1/////////////////////////////////////////////////////////////////////////////////////////////////// 2// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) 3/////////////////////////////////////////////////////////////////////////////////////////////////// 4// Created : 2007-03-05 5// Updated : 2007-03-05 6// Licence : This source is under MIT License 7// File : glm/gtx/matrix_query.inl 8/////////////////////////////////////////////////////////////////////////////////////////////////// 9// Dependency: 10// - GLM core 11/////////////////////////////////////////////////////////////////////////////////////////////////// 12 13namespace glm 14{ 15 template<typename T, precision P> 16 GLM_FUNC_QUALIFIER bool isNull(detail::tmat2x2<T, P> const & m, T const & epsilon) 17 { 18 bool result = true; 19 for(length_t i = 0; result && i < 2 ; ++i) 20 result = isNull(m[i], epsilon); 21 return result; 22 } 23 24 template<typename T, precision P> 25 GLM_FUNC_QUALIFIER bool isNull(detail::tmat3x3<T, P> const & m, T const & epsilon) 26 { 27 bool result = true; 28 for(length_t i = 0; result && i < 3 ; ++i) 29 result = isNull(m[i], epsilon); 30 return result; 31 } 32 33 template<typename T, precision P> 34 GLM_FUNC_QUALIFIER bool isNull(detail::tmat4x4<T, P> const & m, T const & epsilon) 35 { 36 bool result = true; 37 for(length_t i = 0; result && i < 4 ; ++i) 38 result = isNull(m[i], epsilon); 39 return result; 40 } 41 42 template<typename T, precision P, template <typename, precision> class matType> 43 GLM_FUNC_QUALIFIER bool isIdentity(matType<T, P> const & m, T const & epsilon) 44 { 45 bool result = true; 46 for(length_t i(0); result && i < m[0].length(); ++i) 47 { 48 for(length_t j(0); result && j < i ; ++j) 49 result = abs(m[i][j]) <= epsilon; 50 if(result) 51 result = abs(m[i][i] - 1) <= epsilon; 52 for(length_t j(i + 1); result && j < m.length(); ++j) 53 result = abs(m[i][j]) <= epsilon; 54 } 55 return result; 56 } 57 58 template<typename T, precision P> 59 GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat2x2<T, P> const & m, T const & epsilon) 60 { 61 bool result(true); 62 for(length_t i(0); result && i < m.length(); ++i) 63 result = isNormalized(m[i], epsilon); 64 for(length_t i(0); result && i < m.length(); ++i) 65 { 66 typename detail::tmat2x2<T, P>::col_type v; 67 for(length_t j(0); j < m.length(); ++j) 68 v[j] = m[j][i]; 69 result = isNormalized(v, epsilon); 70 } 71 return result; 72 } 73 74 template<typename T, precision P> 75 GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat3x3<T, P> const & m, T const & epsilon) 76 { 77 bool result(true); 78 for(length_t i(0); result && i < m.length(); ++i) 79 result = isNormalized(m[i], epsilon); 80 for(length_t i(0); result && i < m.length(); ++i) 81 { 82 typename detail::tmat3x3<T, P>::col_type v; 83 for(length_t j(0); j < m.length(); ++j) 84 v[j] = m[j][i]; 85 result = isNormalized(v, epsilon); 86 } 87 return result; 88 } 89 90 template<typename T, precision P> 91 GLM_FUNC_QUALIFIER bool isNormalized(detail::tmat4x4<T, P> const & m, T const & epsilon) 92 { 93 bool result(true); 94 for(length_t i(0); result && i < m.length(); ++i) 95 result = isNormalized(m[i], epsilon); 96 for(length_t i(0); result && i < m.length(); ++i) 97 { 98 typename detail::tmat4x4<T, P>::col_type v; 99 for(length_t j(0); j < m.length(); ++j) 100 v[j] = m[j][i]; 101 result = isNormalized(v, epsilon); 102 } 103 return result; 104 } 105 106 template<typename T, precision P, template <typename, precision> class matType> 107 GLM_FUNC_QUALIFIER bool isOrthogonal(matType<T, P> const & m, T const & epsilon) 108 { 109 bool result(true); 110 for(length_t i(0); result && i < m.length() - 1; ++i) 111 for(length_t j(i + 1); result && j < m.length(); ++j) 112 result = areOrthogonal(m[i], m[j], epsilon); 113 114 if(result) 115 { 116 matType<T, P> tmp = transpose(m); 117 for(length_t i(0); result && i < m.length() - 1 ; ++i) 118 for(length_t j(i + 1); result && j < m.length(); ++j) 119 result = areOrthogonal(tmp[i], tmp[j], epsilon); 120 } 121 return result; 122 } 123}//namespace glm 124