1 /******************************************************************************
2  *
3  *  Copyright (C) 1999-2012 Broadcom Corporation
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 /******************************************************************************
20  *
21  *  This file contains security manager protocol utility functions
22  *
23  ******************************************************************************/
24 #include "bt_target.h"
25 
26 #if SMP_INCLUDED == TRUE
27 #if SMP_DEBUG == TRUE
28     #include <stdio.h>
29 #endif
30 #include <string.h>
31 #include "bt_utils.h"
32 #include "btm_ble_api.h"
33 #include "smp_int.h"
34 #include "btm_int.h"
35 #include "btm_ble_int.h"
36 #include "hcimsgs.h"
37 #include "aes.h"
38 #include "p_256_ecc_pp.h"
39 #include "device/include/controller.h"
40 
41 #ifndef SMP_MAX_ENC_REPEAT
42   #define SMP_MAX_ENC_REPEAT  3
43 #endif
44 
45 static void smp_rand_back(tBTM_RAND_ENC *p);
46 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
47 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
48 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p);
49 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p);
50 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p);
51 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p);
52 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p);
53 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p);
54 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p);
55 static BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output);
56 static void smp_continue_private_key_creation(tSMP_CB *p_cb, tBTM_RAND_ENC *p);
57 static void smp_process_private_key(tSMP_CB *p_cb);
58 static void smp_finish_nonce_generation(tSMP_CB *p_cb);
59 static void smp_process_new_nonce(tSMP_CB *p_cb);
60 
61 #define SMP_PASSKEY_MASK    0xfff00000
62 
smp_debug_print_nbyte_little_endian(UINT8 * p,const UINT8 * key_name,UINT8 len)63 void smp_debug_print_nbyte_little_endian(UINT8 *p, const UINT8 *key_name, UINT8 len)
64 {
65 #if SMP_DEBUG == TRUE
66     int     ind, x;
67     int     col_count = 32;
68     int     row_count;
69     UINT8   p_buf[512];
70 
71     SMP_TRACE_WARNING("%s(LSB ~ MSB):", key_name);
72     memset(p_buf, 0, sizeof(p_buf));
73     row_count = len % col_count ? len / col_count + 1: len / col_count;
74 
75     ind = 0;
76     for (int row = 0; row <  row_count; row++)
77     {
78         for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++)
79         {
80             x += sprintf((char *)&p_buf[x], "%02x ", p[ind]);
81         }
82         SMP_TRACE_WARNING("  [%03d]: %s", row * col_count, p_buf);
83     }
84 #endif
85 }
86 
smp_debug_print_nbyte_big_endian(UINT8 * p,const UINT8 * key_name,UINT8 len)87 void smp_debug_print_nbyte_big_endian (UINT8 *p, const UINT8 *key_name, UINT8 len)
88 {
89 #if SMP_DEBUG == TRUE
90     UINT8  p_buf[512];
91 
92     SMP_TRACE_WARNING("%s(MSB ~ LSB):", key_name);
93     memset(p_buf, 0, sizeof(p_buf));
94 
95     int ind = 0;
96     int  ncols = 32; /* num entries in one line */
97     int  nrows;      /* num lines */
98     int  x;
99 
100     nrows = len % ncols ? len / ncols + 1: len / ncols;
101     for (int row = 0; row <  nrows; row++)
102     {
103         for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++)
104         {
105             x += sprintf ((char *)&p_buf[len-x-1], "%02x ", p[ind]);
106         }
107         SMP_TRACE_WARNING("[%03d]: %s", row * ncols, p_buf);
108     }
109 #endif
110 }
111 
112 /*******************************************************************************
113 **
114 ** Function         smp_encrypt_data
115 **
116 ** Description      This function is called to encrypt data.
117 **                  It uses AES-128 encryption algorithm.
118 **                  Plain_text is encrypted using key, the result is at p_out.
