1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_X64_ASSEMBLER_X64_INL_H_
6 #define V8_X64_ASSEMBLER_X64_INL_H_
7
8 #include "src/x64/assembler-x64.h"
9
10 #include "src/base/cpu.h"
11 #include "src/debug/debug.h"
12 #include "src/v8memory.h"
13
14 namespace v8 {
15 namespace internal {
16
SupportsCrankshaft()17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18
19
20 // -----------------------------------------------------------------------------
21 // Implementation of Assembler
22
23
24 static const byte kCallOpcode = 0xE8;
25 // The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
26 static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
27
28
emitl(uint32_t x)29 void Assembler::emitl(uint32_t x) {
30 Memory::uint32_at(pc_) = x;
31 pc_ += sizeof(uint32_t);
32 }
33
34
emitp(void * x,RelocInfo::Mode rmode)35 void Assembler::emitp(void* x, RelocInfo::Mode rmode) {
36 uintptr_t value = reinterpret_cast<uintptr_t>(x);
37 Memory::uintptr_at(pc_) = value;
38 if (!RelocInfo::IsNone(rmode)) {
39 RecordRelocInfo(rmode, value);
40 }
41 pc_ += sizeof(uintptr_t);
42 }
43
44
emitq(uint64_t x)45 void Assembler::emitq(uint64_t x) {
46 Memory::uint64_at(pc_) = x;
47 pc_ += sizeof(uint64_t);
48 }
49
50
emitw(uint16_t x)51 void Assembler::emitw(uint16_t x) {
52 Memory::uint16_at(pc_) = x;
53 pc_ += sizeof(uint16_t);
54 }
55
56
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,TypeFeedbackId ast_id)57 void Assembler::emit_code_target(Handle<Code> target,
58 RelocInfo::Mode rmode,
59 TypeFeedbackId ast_id) {
60 DCHECK(RelocInfo::IsCodeTarget(rmode) ||
61 rmode == RelocInfo::CODE_AGE_SEQUENCE);
62 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
63 RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt());
64 } else {
65 RecordRelocInfo(rmode);
66 }
67 int current = code_targets_.length();
68 if (current > 0 && code_targets_.last().is_identical_to(target)) {
69 // Optimization if we keep jumping to the same code target.
70 emitl(current - 1);
71 } else {
72 code_targets_.Add(target);
73 emitl(current);
74 }
75 }
76
77
emit_runtime_entry(Address entry,RelocInfo::Mode rmode)78 void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) {
79 DCHECK(RelocInfo::IsRuntimeEntry(rmode));
80 RecordRelocInfo(rmode);
81 emitl(static_cast<uint32_t>(entry - isolate()->code_range()->start()));
82 }
83
84
emit_rex_64(Register reg,Register rm_reg)85 void Assembler::emit_rex_64(Register reg, Register rm_reg) {
86 emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
87 }
88
89
emit_rex_64(XMMRegister reg,Register rm_reg)90 void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
91 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
92 }
93
94
emit_rex_64(Register reg,XMMRegister rm_reg)95 void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
96 emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
97 }
98
99
emit_rex_64(Register reg,const Operand & op)100 void Assembler::emit_rex_64(Register reg, const Operand& op) {
101 emit(0x48 | reg.high_bit() << 2 | op.rex_);
102 }
103
104
emit_rex_64(XMMRegister reg,const Operand & op)105 void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
106 emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
107 }
108
109
emit_rex_64(Register rm_reg)110 void Assembler::emit_rex_64(Register rm_reg) {
111 DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code());
112 emit(0x48 | rm_reg.high_bit());
113 }
114
115
emit_rex_64(const Operand & op)116 void Assembler::emit_rex_64(const Operand& op) {
117 emit(0x48 | op.rex_);
118 }
119
120
emit_rex_32(Register reg,Register rm_reg)121 void Assembler::emit_rex_32(Register reg, Register rm_reg) {
122 emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
123 }
124
125
emit_rex_32(Register reg,const Operand & op)126 void Assembler::emit_rex_32(Register reg, const Operand& op) {
127 emit(0x40 | reg.high_bit() << 2 | op.rex_);
128 }
129
130
emit_rex_32(Register rm_reg)131 void Assembler::emit_rex_32(Register rm_reg) {
132 emit(0x40 | rm_reg.high_bit());
133 }
134
135
emit_rex_32(const Operand & op)136 void Assembler::emit_rex_32(const Operand& op) {
137 emit(0x40 | op.rex_);
138 }
139
140
