString::cast(string)->resource()->data());
1881   }
1882 
1883   AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
1884                               ? LO_SPACE
1885                               : OLD_SPACE;
1886   SerializePrologue(space, allocation_size, map);
1887 
1888   // Output the rest of the imaginary string.
1889   int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
1890 
1891   // Output raw data header. Do not bother with common raw length cases here.
1892   sink_->Put(kVariableRawData, "RawDataForString");
1893   sink_->PutInt(bytes_to_output, "length");
1894 
1895   // Serialize string header (except for map).
1896   Address string_start = string->address();
1897   for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
1898     sink_->PutSection(string_start[i], "StringHeader");
1899   }
1900 
1901   // Serialize string content.
1902   sink_->PutRaw(resource, content_size, "StringContent");
1903 
1904   // Since the allocation size is rounded up to object alignment, there
1905   // maybe left-over bytes that need to be padded.
1906   int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
1907   DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
1908   for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
1909 
1910   sink_->Put(kSkip, "SkipAfterString");
1911   sink_->PutInt(bytes_to_output, "SkipDistance");
1912 }
1913 
1914 
1915 // Clear and later restore the next link in the weak cell, if the object is one.
1916 class UnlinkWeakCellScope {
1917  public:
UnlinkWeakCellScope(HeapObject * object)1918   explicit UnlinkWeakCellScope(HeapObject* object) : weak_cell_(NULL) {
1919     if (object->IsWeakCell()) {
1920       weak_cell_ = WeakCell::cast(object);
1921       next_ = weak_cell_->next();
1922       weak_cell_->clear_next(object->GetHeap()->the_hole_value());
1923     }
1924   }
1925 
~UnlinkWeakCellScope()1926   ~UnlinkWeakCellScope() {
1927     if (weak_cell_) weak_cell_->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
1928   }
1929 
1930  private:
1931   WeakCell* weak_cell_;
1932   Object* next_;
1933   DisallowHeapAllocation no_gc_;
1934 };
1935 
1936 
Serialize()1937 void Serializer::ObjectSerializer::Serialize() {
1938   if (FLAG_trace_serializer) {
1939     PrintF(" Encoding heap object: ");
1940     object_->ShortPrint();
1941     PrintF("\n");
1942   }
1943 
1944   // We cannot serialize typed array objects correctly.
1945   DCHECK(!object_->IsJSTypedArray());
1946 
1947   // We don't expect fillers.
1948   DCHECK(!object_->IsFiller());
1949 
1950   if (object_->IsScript()) {
1951     // Clear cached line ends.
1952     Object* undefined = serializer_->isolate()->heap()->undefined_value();
1953     Script::cast(object_)->set_line_ends(undefined);
1954   }
1955 
1956   if (object_->IsExternalString()) {
1957     Heap* heap = serializer_->isolate()->heap();
1958     if (object_->map() != heap->native_source_string_map()) {
1959       // Usually we cannot recreate resources for external strings. To work
1960       // around this, external strings are serialized to look like ordinary
1961       // sequential strings.
1962       // The exception are native source code strings, since we can recreate
1963       // their resources. In that case we fall through and leave it to
1964       // VisitExternalOneByteString further down.
1965       SerializeExternalString();
1966       return;
1967     }
1968   }
1969 
1970   int size = object_->Size();
1971   Map* map = object_->map();
1972   AllocationSpace space =
1973       MemoryChunk::FromAddress(object_->address())->owner()->identity();
1974   SerializePrologue(space, size, map);
1975 
1976   // Serialize the rest of the object.
1977   CHECK_EQ(0, bytes_processed_so_far_);
1978   bytes_processed_so_far_ = kPointerSize;
1979 
1980   RecursionScope recursion(serializer_);
1981   // Objects that are immediately post processed during deserialization
1982   // cannot be deferred, since post processing requires the object content.
1983   if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
1984     serializer_->QueueDeferredObject(object_);
1985     sink_->Put(kDeferred, "Deferring object content");
1986     return;
1987   }
1988 
1989   UnlinkWeakCellScope unlink_weak_cell(object_);
1990 
1991   object_->IterateBody(map->instance_type(), size, this);
1992   OutputRawData(object_->address() + size);
1993 }
1994 
1995 
SerializeDeferred()1996 void Serializer::ObjectSerializer::SerializeDeferred() {
1997   if (FLAG_trace_serializer) {
1998     PrintF(" Encoding deferred heap object: ");
1999     object_->ShortPrint();
2000     PrintF("\n");
2001   }
2002 
2003   int size = object_->Size();
2004   Map* map = object_->map();
2005   BackReference reference = serializer_->back_reference_map()->Lookup(object_);
2006 
2007   // Serialize the rest of the object.