119 **
120 ** Returns          void
121 **
122 *******************************************************************************/
smp_encrypt_data(UINT8 * key,UINT8 key_len,UINT8 * plain_text,UINT8 pt_len,tSMP_ENC * p_out)123 BOOLEAN smp_encrypt_data (UINT8 *key, UINT8 key_len,
124                           UINT8 *plain_text, UINT8 pt_len,
125                           tSMP_ENC *p_out)
126 {
127     aes_context ctx;
128     UINT8 *p_start = NULL;
129     UINT8 *p = NULL;
130     UINT8 *p_rev_data = NULL;    /* input data in big endilan format */
131     UINT8 *p_rev_key = NULL;     /* input key in big endilan format */
132     UINT8 *p_rev_output = NULL;  /* encrypted output in big endilan format */
133 
134     SMP_TRACE_DEBUG ("%s", __func__);
135     if ( (p_out == NULL ) || (key_len != SMP_ENCRYT_KEY_SIZE) )
136     {
137         SMP_TRACE_ERROR ("%s failed", __func__);
138         return FALSE;
139     }
140 
141     p_start = (UINT8 *)osi_calloc(SMP_ENCRYT_DATA_SIZE * 4);
142 
143     if (pt_len > SMP_ENCRYT_DATA_SIZE)
144         pt_len = SMP_ENCRYT_DATA_SIZE;
145 
146     p = p_start;
147     ARRAY_TO_STREAM (p, plain_text, pt_len); /* byte 0 to byte 15 */
148     p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */
149     REVERSE_ARRAY_TO_STREAM (p, p_start, SMP_ENCRYT_DATA_SIZE);  /* byte 16 to byte 31 */
150     p_rev_key = p; /* start at byte 32 */
151     REVERSE_ARRAY_TO_STREAM (p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */
152 
153 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
154     smp_debug_print_nbyte_little_endian(key, (const UINT8 *)"Key", SMP_ENCRYT_KEY_SIZE);
155     smp_debug_print_nbyte_little_endian(p_start, (const UINT8 *)"Plain text", SMP_ENCRYT_DATA_SIZE);
156 #endif
157     p_rev_output = p;
158     aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx);
159     aes_encrypt(p_rev_data, p, &ctx);  /* outputs in byte 48 to byte 63 */
160 
161     p = p_out->param_buf;
162     REVERSE_ARRAY_TO_STREAM (p, p_rev_output, SMP_ENCRYT_DATA_SIZE);
163 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
164     smp_debug_print_nbyte_little_endian(p_out->param_buf, (const UINT8 *)"Encrypted text", SMP_ENCRYT_KEY_SIZE);
165 #endif
166 
167     p_out->param_len = SMP_ENCRYT_KEY_SIZE;
168     p_out->status = HCI_SUCCESS;
169     p_out->opcode =  HCI_BLE_ENCRYPT;
170 
171     osi_free(p_start);
172 
173     return TRUE;
174 }
175 
176 /*******************************************************************************
177 **
178 ** Function         smp_generate_passkey
179 **
180 ** Description      This function is called to generate passkey.
181 **
182 ** Returns          void
183 **
184 *******************************************************************************/
smp_generate_passkey(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)185 void smp_generate_passkey(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
186 {
187     UNUSED(p_data);
188 
189     SMP_TRACE_DEBUG ("%s", __func__);
190     p_cb->rand_enc_proc_state = SMP_GEN_TK;
191 
192     /* generate MRand or SRand */
193     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
194         smp_rand_back(NULL);
195 }
196 
197 /*******************************************************************************
198 **
199 ** Function         smp_proc_passkey
200 **
201 ** Description      This function is called to process a passkey.
202 **
203 ** Returns          void
204 **
205 *******************************************************************************/
smp_proc_passkey(tSMP_CB * p_cb,tBTM_RAND_ENC * p)206 void smp_proc_passkey(tSMP_CB *p_cb , tBTM_RAND_ENC *p)
207 {
208     UINT8   *tt = p_cb->tk;
209     tSMP_KEY    key;
210     UINT32  passkey; /* 19655 test number; */
211     UINT8 *pp = p->param_buf;
212 
213     SMP_TRACE_DEBUG ("%s", __func__);
214     STREAM_TO_UINT32(passkey, pp);
215     passkey &= ~SMP_PASSKEY_MASK;
216 
217     /* truncate by maximum value */
218     while (passkey > BTM_MAX_PASSKEY_VAL)
219         passkey >>= 1;
220 
221     /* save the TK */
222     memset(p_cb->tk, 0, BT_OCTET16_LEN);
223     UINT32_TO_STREAM(tt, passkey);
224 
225     key.key_type = SMP_KEY_TYPE_TK;
226     key.p_data  = p_cb->tk;
227 
228     if (p_cb->p_callback)
229     {
230         (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA *)&passkey);
231     }
232 
233     if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP)
234     {
235         smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey);
236     }
237     else
238     {
239         smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA *)&key);
240     }
241 }
242 
243 /*******************************************************************************
244 **
245 ** Function         smp_generate_stk
246 **
247 ** Description      This function is called to generate STK calculated by running
248 **                  AES with the TK value as key and a concatenation of the random
249 **                  values.