emit_optional_rex_32(Register reg,Register rm_reg)141 void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
142 byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
143 if (rex_bits != 0) emit(0x40 | rex_bits);
144 }
145
146
emit_optional_rex_32(Register reg,const Operand & op)147 void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
148 byte rex_bits = reg.high_bit() << 2 | op.rex_;
149 if (rex_bits != 0) emit(0x40 | rex_bits);
150 }
151
152
emit_optional_rex_32(XMMRegister reg,const Operand & op)153 void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
154 byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
155 if (rex_bits != 0) emit(0x40 | rex_bits);
156 }
157
158
emit_optional_rex_32(XMMRegister reg,XMMRegister base)159 void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
160 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
161 if (rex_bits != 0) emit(0x40 | rex_bits);
162 }
163
164
emit_optional_rex_32(XMMRegister reg,Register base)165 void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
166 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
167 if (rex_bits != 0) emit(0x40 | rex_bits);
168 }
169
170
emit_optional_rex_32(Register reg,XMMRegister base)171 void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
172 byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
173 if (rex_bits != 0) emit(0x40 | rex_bits);
174 }
175
176
emit_optional_rex_32(Register rm_reg)177 void Assembler::emit_optional_rex_32(Register rm_reg) {
178 if (rm_reg.high_bit()) emit(0x41);
179 }
180
181
emit_optional_rex_32(XMMRegister rm_reg)182 void Assembler::emit_optional_rex_32(XMMRegister rm_reg) {
183 if (rm_reg.high_bit()) emit(0x41);
184 }
185
186
emit_optional_rex_32(const Operand & op)187 void Assembler::emit_optional_rex_32(const Operand& op) {
188 if (op.rex_ != 0) emit(0x40 | op.rex_);
189 }
190
191
192 // byte 1 of 3-byte VEX
emit_vex3_byte1(XMMRegister reg,XMMRegister rm,LeadingOpcode m)193 void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm,
194 LeadingOpcode m) {
195 byte rxb = ~((reg.high_bit() << 2) | rm.high_bit()) << 5;
196 emit(rxb | m);
197 }
198
199
200 // byte 1 of 3-byte VEX
emit_vex3_byte1(XMMRegister reg,const Operand & rm,LeadingOpcode m)201 void Assembler::emit_vex3_byte1(XMMRegister reg, const Operand& rm,
202 LeadingOpcode m) {
203 byte rxb = ~((reg.high_bit() << 2) | rm.rex_) << 5;
204 emit(rxb | m);
205 }
206
207
208 // byte 1 of 2-byte VEX
emit_vex2_byte1(XMMRegister reg,XMMRegister v,VectorLength l,SIMDPrefix pp)209 void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
210 SIMDPrefix pp) {
211 byte rv = ~((reg.high_bit() << 4) | v.code()) << 3;
212 emit(rv | l | pp);
213 }
214
215
216 // byte 2 of 3-byte VEX
emit_vex3_byte2(VexW w,XMMRegister v,VectorLength l,SIMDPrefix pp)217 void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
218 SIMDPrefix pp) {
219 emit(w | ((~v.code() & 0xf) << 3) | l | pp);
220 }
221
222
emit_vex_prefix(XMMRegister reg,XMMRegister vreg,XMMRegister rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)223 void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
224 XMMRegister rm, VectorLength l, SIMDPrefix pp,
225 LeadingOpcode mm, VexW w) {
226 if (rm.high_bit() || mm != k0F || w != kW0) {
227 emit_vex3_byte0();
228 emit_vex3_byte1(reg, rm, mm);
229 emit_vex3_byte2(w, vreg, l, pp);
230 } else {
231 emit_vex2_byte0();
232 emit_vex2_byte1(reg, vreg, l, pp);
233 }
234 }
235
236
emit_vex_prefix(Register reg,Register vreg,Register rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)237 void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm,
238 VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
239 VexW w) {
240 XMMRegister ireg = {reg.code()};
241 XMMRegister ivreg = {vreg.code()};
242 XMMRegister irm = {rm.code()};
243 emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w);
244 }
245
246
emit_vex_prefix(XMMRegister reg,XMMRegister vreg,const Operand & rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)247 void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg,
248 const Operand& rm, VectorLength l,
249 SIMDPrefix pp, LeadingOpcode mm, VexW w) {
250 if (rm.rex_ || mm != k0F || w != kW0) {
