1// Copyright 2013 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28// TODO(3468): we rely on a precise Math.exp. 29// Flags: --no-fast-math 30 31[Math.sinh, Math.cosh, Math.tanh, Math.asinh, Math.acosh, Math.atanh]. 32 forEach(function(fun) { 33 assertTrue(isNaN(fun(NaN))); 34 assertTrue(isNaN(fun("abc"))); 35 assertTrue(isNaN(fun({}))); 36 assertEquals(fun(0), fun([])); 37 assertTrue(isNaN(fun([1, 1]))); 38 assertEquals(fun(1.11), fun({ toString: function() { return "1.11"; } })); 39 assertEquals(fun(-3.1), fun({ toString: function() { return -3.1; } })); 40 assertEquals(fun(-1.1), fun({ valueOf: function() { return "-1.1"; } })); 41 assertEquals(fun(3.11), fun({ valueOf: function() { return 3.11; } })); 42}); 43 44 45function test_id(fun, rev, value) { 46 assertEqualsDelta(1, rev(fun(value))/value, 1E-7); 47} 48 49[Math.PI, 2, 5, 1E-5, 0.3].forEach(function(x) { 50 test_id(Math.sinh, Math.asinh, x); 51 test_id(Math.sinh, Math.asinh, -x); 52 test_id(Math.cosh, Math.acosh, x); 53 test_id(Math.tanh, Math.atanh, x); 54 test_id(Math.tanh, Math.atanh, -x); 55}); 56 57 58[Math.sinh, Math.asinh, Math.tanh, Math.atanh].forEach(function(fun) { 59 assertEquals("-Infinity", String(1/fun(-0))); 60 assertEquals("Infinity", String(1/fun(0))); 61}); 62 63 64[Math.sinh, Math.asinh].forEach(function(fun) { 65 assertEquals("-Infinity", String(fun(-Infinity))); 66 assertEquals("Infinity", String(fun(Infinity))); 67 assertEquals("-Infinity", String(fun("-Infinity"))); 68 assertEquals("Infinity", String(fun("Infinity"))); 69}); 70 71 72assertEquals(Infinity, Math.cosh(-Infinity)); 73assertEquals(Infinity, Math.cosh(Infinity)); 74assertEquals(Infinity, Math.cosh("-Infinity")); 75assertEquals(Infinity, Math.cosh("Infinity")); 76 77 78assertEquals(-Infinity, Math.atanh(-1)); 79assertEquals(Infinity, Math.atanh(1)); 80 81// Math.atanh(x) is NaN for |x| > 1 and NaN 82[1.000000000001, Math.PI, 10000000, 2, Infinity, NaN].forEach(function(x) { 83 assertTrue(isNaN(Math.atanh(-x))); 84 assertTrue(isNaN(Math.atanh(x))); 85}); 86 87 88assertEquals(0, Math.sinh(0)); 89assertEquals(-Infinity, 1/Math.sinh(-0)); 90assertEquals(1, Math.tanh(Infinity)); 91assertEquals(-1, Math.tanh(-Infinity)); 92assertEquals(1, Math.cosh(0)); 93assertEquals(1, Math.cosh(-0)); 94 95assertEquals(0, Math.acosh(1)); 96assertEquals("Infinity", String(Math.acosh(Infinity))); 97 98// Math.acosh(x) is NaN for x < 1 99[0.99999999999, 0.2, -1000, 0, -0].forEach(function(x) { 100 assertTrue(isNaN(Math.acosh(x))); 101}); 102 103 104// Some random samples. 105assertEqualsDelta(74.20321057778875, Math.sinh(5), 1E-12); 106assertEqualsDelta(-74.20321057778875, Math.sinh(-5), 1E-12); 107 108assertEqualsDelta(1.1276259652063807, Math.cosh(0.5), 1E-12); 109assertEqualsDelta(74.20994852478785, Math.cosh(5), 1E-12); 110assertEqualsDelta(1.1276259652063807, Math.cosh(-0.5), 1E-12); 111assertEqualsDelta(74.20994852478785, Math.cosh(-5), 1E-12); 112 113assertEqualsDelta(0.4621171572600, Math.tanh(0.5), 1E-12); 114assertEqualsDelta(0.9999092042625, Math.tanh(5), 1E-12); 115assertEqualsDelta(-0.4621171572600, Math.tanh(-0.5), 1E-12); 116assertEqualsDelta(-0.9999092042625, Math.tanh(-5), 1E-12); 117 118assertEqualsDelta(0.4812118250596, Math.asinh(0.5), 1E-12); 119assertEqualsDelta(2.3124383412727, Math.asinh(5), 1E-12); 120assertEqualsDelta(-0.4812118250596, Math.asinh(-0.5), 1E-12); 121assertEqualsDelta(-2.3124383412727, Math.asinh(-5), 1E-12); 122 123assertEqualsDelta(0.9624236501192, Math.acosh(1.5), 1E-12); 124assertEqualsDelta(2.2924316695612, Math.acosh(5), 1E-12); 125assertEqualsDelta(0.4435682543851, Math.acosh(1.1), 1E-12); 