1 /*
2 * Copyright (C) 2005 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_PARCEL_H
18 #define ANDROID_PARCEL_H
19
20 #include <string>
21 #include <vector>
22
23 #include <cutils/native_handle.h>
24 #include <nativehelper/ScopedFd.h>
25 #include <utils/Errors.h>
26 #include <utils/RefBase.h>
27 #include <utils/String16.h>
28 #include <utils/Vector.h>
29 #include <utils/Flattenable.h>
30 #include <linux/binder.h>
31
32 #include <binder/IInterface.h>
33 #include <binder/Parcelable.h>
34
35 // ---------------------------------------------------------------------------
36 namespace android {
37
38 template <typename T> class Flattenable;
39 template <typename T> class LightFlattenable;
40 class IBinder;
41 class IPCThreadState;
42 class ProcessState;
43 class String8;
44 class TextOutput;
45
46 class Parcel {
47 friend class IPCThreadState;
48 public:
49 class ReadableBlob;
50 class WritableBlob;
51
52 Parcel();
53 ~Parcel();
54
55 const uint8_t* data() const;
56 size_t dataSize() const;
57 size_t dataAvail() const;
58 size_t dataPosition() const;
59 size_t dataCapacity() const;
60
61 status_t setDataSize(size_t size);
62 void setDataPosition(size_t pos) const;
63 status_t setDataCapacity(size_t size);
64
65 status_t setData(const uint8_t* buffer, size_t len);
66
67 status_t appendFrom(const Parcel *parcel,
68 size_t start, size_t len);
69
70 bool allowFds() const;
71 bool pushAllowFds(bool allowFds);
72 void restoreAllowFds(bool lastValue);
73
74 bool hasFileDescriptors() const;
75
76 // Writes the RPC header.
77 status_t writeInterfaceToken(const String16& interface);
78
79 // Parses the RPC header, returning true if the interface name
80 // in the header matches the expected interface from the caller.
81 //
82 // Additionally, enforceInterface does part of the work of
83 // propagating the StrictMode policy mask, populating the current
84 // IPCThreadState, which as an optimization may optionally be
85 // passed in.
86 bool enforceInterface(const String16& interface,
87 IPCThreadState* threadState = NULL) const;
88 bool checkInterface(IBinder*) const;
89
90 void freeData();
91
92 private:
93 const binder_size_t* objects() const;
94
95 public:
96 size_t objectsCount() const;
97
98 status_t errorCheck() const;
99 void setError(status_t err);
100
101 status_t write(const void* data, size_t len);
102 void* writeInplace(size_t len);
103 status_t writeUnpadded(const void* data, size_t len);
104 status_t writeInt32(int32_t val);
105 status_t writeUint32(uint32_t val);
106 status_t writeInt64(int64_t val);
107 status_t writeUint64(uint64_t val);
108 status_t writeFloat(float val);
109 status_t writeDouble(double val);
110 status_t writeCString(const char* str);
111 status_t writeString8(const String8& str);
112 status_t writeString16(const String16& str);
113 status_t writeString16(const std::unique_ptr<String16>& str);
114 status_t writeString16(const char16_t* str, size_t len);
115 status_t writeStrongBinder(const sp<IBinder>& val);
116 status_t writeWeakBinder(const wp<IBinder>& val);
117 status_t writeInt32Array(size_t len, const int32_t *val);
118 status_t writeByteArray(size_t len, const uint8_t *val);
119 status_t writeBool(bool val);
120 status_t writeChar(char16_t val);
121 status_t writeByte(int8_t val);
122
123 // Take a UTF8 encoded string, convert to UTF16, write it to the parcel.