2008   CHECK_EQ(0, bytes_processed_so_far_);
2009   bytes_processed_so_far_ = kPointerSize;
2010 
2011   serializer_->PutAlignmentPrefix(object_);
2012   sink_->Put(kNewObject + reference.space(), "deferred object");
2013   serializer_->PutBackReference(object_, reference);
2014   sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
2015 
2016   UnlinkWeakCellScope unlink_weak_cell(object_);
2017 
2018   object_->IterateBody(map->instance_type(), size, this);
2019   OutputRawData(object_->address() + size);
2020 }
2021 
2022 
VisitPointers(Object ** start,Object ** end)2023 void Serializer::ObjectSerializer::VisitPointers(Object** start,
2024                                                  Object** end) {
2025   Object** current = start;
2026   while (current < end) {
2027     while (current < end && (*current)->IsSmi()) current++;
2028     if (current < end) OutputRawData(reinterpret_cast<Address>(current));
2029 
2030     while (current < end && !(*current)->IsSmi()) {
2031       HeapObject* current_contents = HeapObject::cast(*current);
2032       int root_index = serializer_->root_index_map()->Lookup(current_contents);
2033       // Repeats are not subject to the write barrier so we can only use
2034       // immortal immovable root members. They are never in new space.
2035       if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
2036           Heap::RootIsImmortalImmovable(root_index) &&
2037           current_contents == current[-1]) {
2038         DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
2039         int repeat_count = 1;
2040         while (&current[repeat_count] < end - 1 &&
2041                current[repeat_count] == current_contents) {
2042           repeat_count++;
2043         }
2044         current += repeat_count;
2045         bytes_processed_so_far_ += repeat_count * kPointerSize;
2046         if (repeat_count > kNumberOfFixedRepeat) {
2047           sink_->Put(kVariableRepeat, "VariableRepeat");
2048           sink_->PutInt(repeat_count, "repeat count");
2049         } else {
2050           sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
2051         }
2052       } else {
2053         serializer_->SerializeObject(
2054                 current_contents, kPlain, kStartOfObject, 0);
2055         bytes_processed_so_far_ += kPointerSize;
2056         current++;
2057       }
2058     }
2059   }
2060 }
2061 
2062 
VisitEmbeddedPointer(RelocInfo * rinfo)2063 void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
2064   int skip = OutputRawData(rinfo->target_address_address(),
2065                            kCanReturnSkipInsteadOfSkipping);
2066   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2067   Object* object = rinfo->target_object();
2068   serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
2069                                kStartOfObject, skip);
2070   bytes_processed_so_far_ += rinfo->target_address_size();
2071 }
2072 
2073 
VisitExternalReference(Address * p)2074 void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
2075   int skip = OutputRawData(reinterpret_cast<Address>(p),
2076                            kCanReturnSkipInsteadOfSkipping);
2077   sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
2078   sink_->PutInt(skip, "SkipB4ExternalRef");
2079   Address target = *p;
2080   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2081   bytes_processed_so_far_ += kPointerSize;
2082 }
2083 
2084 
VisitExternalReference(RelocInfo * rinfo)2085 void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
2086   int skip = OutputRawData(rinfo->target_address_address(),
2087                            kCanReturnSkipInsteadOfSkipping);
2088   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2089   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
2090   sink_->PutInt(skip, "SkipB4ExternalRef");
2091   Address target = rinfo->target_external_reference();
2092   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2093   bytes_processed_so_far_ += rinfo->target_address_size();
2094 }
2095 
2096 
VisitInternalReference(RelocInfo * rinfo)2097 void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
2098   // We can only reference to internal references of code that has been output.
2099   DCHECK(is_code_object_ && code_has_been_output_);
2100   // We do not use skip from last patched pc to find the pc to patch, since
2101   // target_address_address may not return addresses in ascending order when
2102   // used for internal references. External references may be stored at the
2103   // end of the code in the constant pool, whereas internal references are
2104   // inline. That would cause the skip to be negative. Instead, we store the
2105   // offset from code entry.