250 **
251 ** Returns          void
252 **
253 *******************************************************************************/
smp_generate_stk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)254 void smp_generate_stk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
255 {
256     UNUSED(p_data);
257 
258     tSMP_ENC output;
259     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
260 
261     SMP_TRACE_DEBUG ("%s", __func__);
262 
263     if (p_cb->le_secure_connections_mode_is_used)
264     {
265         SMP_TRACE_WARNING ("FOR LE SC LTK IS USED INSTEAD OF STK");
266         output.param_len = SMP_ENCRYT_KEY_SIZE;
267         output.status = HCI_SUCCESS;
268         output.opcode =  HCI_BLE_ENCRYPT;
269         memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE);
270     }
271     else if (!smp_calculate_legacy_short_term_key(p_cb, &output))
272     {
273         SMP_TRACE_ERROR("%s failed", __func__);
274         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
275         return;
276     }
277 
278     smp_process_stk(p_cb, &output);
279 }
280 
281 /*******************************************************************************
282 **
283 ** Function         smp_generate_srand_mrand_confirm
284 **
285 ** Description      This function is called to start the second pairing phase by
286 **                  start generating random number.
287 **
288 **
289 ** Returns          void
290 **
291 *******************************************************************************/
smp_generate_srand_mrand_confirm(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)292 void smp_generate_srand_mrand_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
293 {
294     UNUSED(p_data);
295 
296     SMP_TRACE_DEBUG ("%s", __func__);
297     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND;
298     /* generate MRand or SRand */
299     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
300         smp_rand_back(NULL);
301 }
302 
303 /*******************************************************************************
304 **
305 ** Function         smp_generate_rand_cont
306 **
307 ** Description      This function is called to generate another 64 bits random for
308 **                  MRand or Srand.
309 **
310 ** Returns          void
311 **
312 *******************************************************************************/
smp_generate_rand_cont(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)313 void smp_generate_rand_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
314 {
315     UNUSED(p_data);
316 
317     SMP_TRACE_DEBUG ("%s", __func__);
318     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND_CONT;
319     /* generate 64 MSB of MRand or SRand */
320     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
321         smp_rand_back(NULL);
322 }
323 
324 /*******************************************************************************
325 **
326 ** Function         smp_generate_ltk
327 **
328 ** Description      This function is called:
329 **                  - in legacy pairing - to calculate LTK, starting with DIV
330 **                    generation;
331 **                  - in LE Secure Connections pairing over LE transport - to process LTK
332 **                    already generated to encrypt LE link;
333 **                  - in LE Secure Connections pairing over BR/EDR transport - to start
334 **                    BR/EDR Link Key processing.
335 **
336 ** Returns          void
337 **
338 *******************************************************************************/
smp_generate_ltk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)339 void smp_generate_ltk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
340 {
341     UNUSED(p_data);
342 
343     BOOLEAN div_status;
344     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
345     if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING)
346     {
347         smp_br_process_link_key(p_cb, NULL);
348         return;
349     }
350     else if (p_cb->le_secure_connections_mode_is_used)
351     {
352         smp_process_secure_connection_long_term_key();
353         return;
354     }
355 
356     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
357 
358     if (div_status)
359     {
360         smp_generate_ltk_cont(p_cb, NULL);
361     }
362     else
363     {
364         SMP_TRACE_DEBUG ("Generate DIV for LTK");
365         p_cb->rand_enc_proc_state = SMP_GEN_DIV_LTK;
366         /* generate MRand or SRand */
367         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
368             smp_rand_back(NULL);
369     }
370 }
371 
372 /*******************************************************************************
373 **
374 ** Function         smp_compute_csrk
375 **
376 ** Description      This function is called to calculate CSRK
377 **
378 **
379 ** Returns          void
380 **
381 *******************************************************************************/
smp_compute_csrk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)382 void smp_compute_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
383 {
384     UNUSED(p_data);
385 
386     BT_OCTET16  er;
387     UINT8       buffer[4]; /* for (r || DIV)  r=1*/
388     UINT16      r=1;
389     UINT8       *p=buffer;
390     tSMP_ENC    output;
391     tSMP_STATUS   status = SMP_PAIR_FAIL_UNKNOWN;
392 
393     SMP_TRACE_DEBUG ("smp_compute_csrk div=%x", p_cb->div);
394     BTM_GetDeviceEncRoot(er);
395     /* CSRK = d1(ER, DIV, 1) */
396     UINT16_TO_STREAM(p, p_cb->div);
397     UINT16_TO_STREAM(p, r);
398 
399     if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output))
400     {
401         SMP_TRACE_ERROR("smp_generate_csrk failed");
402         if (p_cb->smp_over_br)
403         {
404             smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status);
405         }
406         else
407         {
408             smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
409         }
410     }
411     else
412     {
413         memcpy((void *)p_cb->csrk, output.param_buf, BT_OCTET16_LEN);
414         smp_send_csrk_info(p_cb, NULL);
415     }
416 }
417 
418 /*******************************************************************************
419 **
420 ** Function         smp_generate_csrk
421 **
422 ** Description      This function is called to calculate CSRK, starting with DIV
423 **                  generation.