124 status_t writeUtf8AsUtf16(const std::string& str);
125 status_t writeUtf8AsUtf16(const std::unique_ptr<std::string>& str);
126
127 status_t writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val);
128 status_t writeByteVector(const std::vector<int8_t>& val);
129 status_t writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val);
130 status_t writeByteVector(const std::vector<uint8_t>& val);
131 status_t writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val);
132 status_t writeInt32Vector(const std::vector<int32_t>& val);
133 status_t writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val);
134 status_t writeInt64Vector(const std::vector<int64_t>& val);
135 status_t writeFloatVector(const std::unique_ptr<std::vector<float>>& val);
136 status_t writeFloatVector(const std::vector<float>& val);
137 status_t writeDoubleVector(const std::unique_ptr<std::vector<double>>& val);
138 status_t writeDoubleVector(const std::vector<double>& val);
139 status_t writeBoolVector(const std::unique_ptr<std::vector<bool>>& val);
140 status_t writeBoolVector(const std::vector<bool>& val);
141 status_t writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val);
142 status_t writeCharVector(const std::vector<char16_t>& val);
143 status_t writeString16Vector(
144 const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val);
145 status_t writeString16Vector(const std::vector<String16>& val);
146 status_t writeUtf8VectorAsUtf16Vector(
147 const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val);
148 status_t writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val);
149
150 status_t writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val);
151 status_t writeStrongBinderVector(const std::vector<sp<IBinder>>& val);
152
153 template<typename T>
154 status_t writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>>& val);
155 template<typename T>
156 status_t writeParcelableVector(const std::vector<T>& val);
157
158 template<typename T>
159 status_t writeNullableParcelable(const std::unique_ptr<T>& parcelable);
160
161 status_t writeParcelable(const Parcelable& parcelable);
162
163 template<typename T>
164 status_t write(const Flattenable<T>& val);
165
166 template<typename T>
167 status_t write(const LightFlattenable<T>& val);
168
169
170 // Place a native_handle into the parcel (the native_handle's file-
171 // descriptors are dup'ed, so it is safe to delete the native_handle
172 // when this function returns).
173 // Doesn't take ownership of the native_handle.
174 status_t writeNativeHandle(const native_handle* handle);
175
176 // Place a file descriptor into the parcel. The given fd must remain
177 // valid for the lifetime of the parcel.
178 // The Parcel does not take ownership of the given fd unless you ask it to.
179 status_t writeFileDescriptor(int fd, bool takeOwnership = false);
180
181 // Place a file descriptor into the parcel. A dup of the fd is made, which
182 // will be closed once the parcel is destroyed.
183 status_t writeDupFileDescriptor(int fd);
184
185 // Place a file descriptor into the parcel. This will not affect the
186 // semantics of the smart file descriptor. A new descriptor will be
187 // created, and will be closed when the parcel is destroyed.
188 status_t writeUniqueFileDescriptor(
189 const ScopedFd& fd);
190
191 // Place a vector of file desciptors into the parcel. Each descriptor is
192 // dup'd as in writeDupFileDescriptor
193 status_t writeUniqueFileDescriptorVector(
194 const std::unique_ptr<std::vector<ScopedFd>>& val);
195 status_t writeUniqueFileDescriptorVector(
196 const std::vector<ScopedFd>& val);
197
198 // Writes a blob to the parcel.
199 // If the blob is small, then it is stored in-place, otherwise it is
200 // transferred by way of an anonymous shared memory region. Prefer sending
201 // immutable blobs if possible since they may be subsequently transferred between
202 // processes without further copying whereas mutable blobs always need to be copied.
203 // The caller should call release() on the blob after writing its contents.
204 status_t writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob);
205
206 // Write an existing immutable blob file descriptor to the parcel.
207 // This allows the client to send the same blob to multiple processes
208 // as long as it keeps a dup of the blob file descriptor handy for later.
209 status_t writeDupImmutableBlobFileDescriptor(int fd);
210
211 status_t writeObject(const flat_binder_object& val, bool nullMetaData);
212
213 // Like Parcel.java's writeNoException(). Just writes a zero int32.
214 // Currently the native implementation doesn't do any of the StrictMode
215 // stack gathering and serialization that the Java implementation does.