2106   Address entry = Code::cast(object_)->entry();
2107   intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
2108   intptr_t target_offset = rinfo->target_internal_reference() - entry;
2109   DCHECK(0 <= pc_offset &&
2110          pc_offset <= Code::cast(object_)->instruction_size());
2111   DCHECK(0 <= target_offset &&
2112          target_offset <= Code::cast(object_)->instruction_size());
2113   sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
2114                  ? kInternalReference
2115                  : kInternalReferenceEncoded,
2116              "InternalRef");
2117   sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
2118   sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
2119 }
2120 
2121 
VisitRuntimeEntry(RelocInfo * rinfo)2122 void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
2123   int skip = OutputRawData(rinfo->target_address_address(),
2124                            kCanReturnSkipInsteadOfSkipping);
2125   HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
2126   sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
2127   sink_->PutInt(skip, "SkipB4ExternalRef");
2128   Address target = rinfo->target_address();
2129   sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
2130   bytes_processed_so_far_ += rinfo->target_address_size();
2131 }
2132 
2133 
VisitCodeTarget(RelocInfo * rinfo)2134 void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
2135   int skip = OutputRawData(rinfo->target_address_address(),
2136                            kCanReturnSkipInsteadOfSkipping);
2137   Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
2138   serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
2139   bytes_processed_so_far_ += rinfo->target_address_size();
2140 }
2141 
2142 
VisitCodeEntry(Address entry_address)2143 void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
2144   int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
2145   Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
2146   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
2147   bytes_processed_so_far_ += kPointerSize;
2148 }
2149 
2150 
VisitCell(RelocInfo * rinfo)2151 void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
2152   int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
2153   Cell* object = Cell::cast(rinfo->target_cell());
2154   serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
2155   bytes_processed_so_far_ += kPointerSize;
2156 }
2157 
2158 
SerializeExternalNativeSourceString(int builtin_count,v8::String::ExternalOneByteStringResource ** resource_pointer,FixedArray * source_cache,int resource_index)2159 bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
2160     int builtin_count,
2161     v8::String::ExternalOneByteStringResource** resource_pointer,
2162     FixedArray* source_cache, int resource_index) {
2163   for (int i = 0; i < builtin_count; i++) {
2164     Object* source = source_cache->get(i);
2165     if (!source->IsUndefined()) {
2166       ExternalOneByteString* string = ExternalOneByteString::cast(source);
2167       typedef v8::String::ExternalOneByteStringResource Resource;
2168       const Resource* resource = string->resource();
2169       if (resource == *resource_pointer) {
2170         sink_->Put(resource_index, "NativesStringResource");
2171         sink_->PutSection(i, "NativesStringResourceEnd");
2172         bytes_processed_so_far_ += sizeof(resource);
2173         return true;
2174       }
2175     }
2176   }
2177   return false;
2178 }
2179 
2180 
VisitExternalOneByteString(v8::String::ExternalOneByteStringResource ** resource_pointer)2181 void Serializer::ObjectSerializer::VisitExternalOneByteString(
2182     v8::String::ExternalOneByteStringResource** resource_pointer) {
2183   Address references_start = reinterpret_cast<Address>(resource_pointer);
2184   OutputRawData(references_start);
2185   if (SerializeExternalNativeSourceString(
2186           Natives::GetBuiltinsCount(), resource_pointer,
2187           Natives::GetSourceCache(serializer_->isolate()->heap()),
2188           kNativesStringResource)) {
2189     return;
2190   }
2191   if (SerializeExternalNativeSourceString(
2192           ExtraNatives::GetBuiltinsCount(), resource_pointer,
2193           ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
2194           kExtraNativesStringResource)) {
2195     return;
2196   }
2197   // One of the strings in the natives cache should match the resource.  We
2198   // don't expect any other kinds of external strings here.
2199   UNREACHABLE();
2200 }
2201 
2202 
PrepareCode()2203 Address Serializer::ObjectSerializer::PrepareCode() {
2204   // To make snapshots reproducible, we make a copy of the code object
2205   // and wipe all pointers in the copy, which we then serialize.
2206   Code* original = Code::cast(object_);
2207   Code* code = serializer_->CopyCode(original);
2208   // Code age headers are not serializable.
2209   code->MakeYoung(serializer_->isolate());
2210   int mode_mask = RelocInfo::kCodeTargetMask |
2211                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
2212                   RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
2213                   RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
2214                   RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
2215                   RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
2216   for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
2217     RelocInfo* rinfo = it.rinfo();
2218     rinfo->WipeOut();
2219   }
2220   // We need to wipe out the header fields *after* wiping out the
2221   // relocations, because some of these fields are needed for the latter.