251 emit_vex3_byte0();
252 emit_vex3_byte1(reg, rm, mm);
253 emit_vex3_byte2(w, vreg, l, pp);
254 } else {
255 emit_vex2_byte0();
256 emit_vex2_byte1(reg, vreg, l, pp);
257 }
258 }
259
260
emit_vex_prefix(Register reg,Register vreg,const Operand & rm,VectorLength l,SIMDPrefix pp,LeadingOpcode mm,VexW w)261 void Assembler::emit_vex_prefix(Register reg, Register vreg, const Operand& rm,
262 VectorLength l, SIMDPrefix pp, LeadingOpcode mm,
263 VexW w) {
264 XMMRegister ireg = {reg.code()};
265 XMMRegister ivreg = {vreg.code()};
266 emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w);
267 }
268
269
target_address_at(Address pc,Address constant_pool)270 Address Assembler::target_address_at(Address pc, Address constant_pool) {
271 return Memory::int32_at(pc) + pc + 4;
272 }
273
274
set_target_address_at(Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)275 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
276 Address constant_pool, Address target,
277 ICacheFlushMode icache_flush_mode) {
278 Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
279 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
280 Assembler::FlushICache(isolate, pc, sizeof(int32_t));
281 }
282 }
283
284
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)285 void Assembler::deserialization_set_target_internal_reference_at(
286 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
287 Memory::Address_at(pc) = target;
288 }
289
290
target_address_from_return_address(Address pc)291 Address Assembler::target_address_from_return_address(Address pc) {
292 return pc - kCallTargetAddressOffset;
293 }
294
295
code_target_object_handle_at(Address pc)296 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
297 return code_targets_[Memory::int32_at(pc)];
298 }
299
300
runtime_entry_at(Address pc)301 Address Assembler::runtime_entry_at(Address pc) {
302 return Memory::int32_at(pc) + isolate()->code_range()->start();
303 }
304
305 // -----------------------------------------------------------------------------
306 // Implementation of RelocInfo
307
308 // The modes possibly affected by apply must be in kApplyMask.
apply(intptr_t delta)309 void RelocInfo::apply(intptr_t delta) {
310 if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
311 Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
312 } else if (IsCodeAgeSequence(rmode_)) {
313 if (*pc_ == kCallOpcode) {
314 int32_t* p = reinterpret_cast<int32_t*>(pc_ + 1);
315 *p -= static_cast<int32_t>(delta); // Relocate entry.
316 }
317 } else if (IsInternalReference(rmode_)) {
318 // absolute code pointer inside code object moves with the code object.
319 Memory::Address_at(pc_) += delta;
320 }
321 }
322
323
target_address()324 Address RelocInfo::target_address() {
325 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
326 return Assembler::target_address_at(pc_, host_);
327 }
328
329
target_address_address()330 Address RelocInfo::target_address_address() {
331 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
332 || rmode_ == EMBEDDED_OBJECT
333 || rmode_ == EXTERNAL_REFERENCE);
334 return reinterpret_cast<Address>(pc_);
335 }
336
337
constant_pool_entry_address()338 Address RelocInfo::constant_pool_entry_address() {
339 UNREACHABLE();
340 return NULL;
341 }
342
343
target_address_size()344 int RelocInfo::target_address_size() {
345 if (IsCodedSpecially()) {
346 return Assembler::kSpecialTargetSize;
347 } else {
348 return kPointerSize;
349 }
350 }
351
352
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)353 void RelocInfo::set_target_address(Address target,
354 WriteBarrierMode write_barrier_mode,
355 ICacheFlushMode icache_flush_mode) {
356 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
357 Assembler::set_target_address_at(isolate_, pc_, host_, target,
358 icache_flush_mode);
359 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
360 IsCodeTarget(rmode_)) {
361 Object* target_code = Code::GetCodeFromTargetAddress(target);
362 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
363 host(), this, HeapObject::cast(target_code));
364 }
365 }
366
367
target_object()368 Object* RelocInfo::target_object() {