216 status_t writeNoException();
217
218 void remove(size_t start, size_t amt);
219
220 status_t read(void* outData, size_t len) const;
221 const void* readInplace(size_t len) const;
222 int32_t readInt32() const;
223 status_t readInt32(int32_t *pArg) const;
224 uint32_t readUint32() const;
225 status_t readUint32(uint32_t *pArg) const;
226 int64_t readInt64() const;
227 status_t readInt64(int64_t *pArg) const;
228 uint64_t readUint64() const;
229 status_t readUint64(uint64_t *pArg) const;
230 float readFloat() const;
231 status_t readFloat(float *pArg) const;
232 double readDouble() const;
233 status_t readDouble(double *pArg) const;
234 intptr_t readIntPtr() const;
235 status_t readIntPtr(intptr_t *pArg) const;
236 bool readBool() const;
237 status_t readBool(bool *pArg) const;
238 char16_t readChar() const;
239 status_t readChar(char16_t *pArg) const;
240 int8_t readByte() const;
241 status_t readByte(int8_t *pArg) const;
242
243 // Read a UTF16 encoded string, convert to UTF8
244 status_t readUtf8FromUtf16(std::string* str) const;
245 status_t readUtf8FromUtf16(std::unique_ptr<std::string>* str) const;
246
247 const char* readCString() const;
248 String8 readString8() const;
249 String16 readString16() const;
250 status_t readString16(String16* pArg) const;
251 status_t readString16(std::unique_ptr<String16>* pArg) const;
252 const char16_t* readString16Inplace(size_t* outLen) const;
253 sp<IBinder> readStrongBinder() const;
254 status_t readStrongBinder(sp<IBinder>* val) const;
255 wp<IBinder> readWeakBinder() const;
256
257 template<typename T>
258 status_t readParcelableVector(
259 std::unique_ptr<std::vector<std::unique_ptr<T>>>* val) const;
260 template<typename T>
261 status_t readParcelableVector(std::vector<T>* val) const;
262
263 status_t readParcelable(Parcelable* parcelable) const;
264
265 template<typename T>
266 status_t readParcelable(std::unique_ptr<T>* parcelable) const;
267
268 template<typename T>
269 status_t readStrongBinder(sp<T>* val) const;
270
271 status_t readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const;
272 status_t readStrongBinderVector(std::vector<sp<IBinder>>* val) const;
273
274 status_t readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const;
275 status_t readByteVector(std::vector<int8_t>* val) const;
276 status_t readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const;
277 status_t readByteVector(std::vector<uint8_t>* val) const;
278 status_t readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const;
279 status_t readInt32Vector(std::vector<int32_t>* val) const;
280 status_t readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const;
281 status_t readInt64Vector(std::vector<int64_t>* val) const;
282 status_t readFloatVector(std::unique_ptr<std::vector<float>>* val) const;
283 status_t readFloatVector(std::vector<float>* val) const;
284 status_t readDoubleVector(std::unique_ptr<std::vector<double>>* val) const;
285 status_t readDoubleVector(std::vector<double>* val) const;
286 status_t readBoolVector(std::unique_ptr<std::vector<bool>>* val) const;
287 status_t readBoolVector(std::vector<bool>* val) const;
288 status_t readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const;
289 status_t readCharVector(std::vector<char16_t>* val) const;
290 status_t readString16Vector(
291 std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const;
292 status_t readString16Vector(std::vector<String16>* val) const;
293 status_t readUtf8VectorFromUtf16Vector(
294 std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const;
295 status_t readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const;
296
297 template<typename T>
298 status_t read(Flattenable<T>& val) const;
299
300 template<typename T>
301 status_t read(LightFlattenable<T>& val) const;
302
303 // Like Parcel.java's readExceptionCode(). Reads the first int32
304 // off of a Parcel's header, returning 0 or the negative error
305 // code on exceptions, but also deals with skipping over rich
306 // response headers. Callers should use this to read & parse the
307 // response headers rather than doing it by hand.
308 int32_t readExceptionCode() const;
309
310 // Retrieve native_handle from the parcel. This returns a copy of the
311 // parcel's native_handle (the caller takes ownership). The caller
312 // must free the native_handle with native_handle_close() and
313 // native_handle_delete().
314 native_handle* readNativeHandle() const;
315
316
317 // Retrieve a file descriptor from the parcel. This returns the raw fd
318 // in the parcel, which you do not own -- use dup() to get your own copy.
319 int readFileDescriptor() const;
320
321 // Retrieve a smart file descriptor from the parcel.