2222   code->WipeOutHeader();
2223   return code->address();
2224 }
2225 
2226 
OutputRawData(Address up_to,Serializer::ObjectSerializer::ReturnSkip return_skip)2227 int Serializer::ObjectSerializer::OutputRawData(
2228     Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
2229   Address object_start = object_->address();
2230   int base = bytes_processed_so_far_;
2231   int up_to_offset = static_cast<int>(up_to - object_start);
2232   int to_skip = up_to_offset - bytes_processed_so_far_;
2233   int bytes_to_output = to_skip;
2234   bytes_processed_so_far_ += to_skip;
2235   // This assert will fail if the reloc info gives us the target_address_address
2236   // locations in a non-ascending order.  Luckily that doesn't happen.
2237   DCHECK(to_skip >= 0);
2238   bool outputting_code = false;
2239   if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
2240     // Output the code all at once and fix later.
2241     bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
2242     outputting_code = true;
2243     code_has_been_output_ = true;
2244   }
2245   if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
2246     if (!outputting_code && bytes_to_output == to_skip &&
2247         IsAligned(bytes_to_output, kPointerAlignment) &&
2248         bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
2249       int size_in_words = bytes_to_output >> kPointerSizeLog2;
2250       sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
2251       to_skip = 0;  // This instruction includes skip.
2252     } else {
2253       // We always end up here if we are outputting the code of a code object.
2254       sink_->Put(kVariableRawData, "VariableRawData");
2255       sink_->PutInt(bytes_to_output, "length");
2256     }
2257 
2258     if (is_code_object_) object_start = PrepareCode();
2259 
2260     const char* description = is_code_object_ ? "Code" : "Byte";
2261     sink_->PutRaw(object_start + base, bytes_to_output, description);
2262   }
2263   if (to_skip != 0 && return_skip == kIgnoringReturn) {
2264     sink_->Put(kSkip, "Skip");
2265     sink_->PutInt(to_skip, "SkipDistance");
2266     to_skip = 0;
2267   }
2268   return to_skip;
2269 }
2270 
2271 
AllocateLargeObject(int size)2272 BackReference Serializer::AllocateLargeObject(int size) {
2273   // Large objects are allocated one-by-one when deserializing. We do not
2274   // have to keep track of multiple chunks.
2275   large_objects_total_size_ += size;
2276   return BackReference::LargeObjectReference(seen_large_objects_index_++);
2277 }
2278 
2279 
Allocate(AllocationSpace space,int size)2280 BackReference Serializer::Allocate(AllocationSpace space, int size) {
2281   DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
2282   DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
2283   uint32_t new_chunk_size = pending_chunk_[space] + size;
2284   if (new_chunk_size > max_chunk_size(space)) {
2285     // The new chunk size would not fit onto a single page. Complete the
2286     // current chunk and start a new one.
2287     sink_->Put(kNextChunk, "NextChunk");
2288     sink_->Put(space, "NextChunkSpace");
2289     completed_chunks_[space].Add(pending_chunk_[space]);
2290     DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
2291     pending_chunk_[space] = 0;
2292     new_chunk_size = size;
2293   }
2294   uint32_t offset = pending_chunk_[space];
2295   pending_chunk_[space] = new_chunk_size;
2296   return BackReference::Reference(space, completed_chunks_[space].length(),
2297                                   offset);
2298 }
2299 
2300 
Pad()2301 void Serializer::Pad() {
2302   // The non-branching GetInt will read up to 3 bytes too far, so we need
2303   // to pad the snapshot to make sure we don't read over the end.
2304   for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
2305     sink_->Put(kNop, "Padding");
2306   }
2307   // Pad up to pointer size for checksum.
2308   while (!IsAligned(sink_->Position(), kPointerAlignment)) {
2309     sink_->Put(kNop, "Padding");
2310   }
2311 }
2312 
2313 
InitializeCodeAddressMap()2314 void Serializer::InitializeCodeAddressMap() {
2315   isolate_->InitializeLoggingAndCounters();
2316   code_address_map_ = new CodeAddressMap(isolate_);
2317 }
2318 
2319 
CopyCode(Code * code)2320 Code* Serializer::CopyCode(Code* code) {
2321   code_buffer_.Rewind(0);  // Clear buffer without deleting backing store.
