1// Copyright 2014 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5// Flags: --no-fast-math 6 7assertTrue(isNaN(Math.expm1(NaN))); 8assertTrue(isNaN(Math.expm1(function() {}))); 9assertTrue(isNaN(Math.expm1({ toString: function() { return NaN; } }))); 10assertTrue(isNaN(Math.expm1({ valueOf: function() { return "abc"; } }))); 11assertEquals(Infinity, 1/Math.expm1(0)); 12assertEquals(-Infinity, 1/Math.expm1(-0)); 13assertEquals(Infinity, Math.expm1(Infinity)); 14assertEquals(-1, Math.expm1(-Infinity)); 15 16 17// Sanity check: 18// Math.expm1(x) stays reasonably close to Math.exp(x) - 1 for large values. 19for (var x = 1; x < 700; x += 0.25) { 20 var expected = Math.exp(x) - 1; 21 assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15); 22 expected = Math.exp(-x) - 1; 23 assertEqualsDelta(expected, Math.expm1(-x), -expected * 1E-15); 24} 25 26// Approximation for values close to 0: 27// Use six terms of Taylor expansion at 0 for exp(x) as test expectation: 28// exp(x) - 1 == exp(0) + exp(0) * x + x * x / 2 + ... - 1 29// == x + x * x / 2 + x * x * x / 6 + ... 30function expm1(x) { 31 return x * (1 + x * (1/2 + x * ( 32 1/6 + x * (1/24 + x * ( 33 1/120 + x * (1/720 + x * ( 34 1/5040 + x * (1/40320 + x*( 35 1/362880 + x * (1/3628800)))))))))); 36} 37 38// Sanity check: 39// Math.expm1(x) stays reasonabliy close to the Taylor series for small values. 40for (var x = 1E-1; x > 1E-300; x *= 0.8) { 41 var expected = expm1(x); 42 assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15); 43} 44 45 46// Tests related to the fdlibm implementation. 47// Test overflow. 48assertEquals(Infinity, Math.expm1(709.8)); 49// Test largest double value. 50assertEquals(Infinity, Math.exp(1.7976931348623157e308)); 51// Cover various code paths. 52assertEquals(-1, Math.expm1(-56 * Math.LN2)); 53assertEquals(-1, Math.expm1(-50)); 54// Test most negative double value. 55assertEquals(-1, Math.expm1(-1.7976931348623157e308)); 56// Test argument reduction. 57// Cases for 0.5*log(2) < |x| < 1.5*log(2). 58assertEquals(Math.E - 1, Math.expm1(1)); 59assertEquals(1/Math.E - 1, Math.expm1(-1)); 60// Cases for 1.5*log(2) < |x|. 61assertEquals(6.38905609893065, Math.expm1(2)); 62assertEquals(-0.8646647167633873, Math.expm1(-2)); 63// Cases where Math.expm1(x) = x. 64assertEquals(0, Math.expm1(0)); 65assertEquals(Math.pow(2,-55), Math.expm1(Math.pow(2,-55))); 66// Tests for the case where argument reduction has x in the primary range. 67// Test branch for k = 0. 68assertEquals(0.18920711500272105, Math.expm1(0.25 * Math.LN2)); 69// Test branch for k = -1. 70assertEquals(-0.5, Math.expm1(-Math.LN2)); 71// Test branch for k = 1. 72assertEquals(1, Math.expm1(Math.LN2)); 73// Test branch for k <= -2 || k > 56. k = -3. 74assertEquals(1.4411518807585582e17, Math.expm1(57 * Math.LN2)); 75// Test last branch for k < 20, k = 19. 76assertEquals(524286.99999999994, Math.expm1(19 * Math.LN2)); 77// Test the else branch, k = 20. 78assertEquals(1048575, Math.expm1(20 * Math.LN2)); 79