322 status_t readUniqueFileDescriptor(
323 ScopedFd* val) const;
324
325
326 // Retrieve a vector of smart file descriptors from the parcel.
327 status_t readUniqueFileDescriptorVector(
328 std::unique_ptr<std::vector<ScopedFd>>* val) const;
329 status_t readUniqueFileDescriptorVector(
330 std::vector<ScopedFd>* val) const;
331
332 // Reads a blob from the parcel.
333 // The caller should call release() on the blob after reading its contents.
334 status_t readBlob(size_t len, ReadableBlob* outBlob) const;
335
336 const flat_binder_object* readObject(bool nullMetaData) const;
337
338 // Explicitly close all file descriptors in the parcel.
339 void closeFileDescriptors();
340
341 // Debugging: get metrics on current allocations.
342 static size_t getGlobalAllocSize();
343 static size_t getGlobalAllocCount();
344
345 private:
346 typedef void (*release_func)(Parcel* parcel,
347 const uint8_t* data, size_t dataSize,
348 const binder_size_t* objects, size_t objectsSize,
349 void* cookie);
350
351 uintptr_t ipcData() const;
352 size_t ipcDataSize() const;
353 uintptr_t ipcObjects() const;
354 size_t ipcObjectsCount() const;
355 void ipcSetDataReference(const uint8_t* data, size_t dataSize,
356 const binder_size_t* objects, size_t objectsCount,
357 release_func relFunc, void* relCookie);
358
359 public:
360 void print(TextOutput& to, uint32_t flags = 0) const;
361
362 private:
363 Parcel(const Parcel& o);
364 Parcel& operator=(const Parcel& o);
365
366 status_t finishWrite(size_t len);
367 void releaseObjects();
368 void acquireObjects();
369 status_t growData(size_t len);
370 status_t restartWrite(size_t desired);
371 status_t continueWrite(size_t desired);
372 status_t writePointer(uintptr_t val);
373 status_t readPointer(uintptr_t *pArg) const;
374 uintptr_t readPointer() const;
375 void freeDataNoInit();
376 void initState();
377 void scanForFds() const;
378
379 template<class T>
380 status_t readAligned(T *pArg) const;
381
382 template<class T> T readAligned() const;
383
384 template<class T>
385 status_t writeAligned(T val);
386
387 status_t writeRawNullableParcelable(const Parcelable*
388 parcelable);
389
390 template<typename T, typename U>
391 status_t unsafeReadTypedVector(std::vector<T>* val,
392 status_t(Parcel::*read_func)(U*) const) const;
393 template<typename T>
394 status_t readNullableTypedVector(std::unique_ptr<std::vector<T>>* val,
395 status_t(Parcel::*read_func)(T*) const) const;
396 template<typename T>
397 status_t readTypedVector(std::vector<T>* val,
398 status_t(Parcel::*read_func)(T*) const) const;
399 template<typename T, typename U>
400 status_t unsafeWriteTypedVector(const std::vector<T>& val,
401 status_t(Parcel::*write_func)(U));
402 template<typename T>
403 status_t writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
404 status_t(Parcel::*write_func)(const T&));
405 template<typename T>
406 status_t writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
407 status_t(Parcel::*write_func)(T));
408 template<typename T>
409 status_t writeTypedVector(const std::vector<T>& val,
410 status_t(Parcel::*write_func)(const T&));
411 template<typename T>
412 status_t writeTypedVector(const std::vector<T>& val,
413 status_t(Parcel::*write_func)(T));
414
415 status_t mError;
416 uint8_t* mData;
417 size_t mDataSize;
418 size_t mDataCapacity;
419 mutable size_t mDataPos;
420 binder_size_t* mObjects;
421 size_t mObjectsSize;
422 size_t mObjectsCapacity;
423 mutable size_t mNextObjectHint;
424
425 mutable bool mFdsKnown;
426 mutable bool mHasFds;
427 bool mAllowFds;
428
429 release_func mOwner;
430 void* mOwnerCookie;
431
432 class Blob {
433 public:
434 Blob();
435 ~Blob();
436
437 void clear();
438 void release();