2322   int size = code->CodeSize();
2323   code_buffer_.AddAll(Vector<byte>(code->address(), size));
2324   return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
2325 }
2326 
2327 
Serialize(Isolate * isolate,Handle<SharedFunctionInfo> info,Handle<String> source)2328 ScriptData* CodeSerializer::Serialize(Isolate* isolate,
2329                                       Handle<SharedFunctionInfo> info,
2330                                       Handle<String> source) {
2331   base::ElapsedTimer timer;
2332   if (FLAG_profile_deserialization) timer.Start();
2333   if (FLAG_trace_serializer) {
2334     PrintF("[Serializing from");
2335     Object* script = info->script();
2336     if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
2337     PrintF("]\n");
2338   }
2339 
2340   // Serialize code object.
2341   SnapshotByteSink sink(info->code()->CodeSize() * 2);
2342   CodeSerializer cs(isolate, &sink, *source);
2343   DisallowHeapAllocation no_gc;
2344   Object** location = Handle<Object>::cast(info).location();
2345   cs.VisitPointer(location);
2346   cs.SerializeDeferredObjects();
2347   cs.Pad();
2348 
2349   SerializedCodeData data(sink.data(), cs);
2350   ScriptData* script_data = data.GetScriptData();
2351 
2352   if (FLAG_profile_deserialization) {
2353     double ms = timer.Elapsed().InMillisecondsF();
2354     int length = script_data->length();
2355     PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
2356   }
2357 
2358   return script_data;
2359 }
2360 
2361 
SerializeObject(HeapObject * obj,HowToCode how_to_code,WhereToPoint where_to_point,int skip)2362 void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
2363                                      WhereToPoint where_to_point, int skip) {
2364   int root_index = root_index_map_.Lookup(obj);
2365   if (root_index != RootIndexMap::kInvalidRootIndex) {
2366     PutRoot(root_index, obj, how_to_code, where_to_point, skip);
2367     return;
2368   }
2369 
2370   if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
2371 
2372   FlushSkip(skip);
2373 
2374   if (obj->IsCode()) {
2375     Code* code_object = Code::cast(obj);
2376     switch (code_object->kind()) {
2377       case Code::OPTIMIZED_FUNCTION:  // No optimized code compiled yet.
2378       case Code::HANDLER:             // No handlers patched in yet.
2379       case Code::REGEXP:              // No regexp literals initialized yet.
2380       case Code::NUMBER_OF_KINDS:     // Pseudo enum value.
2381         CHECK(false);
2382       case Code::BUILTIN:
2383         SerializeBuiltin(code_object->builtin_index(), how_to_code,
2384                          where_to_point);
2385         return;
2386       case Code::STUB:
2387         SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
2388         return;
2389 #define IC_KIND_CASE(KIND) case Code::KIND:
2390         IC_KIND_LIST(IC_KIND_CASE)
2391 #undef IC_KIND_CASE
2392         SerializeIC(code_object, how_to_code, where_to_point);
2393         return;
2394       case Code::FUNCTION:
2395         DCHECK(code_object->has_reloc_info_for_serialization());
2396         SerializeGeneric(code_object, how_to_code, where_to_point);
2397         return;
2398       case Code::WASM_FUNCTION:
2399         UNREACHABLE();
2400     }
2401     UNREACHABLE();
2402   }
2403 
2404   // Past this point we should not see any (context-specific) maps anymore.
2405   CHECK(!obj->IsMap());
2406   // There should be no references to the global object embedded.
2407   CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
2408   // There should be no hash table embedded. They would require rehashing.
2409   CHECK(!obj->IsHashTable());
2410   // We expect no instantiated function objects or contexts.
2411   CHECK(!obj->IsJSFunction() && !obj->IsContext());
2412 
2413   SerializeGeneric(obj, how_to_code, where_to_point);
2414 }
2415 
2416 
SerializeGeneric(HeapObject * heap_object,HowToCode how_to_code,WhereToPoint where_to_point)2417 void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
2418                                       HowToCode how_to_code,
2419                                       WhereToPoint where_to_point) {
2420   // Object has not yet been serialized.  Serialize it here.