369 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
370 return Memory::Object_at(pc_);
371 }
372
373
target_object_handle(Assembler * origin)374 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
375 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
376 if (rmode_ == EMBEDDED_OBJECT) {
377 return Memory::Object_Handle_at(pc_);
378 } else {
379 return origin->code_target_object_handle_at(pc_);
380 }
381 }
382
383
target_external_reference()384 Address RelocInfo::target_external_reference() {
385 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
386 return Memory::Address_at(pc_);
387 }
388
389
target_internal_reference()390 Address RelocInfo::target_internal_reference() {
391 DCHECK(rmode_ == INTERNAL_REFERENCE);
392 return Memory::Address_at(pc_);
393 }
394
395
target_internal_reference_address()396 Address RelocInfo::target_internal_reference_address() {
397 DCHECK(rmode_ == INTERNAL_REFERENCE);
398 return reinterpret_cast<Address>(pc_);
399 }
400
401
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)402 void RelocInfo::set_target_object(Object* target,
403 WriteBarrierMode write_barrier_mode,
404 ICacheFlushMode icache_flush_mode) {
405 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
406 Memory::Object_at(pc_) = target;
407 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
408 Assembler::FlushICache(isolate_, pc_, sizeof(Address));
409 }
410 if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
411 host() != NULL &&
412 target->IsHeapObject()) {
413 host()->GetHeap()->incremental_marking()->RecordWrite(
414 host(), &Memory::Object_at(pc_), HeapObject::cast(target));
415 }
416 }
417
418
target_runtime_entry(Assembler * origin)419 Address RelocInfo::target_runtime_entry(Assembler* origin) {
420 DCHECK(IsRuntimeEntry(rmode_));
421 return origin->runtime_entry_at(pc_);
422 }
423
424
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)425 void RelocInfo::set_target_runtime_entry(Address target,
426 WriteBarrierMode write_barrier_mode,
427 ICacheFlushMode icache_flush_mode) {
428 DCHECK(IsRuntimeEntry(rmode_));
429 if (target_address() != target) {
430 set_target_address(target, write_barrier_mode, icache_flush_mode);
431 }
432 }
433
434
target_cell_handle()435 Handle<Cell> RelocInfo::target_cell_handle() {
436 DCHECK(rmode_ == RelocInfo::CELL);
437 Address address = Memory::Address_at(pc_);
438 return Handle<Cell>(reinterpret_cast<Cell**>(address));
439 }
440
441
target_cell()442 Cell* RelocInfo::target_cell() {
443 DCHECK(rmode_ == RelocInfo::CELL);
444 return Cell::FromValueAddress(Memory::Address_at(pc_));
445 }
446
447
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)448 void RelocInfo::set_target_cell(Cell* cell,
449 WriteBarrierMode write_barrier_mode,
450 ICacheFlushMode icache_flush_mode) {
451 DCHECK(rmode_ == RelocInfo::CELL);
452 Address address = cell->address() + Cell::kValueOffset;
453 Memory::Address_at(pc_) = address;
454 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
455 Assembler::FlushICache(isolate_, pc_, sizeof(Address));
456 }
457 if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
458 host() != NULL) {
459 // TODO(1550) We are passing NULL as a slot because cell can never be on
460 // evacuation candidate.
461 host()->GetHeap()->incremental_marking()->RecordWrite(
462 host(), NULL, cell);
463 }
464 }
465
466
WipeOut()467 void RelocInfo::WipeOut() {
468 if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) ||
469 IsInternalReference(rmode_)) {
470 Memory::Address_at(pc_) = NULL;
471 } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) {
472 // Effectively write zero into the relocation.
473 Assembler::set_target_address_at(isolate_, pc_, host_,
474 pc_ + sizeof(int32_t));
475 } else {
476 UNREACHABLE();
477 }
478 }
479
480
IsPatchedReturnSequence()481 bool RelocInfo::IsPatchedReturnSequence() {
482 // The recognized call sequence is:
483 // movq(kScratchRegister, address); call(kScratchRegister);
484 // It only needs to be distinguished from a return sequence
485 // movq(rsp, rbp); pop(rbp); ret(n); int3 *6
486 // The 11th byte is int3 (0xCC) in the return sequence and
487 // REX.WB (0x48+register bit) for the call sequence.