size()439 inline size_t size() const { return mSize; }
fd()440 inline int fd() const { return mFd; };
isMutable()441 inline bool isMutable() const { return mMutable; }
442
443 protected:
444 void init(int fd, void* data, size_t size, bool isMutable);
445
446 int mFd; // owned by parcel so not closed when released
447 void* mData;
448 size_t mSize;
449 bool mMutable;
450 };
451
452 class FlattenableHelperInterface {
453 protected:
~FlattenableHelperInterface()454 ~FlattenableHelperInterface() { }
455 public:
456 virtual size_t getFlattenedSize() const = 0;
457 virtual size_t getFdCount() const = 0;
458 virtual status_t flatten(void* buffer, size_t size, int* fds, size_t count) const = 0;
459 virtual status_t unflatten(void const* buffer, size_t size, int const* fds, size_t count) = 0;
460 };
461
462 template<typename T>
463 class FlattenableHelper : public FlattenableHelperInterface {
464 friend class Parcel;
465 const Flattenable<T>& val;
FlattenableHelper(const Flattenable<T> & val)466 explicit FlattenableHelper(const Flattenable<T>& val) : val(val) { }
467
468 public:
getFlattenedSize()469 virtual size_t getFlattenedSize() const {
470 return val.getFlattenedSize();
471 }
getFdCount()472 virtual size_t getFdCount() const {
473 return val.getFdCount();
474 }
flatten(void * buffer,size_t size,int * fds,size_t count)475 virtual status_t flatten(void* buffer, size_t size, int* fds, size_t count) const {
476 return val.flatten(buffer, size, fds, count);
477 }
unflatten(void const * buffer,size_t size,int const * fds,size_t count)478 virtual status_t unflatten(void const* buffer, size_t size, int const* fds, size_t count) {
479 return const_cast<Flattenable<T>&>(val).unflatten(buffer, size, fds, count);
480 }
481 };
482 status_t write(const FlattenableHelperInterface& val);
483 status_t read(FlattenableHelperInterface& val) const;
484
485 public:
486 class ReadableBlob : public Blob {
487 friend class Parcel;
488 public:
data()489 inline const void* data() const { return mData; }
mutableData()490 inline void* mutableData() { return isMutable() ? mData : NULL; }
491 };
492
493 class WritableBlob : public Blob {
494 friend class Parcel;
495 public:
data()496 inline void* data() { return mData; }
497 };
498
499 private:
500 size_t mOpenAshmemSize;
501
502 public:
503 // TODO: Remove once ABI can be changed.
504 size_t getBlobAshmemSize() const;
505 size_t getOpenAshmemSize() const;
506 };
507
508 // ---------------------------------------------------------------------------
509
510 template<typename T>
write(const Flattenable<T> & val)511 status_t Parcel::write(const Flattenable<T>& val) {
512 const FlattenableHelper<T> helper(val);
513 return write(helper);
514 }
515
516 template<typename T>
write(const LightFlattenable<T> & val)517 status_t Parcel::write(const LightFlattenable<T>& val) {
518 size_t size(val.getFlattenedSize());
519 if (!val.isFixedSize()) {
520 status_t err = writeInt32(size);
521 if (err != NO_ERROR) {
522 return err;
523 }
524 }
525 if (size) {
526 void* buffer = writeInplace(size);
527 if (buffer == NULL)
528 return NO_MEMORY;
529 return val.flatten(buffer, size);
530 }
531 return NO_ERROR;
532 }
533
534 template<typename T>
read(Flattenable<T> & val)535 status_t Parcel::read(Flattenable<T>& val) const {
536 FlattenableHelper<T> helper(val);
537 return read(helper);
538 }
539
540 template<typename T>
read(LightFlattenable<T> & val)541 status_t Parcel::read(LightFlattenable<T>& val) const {
542 size_t size;
543 if (val.isFixedSize()) {
544 size = val.getFlattenedSize();
545 } else {
546 int32_t s;
547 status_t err = readInt32(&s);
548 if (err != NO_ERROR) {
549 return err;
550 }
551 size = s;
552 }
553 if (size) {