2421   ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
2422                               where_to_point);
2423   serializer.Serialize();
2424 }
2425 
2426 
SerializeBuiltin(int builtin_index,HowToCode how_to_code,WhereToPoint where_to_point)2427 void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
2428                                       WhereToPoint where_to_point) {
2429   DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2430          (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2431          (how_to_code == kFromCode && where_to_point == kInnerPointer));
2432   DCHECK_LT(builtin_index, Builtins::builtin_count);
2433   DCHECK_LE(0, builtin_index);
2434 
2435   if (FLAG_trace_serializer) {
2436     PrintF(" Encoding builtin: %s\n",
2437            isolate()->builtins()->name(builtin_index));
2438   }
2439 
2440   sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
2441   sink_->PutInt(builtin_index, "builtin_index");
2442 }
2443 
2444 
SerializeCodeStub(uint32_t stub_key,HowToCode how_to_code,WhereToPoint where_to_point)2445 void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
2446                                        WhereToPoint where_to_point) {
2447   DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
2448          (how_to_code == kPlain && where_to_point == kInnerPointer) ||
2449          (how_to_code == kFromCode && where_to_point == kInnerPointer));
2450   DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
2451   DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
2452 
2453   int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
2454 
2455   if (FLAG_trace_serializer) {
2456     PrintF(" Encoding code stub %s as %d\n",
2457            CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
2458   }
2459 
2460   sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
2461   sink_->PutInt(index, "CodeStub key");
2462 }
2463 
2464 
SerializeIC(Code * ic,HowToCode how_to_code,WhereToPoint where_to_point)2465 void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
2466                                  WhereToPoint where_to_point) {
2467   // The IC may be implemented as a stub.
2468   uint32_t stub_key = ic->stub_key();
2469   if (stub_key != CodeStub::NoCacheKey()) {
2470     if (FLAG_trace_serializer) {
2471       PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
2472     }
2473     SerializeCodeStub(stub_key, how_to_code, where_to_point);
2474     return;
2475   }
2476   // The IC may be implemented as builtin. Only real builtins have an
2477   // actual builtin_index value attached (otherwise it's just garbage).
2478   // Compare to make sure we are really dealing with a builtin.
2479   int builtin_index = ic->builtin_index();
2480   if (builtin_index < Builtins::builtin_count) {
2481     Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
2482     Code* builtin = isolate()->builtins()->builtin(name);
2483     if (builtin == ic) {
2484       if (FLAG_trace_serializer) {
2485         PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
2486       }
2487       DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
2488              ic->kind() == Code::KEYED_STORE_IC);
2489       SerializeBuiltin(builtin_index, how_to_code, where_to_point);
2490       return;
2491     }
2492   }
2493   // The IC may also just be a piece of code kept in the non_monomorphic_cache.
2494   // In that case, just serialize as a normal code object.
2495   if (FLAG_trace_serializer) {
2496     PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
2497   }
2498   DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
2499   SerializeGeneric(ic, how_to_code, where_to_point);
2500 }
2501 
2502 
AddCodeStubKey(uint32_t stub_key)2503 int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
2504   // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
2505   int index = 0;
2506   while (index < stub_keys_.length()) {
2507     if (stub_keys_[index] == stub_key) return index;
2508     index++;
2509   }
2510   stub_keys_.Add(stub_key);
2511   return index;
2512 }
2513 
2514 
Deserialize(Isolate * isolate,ScriptData * cached_data,Handle<String> source)2515 MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
2516     Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
2517   base::ElapsedTimer timer;
2518   if (FLAG_profile_deserialization) timer.Start();
2519 
2520   HandleScope scope(isolate);
2521 
2522   base::SmartPointer<SerializedCodeData> scd(
2523       SerializedCodeData::FromCachedData(isolate, cached_data, *source));
2524   if (scd.is_empty()) {
2525     if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
2526     DCHECK(cached_data->rejected());
2527     return MaybeHandle<SharedFunctionInfo>();
2528   }
2529 
2530   // Prepare and register list of attached objects.
2531   Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
2532   Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
2533       code_stub_keys.length() + kCodeStubsBaseIndex);
2534   attached_objects[kSourceObjectIndex] = source;
2535   for (int i = 0; i < code_stub_keys.length(); i++) {
2536     attached_objects[i + kCodeStubsBaseIndex] =
2537         CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
2538   }
2539 
2540   Deserializer deserializer(scd.get());
2541   deserializer.SetAttachedObjects(attached_objects);
2542 
2543   // Deserialize.
2544   Handle<SharedFunctionInfo> result;
2545   if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
2546     // Deserializing may fail if the reservations cannot be fulfilled.