126assertEqualsDelta(1.3169578969248, Math.acosh(2), 1E-12); 127 128assertEqualsDelta(0.5493061443341, Math.atanh(0.5), 1E-12); 129assertEqualsDelta(0.1003353477311, Math.atanh(0.1), 1E-12); 130assertEqualsDelta(-0.5493061443341, Math.atanh(-0.5), 1E-12); 131assertEqualsDelta(-0.1003353477311, Math.atanh(-0.1), 1E-12); 132 133[0, 1E-50, 1E-10, 1E10, 1E50, 1E100, 1E150].forEach(function(x) { 134 assertEqualsDelta(Math.asinh(x), -Math.asinh(-x), 1E-12); 135}); 136 137[1-(1E-16), 0, 1E-10, 1E-50].forEach(function(x) { 138 assertEqualsDelta(Math.atanh(x), -Math.atanh(-x), 1E-12); 139}); 140 141 142// Implementation-specific tests for sinh. 143// Case |x| < 2^-28 144assertEquals(Math.pow(2, -29), Math.sinh(Math.pow(2, -29))); 145assertEquals(-Math.pow(2, -29), Math.sinh(-Math.pow(2, -29))); 146// Case |x| < 1 147assertEquals(0.5210953054937474, Math.sinh(0.5)); 148assertEquals(-0.5210953054937474, Math.sinh(-0.5)); 149// sinh(10*log(2)) = 1048575/2048, case |x| < 22 150assertEquals(1048575/2048, Math.sinh(10*Math.LN2)); 151assertEquals(-1048575/2048, Math.sinh(-10*Math.LN2)); 152// Case |x| < 22 153assertEquals(11013.232874703393, Math.sinh(10)); 154assertEquals(-11013.232874703393, Math.sinh(-10)); 155// Case |x| in [22, log(maxdouble)] 156assertEquals(2.1474836479999983e9, Math.sinh(32*Math.LN2)); 157assertEquals(-2.1474836479999983e9, Math.sinh(-32*Math.LN2)); 158// Case |x| in [22, log(maxdouble)] 159assertEquals(1.3440585709080678e43, Math.sinh(100)); 160assertEquals(-1.3440585709080678e43, Math.sinh(-100)); 161// No overflow, case |x| in [log(maxdouble), threshold] 162assertEquals(1.7976931348621744e308, Math.sinh(710.4758600739439)); 163assertEquals(-1.7976931348621744e308, Math.sinh(-710.4758600739439)); 164// Overflow, case |x| > threshold 165assertEquals(Infinity, Math.sinh(710.475860073944)); 166assertEquals(-Infinity, Math.sinh(-710.475860073944)); 167assertEquals(Infinity, Math.sinh(1000)); 168assertEquals(-Infinity, Math.sinh(-1000)); 169 170// Implementation-specific tests for cosh. 171// Case |x| < 2^-55 172assertEquals(1, Math.cosh(Math.pow(2, -56))); 173assertEquals(1, Math.cosh(-Math.pow(2, -56))); 174// Case |x| < 1/2*log(2). cosh(Math.LN2/4) = (sqrt(2)+1)/2^(5/4) 175assertEquals(1.0150517651282178, Math.cosh(Math.LN2/4)); 176assertEquals(1.0150517651282178, Math.cosh(-Math.LN2/4)); 177// Case 1/2*log(2) < |x| < 22. cosh(10*Math.LN2) = 1048577/2048 178assertEquals(512.00048828125, Math.cosh(10*Math.LN2)); 179assertEquals(512.00048828125, Math.cosh(-10*Math.LN2)); 180// Case 22 <= |x| < log(maxdouble) 181assertEquals(2.1474836479999983e9, Math.cosh(32*Math.LN2)); 182assertEquals(2.1474836479999983e9, Math.cosh(-32*Math.LN2)); 183// Case log(maxdouble) <= |x| <= overflowthreshold 184assertEquals(1.7976931348621744e308, Math.cosh(710.4758600739439)); 185assertEquals(1.7976931348621744e308, Math.cosh(-710.4758600739439)); 186// Overflow. 187assertEquals(Infinity, Math.cosh(710.475860073944)); 188assertEquals(Infinity, Math.cosh(-710.475860073944)); 189 190// Implementation-specific tests for tanh. 191// Case |x| < 2^-55 192var two_56 = Math.pow(2, -56); 193assertEquals(two_56, Math.tanh(two_56)); 194assertEquals(-two_56, Math.tanh(-two_56)); 195// Case |x| < 1 196assertEquals(0.6, Math.tanh(Math.LN2)); 197assertEquals(-0.6, Math.tanh(-Math.LN2)); 198// Case 1 < |x| < 22 199assertEquals(15/17, Math.tanh(2 * Math.LN2)); 200assertEquals(-15/17, Math.tanh(-2 * Math.LN2)); 201// Case |x| > 22 202assertEquals(1, Math.tanh(100)); 203assertEquals(-1, Math.tanh(-100)); 204// Test against overflow 205assertEquals(1, Math.tanh(1e300)); 206assertEquals(-1, Math.tanh(-1e300)); 207