554 void const* buffer = readInplace(size);
555 return buffer == NULL ? NO_MEMORY :
556 val.unflatten(buffer, size);
557 }
558 return NO_ERROR;
559 }
560
561 template<typename T>
readStrongBinder(sp<T> * val)562 status_t Parcel::readStrongBinder(sp<T>* val) const {
563 sp<IBinder> tmp;
564 status_t ret = readStrongBinder(&tmp);
565
566 if (ret == OK) {
567 *val = interface_cast<T>(tmp);
568
569 if (val->get() == nullptr) {
570 return UNKNOWN_ERROR;
571 }
572 }
573
574 return ret;
575 }
576
577 template<typename T, typename U>
unsafeReadTypedVector(std::vector<T> * val,status_t (Parcel::* read_func)(U *)const)578 status_t Parcel::unsafeReadTypedVector(
579 std::vector<T>* val,
580 status_t(Parcel::*read_func)(U*) const) const {
581 int32_t size;
582 status_t status = this->readInt32(&size);
583
584 if (status != OK) {
585 return status;
586 }
587
588 if (size < 0) {
589 return UNEXPECTED_NULL;
590 }
591
592 val->resize(size);
593
594 for (auto& v: *val) {
595 status = (this->*read_func)(&v);
596
597 if (status != OK) {
598 return status;
599 }
600 }
601
602 return OK;
603 }
604
605 template<typename T>
readTypedVector(std::vector<T> * val,status_t (Parcel::* read_func)(T *)const)606 status_t Parcel::readTypedVector(std::vector<T>* val,
607 status_t(Parcel::*read_func)(T*) const) const {
608 return unsafeReadTypedVector(val, read_func);
609 }
610
611 template<typename T>
readNullableTypedVector(std::unique_ptr<std::vector<T>> * val,status_t (Parcel::* read_func)(T *)const)612 status_t Parcel::readNullableTypedVector(std::unique_ptr<std::vector<T>>* val,
613 status_t(Parcel::*read_func)(T*) const) const {
614 const int32_t start = dataPosition();
615 int32_t size;
616 status_t status = readInt32(&size);
617 val->reset();
618
619 if (status != OK || size < 0) {
620 return status;
621 }
622
623 setDataPosition(start);
624 val->reset(new std::vector<T>());
625
626 status = unsafeReadTypedVector(val->get(), read_func);
627
628 if (status != OK) {
629 val->reset();
630 }
631
632 return status;
633 }
634
635 template<typename T, typename U>
unsafeWriteTypedVector(const std::vector<T> & val,status_t (Parcel::* write_func)(U))636 status_t Parcel::unsafeWriteTypedVector(const std::vector<T>& val,
637 status_t(Parcel::*write_func)(U)) {
638 if (val.size() > std::numeric_limits<int32_t>::max()) {
639 return BAD_VALUE;
640 }
641
642 status_t status = this->writeInt32(val.size());
643
644 if (status != OK) {
645 return status;
646 }
647
648 for (const auto& item : val) {
649 status = (this->*write_func)(item);
650
651 if (status != OK) {
652 return status;
653 }
654 }
655
656 return OK;
657 }
658
659 template<typename T>
writeTypedVector(const std::vector<T> & val,status_t (Parcel::* write_func)(const T &))660 status_t Parcel::writeTypedVector(const std::vector<T>& val,
661 status_t(Parcel::*write_func)(const T&)) {
662 return unsafeWriteTypedVector(val, write_func);
663 }
664
665 template<typename T>
writeTypedVector(const std::vector<T> & val,status_t (Parcel::* write_func)(T))666 status_t Parcel::writeTypedVector(const std::vector<T>& val,
667 status_t(Parcel::*write_func)(T)) {
668 return unsafeWriteTypedVector(val, write_func);
669 }
670
671 template<typename T>
writeNullableTypedVector(const std::unique_ptr<std::vector<T>> & val,status_t (Parcel::* write_func)(const T &))672 status_t Parcel::writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
673 status_t(Parcel::*write_func)(const T&)) {
674 if (val.get() == nullptr) {
675 return this->writeInt32(-1);
676 }
677
678 return unsafeWriteTypedVector(*val, write_func);
679 }
680
681 template<typename T>