2547     if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
2548     return MaybeHandle<SharedFunctionInfo>();
2549   }
2550 
2551   if (FLAG_profile_deserialization) {
2552     double ms = timer.Elapsed().InMillisecondsF();
2553     int length = cached_data->length();
2554     PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
2555   }
2556   result->set_deserialized(true);
2557 
2558   if (isolate->logger()->is_logging_code_events() ||
2559       isolate->cpu_profiler()->is_profiling()) {
2560     String* name = isolate->heap()->empty_string();
2561     if (result->script()->IsScript()) {
2562       Script* script = Script::cast(result->script());
2563       if (script->name()->IsString()) name = String::cast(script->name());
2564     }
2565     isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(),
2566                                        *result, NULL, name);
2567   }
2568   return scope.CloseAndEscape(result);
2569 }
2570 
2571 
AllocateData(int size)2572 void SerializedData::AllocateData(int size) {
2573   DCHECK(!owns_data_);
2574   data_ = NewArray<byte>(size);
2575   size_ = size;
2576   owns_data_ = true;
2577   DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
2578 }
2579 
2580 
SnapshotData(const Serializer & ser)2581 SnapshotData::SnapshotData(const Serializer& ser) {
2582   DisallowHeapAllocation no_gc;
2583   List<Reservation> reservations;
2584   ser.EncodeReservations(&reservations);
2585   const List<byte>& payload = ser.sink()->data();
2586 
2587   // Calculate sizes.
2588   int reservation_size = reservations.length() * kInt32Size;
2589   int size = kHeaderSize + reservation_size + payload.length();
2590 
2591   // Allocate backing store and create result data.
2592   AllocateData(size);
2593 
2594   // Set header values.
2595   SetMagicNumber(ser.isolate());
2596   SetHeaderValue(kCheckSumOffset, Version::Hash());
2597   SetHeaderValue(kNumReservationsOffset, reservations.length());
2598   SetHeaderValue(kPayloadLengthOffset, payload.length());
2599 
2600   // Copy reservation chunk sizes.
2601   CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2602             reservation_size);
2603 
2604   // Copy serialized data.
2605   CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
2606             static_cast<size_t>(payload.length()));
2607 }
2608 
2609 
IsSane()2610 bool SnapshotData::IsSane() {
2611   return GetHeaderValue(kCheckSumOffset) == Version::Hash();
2612 }
2613 
2614 
Reservations() const2615 Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
2616   return Vector<const Reservation>(
2617       reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2618       GetHeaderValue(kNumReservationsOffset));
2619 }
2620 
2621 
Payload() const2622 Vector<const byte> SnapshotData::Payload() const {
2623   int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2624   const byte* payload = data_ + kHeaderSize + reservations_size;
2625   int length = GetHeaderValue(kPayloadLengthOffset);
2626   DCHECK_EQ(data_ + size_, payload + length);
2627   return Vector<const byte>(payload, length);
2628 }
2629 
2630 
2631 class Checksum {
2632  public:
Checksum(Vector<const byte> payload)2633   explicit Checksum(Vector<const byte> payload) {
2634 #ifdef MEMORY_SANITIZER
2635     // Computing the checksum includes padding bytes for objects like strings.
2636     // Mark every object as initialized in the code serializer.
2637     MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
2638 #endif  // MEMORY_SANITIZER
2639     // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
2640     uintptr_t a = 1;
2641     uintptr_t b = 0;
2642     const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
2643     DCHECK(IsAligned(payload.length(), kIntptrSize));
2644     const uintptr_t* end = cur + payload.length() / kIntptrSize;
2645     while (cur < end) {
2646       // Unsigned overflow expected and intended.
2647       a += *cur++;
2648       b += a;
2649     }
2650 #if V8_HOST_ARCH_64_BIT
2651     a ^= a >> 32;
2652     b ^= b >> 32;
2653 #endif  // V8_HOST_ARCH_64_BIT
2654     a_ = static_cast<uint32_t>(a);
2655     b_ = static_cast<uint32_t>(b);
2656   }
2657 
Check(uint32_t a,uint32_t b) const2658   bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
2659 
a() const2660   uint32_t a() const { return a_; }
b() const2661   uint32_t b() const { return b_; }
2662 
2663  private:
2664   uint32_t a_;
2665   uint32_t b_;
2666 
2667   DISALLOW_COPY_AND_ASSIGN(Checksum);
2668 };
2669 
2670 
SerializedCodeData(const List<byte> & payload,const CodeSerializer & cs)2671 SerializedCodeData::SerializedCodeData(const List<byte>& payload,
2672                                        const CodeSerializer& cs) {
2673   DisallowHeapAllocation no_gc;
2674   const List<uint32_t>* stub_keys = cs.stub_keys();
2675 
2676   List<Reservation> reservations;
2677   cs.EncodeReservations(&reservations);
2678 
2679   // Calculate sizes.