488 return pc_[Assembler::kMoveAddressIntoScratchRegisterInstructionLength] !=
489 0xCC;
490 }
491
492
IsPatchedDebugBreakSlotSequence()493 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
494 return !Assembler::IsNop(pc());
495 }
496
497
code_age_stub_handle(Assembler * origin)498 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
499 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
500 DCHECK(*pc_ == kCallOpcode);
501 return origin->code_target_object_handle_at(pc_ + 1);
502 }
503
504
code_age_stub()505 Code* RelocInfo::code_age_stub() {
506 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
507 DCHECK(*pc_ == kCallOpcode);
508 return Code::GetCodeFromTargetAddress(
509 Assembler::target_address_at(pc_ + 1, host_));
510 }
511
512
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)513 void RelocInfo::set_code_age_stub(Code* stub,
514 ICacheFlushMode icache_flush_mode) {
515 DCHECK(*pc_ == kCallOpcode);
516 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
517 Assembler::set_target_address_at(
518 isolate_, pc_ + 1, host_, stub->instruction_start(), icache_flush_mode);
519 }
520
521
debug_call_address()522 Address RelocInfo::debug_call_address() {
523 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
524 return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset);
525 }
526
527
set_debug_call_address(Address target)528 void RelocInfo::set_debug_call_address(Address target) {
529 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
530 Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) =
531 target;
532 Assembler::FlushICache(isolate_,
533 pc_ + Assembler::kPatchDebugBreakSlotAddressOffset,
534 sizeof(Address));
535 if (host() != NULL) {
536 Object* target_code = Code::GetCodeFromTargetAddress(target);
537 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
538 host(), this, HeapObject::cast(target_code));
539 }
540 }
541
542
Visit(Isolate * isolate,ObjectVisitor * visitor)543 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
544 RelocInfo::Mode mode = rmode();
545 if (mode == RelocInfo::EMBEDDED_OBJECT) {
546 visitor->VisitEmbeddedPointer(this);
547 Assembler::FlushICache(isolate, pc_, sizeof(Address));
548 } else if (RelocInfo::IsCodeTarget(mode)) {
549 visitor->VisitCodeTarget(this);
550 } else if (mode == RelocInfo::CELL) {
551 visitor->VisitCell(this);
552 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
553 visitor->VisitExternalReference(this);
554 } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
555 visitor->VisitInternalReference(this);
556 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
557 visitor->VisitCodeAgeSequence(this);
558 } else if (RelocInfo::IsDebugBreakSlot(mode) &&
559 IsPatchedDebugBreakSlotSequence()) {
560 visitor->VisitDebugTarget(this);
561 } else if (RelocInfo::IsRuntimeEntry(mode)) {
562 visitor->VisitRuntimeEntry(this);
563 }
564 }
565
566
567 template<typename StaticVisitor>
Visit(Heap * heap)568 void RelocInfo::Visit(Heap* heap) {
569 RelocInfo::Mode mode = rmode();
570 if (mode == RelocInfo::EMBEDDED_OBJECT) {
571 StaticVisitor::VisitEmbeddedPointer(heap, this);
572 Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address));
573 } else if (RelocInfo::IsCodeTarget(mode)) {
574 StaticVisitor::VisitCodeTarget(heap, this);
575 } else if (mode == RelocInfo::CELL) {
576 StaticVisitor::VisitCell(heap, this);
577 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
578 StaticVisitor::VisitExternalReference(this);
579 } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
580 StaticVisitor::VisitInternalReference(this);
581 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
582 StaticVisitor::VisitCodeAgeSequence(heap, this);
583 } else if (RelocInfo::IsDebugBreakSlot(mode) &&
584 IsPatchedDebugBreakSlotSequence()) {
585 StaticVisitor::VisitDebugTarget(heap, this);
586 } else if (RelocInfo::IsRuntimeEntry(mode)) {
587 StaticVisitor::VisitRuntimeEntry(this);
588 }
589 }
590
591
592 // -----------------------------------------------------------------------------
593 // Implementation of Operand
594
set_modrm(int mod,Register rm_reg)595 void Operand::set_modrm(int mod, Register rm_reg) {
596 DCHECK(is_uint2(mod));
597 buf_[0] = mod << 6 | rm_reg.low_bits();
598 // Set REX.B to the high bit of rm.code().
599 rex_ |= rm_reg.high_bit();
600 }
601
602
set_sib(ScaleFactor scale,Register index,Register base)603 void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
604 DCHECK(len_ == 1);
605 DCHECK(is_uint2(scale));
606 // Use SIB with no index register only for base rsp or r12. Otherwise we
607 // would skip the SIB byte entirely.
608 DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12));
609 buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
610 rex_ |= index.high_bit() << 1 | base.high_bit();
611 len_ = 2;
612 }
613
set_disp8(int disp)614 void Operand::set_disp8(int disp) {
615 DCHECK(is_int8(disp));
616 DCHECK(len_ == 1 || len_ == 2);
617 int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
618 *p = disp;
619 len_ += sizeof(int8_t);
620 }
621
set_disp32(int disp)622 void Operand::set_disp32(int disp) {
623 DCHECK(len_ == 1 || len_ == 2);
624 int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
625 *p = disp;
626 len_ += sizeof(int32_t);
627 }
628
set_disp64(int64_t disp)629 void Operand::set_disp64(int64_t disp) {
630 DCHECK_EQ(1, len_);
631 int64_t* p = reinterpret_cast<int64_t*>(&buf_[len_]);
632 *p = disp;
633 len_ += sizeof(disp);
634 }
635 } // namespace internal
636 } // namespace v8
637
638 #endif // V8_X64_ASSEMBLER_X64_INL_H_
639