writeNullableTypedVector(const std::unique_ptr<std::vector<T>> & val,status_t (Parcel::* write_func)(T))682 status_t Parcel::writeNullableTypedVector(const std::unique_ptr<std::vector<T>>& val,
683 status_t(Parcel::*write_func)(T)) {
684 if (val.get() == nullptr) {
685 return this->writeInt32(-1);
686 }
687
688 return unsafeWriteTypedVector(*val, write_func);
689 }
690
691 template<typename T>
readParcelableVector(std::vector<T> * val)692 status_t Parcel::readParcelableVector(std::vector<T>* val) const {
693 return unsafeReadTypedVector<T, Parcelable>(val, &Parcel::readParcelable);
694 }
695
696 template<typename T>
readParcelableVector(std::unique_ptr<std::vector<std::unique_ptr<T>>> * val)697 status_t Parcel::readParcelableVector(std::unique_ptr<std::vector<std::unique_ptr<T>>>* val) const {
698 const int32_t start = dataPosition();
699 int32_t size;
700 status_t status = readInt32(&size);
701 val->reset();
702
703 if (status != OK || size < 0) {
704 return status;
705 }
706
707 setDataPosition(start);
708 val->reset(new std::vector<std::unique_ptr<T>>());
709
710 status = unsafeReadTypedVector(val->get(), &Parcel::readParcelable<T>);
711
712 if (status != OK) {
713 val->reset();
714 }
715
716 return status;
717 }
718
719 template<typename T>
readParcelable(std::unique_ptr<T> * parcelable)720 status_t Parcel::readParcelable(std::unique_ptr<T>* parcelable) const {
721 const int32_t start = dataPosition();
722 int32_t present;
723 status_t status = readInt32(&present);
724 parcelable->reset();
725
726 if (status != OK || !present) {
727 return status;
728 }
729
730 setDataPosition(start);
731 parcelable->reset(new T());
732
733 status = readParcelable(parcelable->get());
734
735 if (status != OK) {
736 parcelable->reset();
737 }
738
739 return status;
740 }
741
742 template<typename T>
writeNullableParcelable(const std::unique_ptr<T> & parcelable)743 status_t Parcel::writeNullableParcelable(const std::unique_ptr<T>& parcelable) {
744 return writeRawNullableParcelable(parcelable.get());
745 }
746
747 template<typename T>
writeParcelableVector(const std::vector<T> & val)748 status_t Parcel::writeParcelableVector(const std::vector<T>& val) {
749 return unsafeWriteTypedVector<T,const Parcelable&>(val, &Parcel::writeParcelable);
750 }
751
752 template<typename T>
writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>> & val)753 status_t Parcel::writeParcelableVector(const std::unique_ptr<std::vector<std::unique_ptr<T>>>& val) {
754 if (val.get() == nullptr) {
755 return this->writeInt32(-1);
756 }
757
758 return unsafeWriteTypedVector(*val, &Parcel::writeParcelable);
759 }
760
761 // ---------------------------------------------------------------------------
762
763 inline TextOutput& operator<<(TextOutput& to, const Parcel& parcel)
764 {
765 parcel.print(to);
766 return to;
767 }
768
769 // ---------------------------------------------------------------------------
770
771 // Generic acquire and release of objects.
772 void acquire_object(const sp<ProcessState>& proc,
773 const flat_binder_object& obj, const void* who);
774 void release_object(const sp<ProcessState>& proc,
775 const flat_binder_object& obj, const void* who);
776
777 void flatten_binder(const sp<ProcessState>& proc,
778 const sp<IBinder>& binder, flat_binder_object* out);
779 void flatten_binder(const sp<ProcessState>& proc,
780 const wp<IBinder>& binder, flat_binder_object* out);
781 status_t unflatten_binder(const sp<ProcessState>& proc,
782 const flat_binder_object& flat, sp<IBinder>* out);
783 status_t unflatten_binder(const sp<ProcessState>& proc,
784 const flat_binder_object& flat, wp<IBinder>* out);
785
786 }; // namespace android
787
788 // ---------------------------------------------------------------------------
789
790 #endif // ANDROID_PARCEL_H
791