2680   int reservation_size = reservations.length() * kInt32Size;
2681   int num_stub_keys = stub_keys->length();
2682   int stub_keys_size = stub_keys->length() * kInt32Size;
2683   int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
2684   int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2685   int size = padded_payload_offset + payload.length();
2686 
2687   // Allocate backing store and create result data.
2688   AllocateData(size);
2689 
2690   // Set header values.
2691   SetMagicNumber(cs.isolate());
2692   SetHeaderValue(kVersionHashOffset, Version::Hash());
2693   SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
2694   SetHeaderValue(kCpuFeaturesOffset,
2695                  static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
2696   SetHeaderValue(kFlagHashOffset, FlagList::Hash());
2697   SetHeaderValue(kNumReservationsOffset, reservations.length());
2698   SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
2699   SetHeaderValue(kPayloadLengthOffset, payload.length());
2700 
2701   Checksum checksum(payload.ToConstVector());
2702   SetHeaderValue(kChecksum1Offset, checksum.a());
2703   SetHeaderValue(kChecksum2Offset, checksum.b());
2704 
2705   // Copy reservation chunk sizes.
2706   CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
2707             reservation_size);
2708 
2709   // Copy code stub keys.
2710   CopyBytes(data_ + kHeaderSize + reservation_size,
2711             reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
2712 
2713   memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
2714 
2715   // Copy serialized data.
2716   CopyBytes(data_ + padded_payload_offset, payload.begin(),
2717             static_cast<size_t>(payload.length()));
2718 }
2719 
2720 
SanityCheck(Isolate * isolate,String * source) const2721 SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
2722     Isolate* isolate, String* source) const {
2723   uint32_t magic_number = GetMagicNumber();
2724   if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
2725   uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
2726   uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
2727   uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
2728   uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
2729   uint32_t c1 = GetHeaderValue(kChecksum1Offset);
2730   uint32_t c2 = GetHeaderValue(kChecksum2Offset);
2731   if (version_hash != Version::Hash()) return VERSION_MISMATCH;
2732   if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
2733   if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
2734     return CPU_FEATURES_MISMATCH;
2735   }
2736   if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
2737   if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
2738   return CHECK_SUCCESS;
2739 }
2740 
2741 
SourceHash(String * source) const2742 uint32_t SerializedCodeData::SourceHash(String* source) const {
2743   return source->length();
2744 }
2745 
2746 
2747 // Return ScriptData object and relinquish ownership over it to the caller.
GetScriptData()2748 ScriptData* SerializedCodeData::GetScriptData() {
2749   DCHECK(owns_data_);
2750   ScriptData* result = new ScriptData(data_, size_);
2751   result->AcquireDataOwnership();
2752   owns_data_ = false;
2753   data_ = NULL;
2754   return result;
2755 }
2756 
2757 
Reservations() const2758 Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
2759     const {
2760   return Vector<const Reservation>(
2761       reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
2762       GetHeaderValue(kNumReservationsOffset));
2763 }
2764 
2765 
Payload() const2766 Vector<const byte> SerializedCodeData::Payload() const {
2767   int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2768   int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
2769   int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
2770   int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
2771   const byte* payload = data_ + padded_payload_offset;
2772   DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
2773   int length = GetHeaderValue(kPayloadLengthOffset);
2774   DCHECK_EQ(data_ + size_, payload + length);
2775   return Vector<const byte>(payload, length);
2776 }
2777 
2778 
CodeStubKeys() const2779 Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
2780   int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
2781   const byte* start = data_ + kHeaderSize + reservations_size;
2782   return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
2783                                 GetHeaderValue(kNumCodeStubKeysOffset));
2784 }
2785 
2786 
SerializedCodeData(ScriptData * data)2787 SerializedCodeData::SerializedCodeData(ScriptData* data)
2788     : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
2789 
2790 
FromCachedData(Isolate * isolate,ScriptData * cached_data,String * source)2791 SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
2792                                                        ScriptData* cached_data,
2793                                                        String* source) {
2794   DisallowHeapAllocation no_gc;
2795   SerializedCodeData* scd = new SerializedCodeData(cached_data);
2796   SanityCheckResult r = scd->SanityCheck(isolate, source);
2797   if (r == CHECK_SUCCESS) return scd;
2798   cached_data->Reject();
2799   source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
2800   delete scd;
2801   return NULL;
2802 }
2803 }  // namespace internal
2804 }  // namespace v8
2805