424 **
425 **
426 ** Returns          void
427 **
428 *******************************************************************************/
smp_generate_csrk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)429 void smp_generate_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
430 {
431     UNUSED(p_data);
432 
433     BOOLEAN     div_status;
434 
435     SMP_TRACE_DEBUG ("smp_generate_csrk");
436 
437     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
438     if (div_status)
439     {
440         smp_compute_csrk(p_cb, NULL);
441     }
442     else
443     {
444         SMP_TRACE_DEBUG ("Generate DIV for CSRK");
445         p_cb->rand_enc_proc_state = SMP_GEN_DIV_CSRK;
446         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
447             smp_rand_back(NULL);
448     }
449 }
450 
451 /*******************************************************************************
452 ** Function         smp_concatenate_peer
453 **                  add pairing command sent from local device into p1.
454 *******************************************************************************/
smp_concatenate_local(tSMP_CB * p_cb,UINT8 ** p_data,UINT8 op_code)455 void smp_concatenate_local( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
456 {
457     UINT8   *p = *p_data;
458 
459     SMP_TRACE_DEBUG ("%s", __func__);
460     UINT8_TO_STREAM(p, op_code);
461     UINT8_TO_STREAM(p, p_cb->local_io_capability);
462     UINT8_TO_STREAM(p, p_cb->loc_oob_flag);
463     UINT8_TO_STREAM(p, p_cb->loc_auth_req);
464     UINT8_TO_STREAM(p, p_cb->loc_enc_size);
465     UINT8_TO_STREAM(p, p_cb->local_i_key);
466     UINT8_TO_STREAM(p, p_cb->local_r_key);
467 
468     *p_data = p;
469 }
470 
471 /*******************************************************************************
472 ** Function         smp_concatenate_peer
473 **                  add pairing command received from peer device into p1.
474 *******************************************************************************/
smp_concatenate_peer(tSMP_CB * p_cb,UINT8 ** p_data,UINT8 op_code)475 void smp_concatenate_peer( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
476 {
477     UINT8   *p = *p_data;
478 
479     SMP_TRACE_DEBUG ("smp_concatenate_peer ");
480     UINT8_TO_STREAM(p, op_code);
481     UINT8_TO_STREAM(p, p_cb->peer_io_caps);
482     UINT8_TO_STREAM(p, p_cb->peer_oob_flag);
483     UINT8_TO_STREAM(p, p_cb->peer_auth_req);
484     UINT8_TO_STREAM(p, p_cb->peer_enc_size);
485     UINT8_TO_STREAM(p, p_cb->peer_i_key);
486     UINT8_TO_STREAM(p, p_cb->peer_r_key);
487 
488     *p_data = p;
489 }
490 
491 /*******************************************************************************
492 **
493 ** Function         smp_gen_p1_4_confirm
494 **
495 ** Description      Generate Confirm/Compare Step1:
496 **                  p1 = pres || preq || rat' || iat'
497 **
498 ** Returns          void
499 **
500 *******************************************************************************/
smp_gen_p1_4_confirm(tSMP_CB * p_cb,BT_OCTET16 p1)501 void smp_gen_p1_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p1)
502 {
503     UINT8 *p = (UINT8 *)p1;
504     tBLE_ADDR_TYPE    addr_type = 0;
505     BD_ADDR           remote_bda;
506 
507     SMP_TRACE_DEBUG ("smp_gen_p1_4_confirm");
508 
509     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
510     {
511         SMP_TRACE_ERROR("can not generate confirm for unknown device");
512         return;
513     }
514 
515     BTM_ReadConnectionAddr( p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type);
516 
517     if (p_cb->role == HCI_ROLE_MASTER)
518     {
519         /* LSB : rat': initiator's(local) address type */
520         UINT8_TO_STREAM(p, p_cb->addr_type);
521         /* LSB : iat': responder's address type */
522         UINT8_TO_STREAM(p, addr_type);
523         /* concatinate preq */
524         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
525         /* concatinate pres */
526         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
527     }
528     else
529     {
530         /* LSB : iat': initiator's address type */
531         UINT8_TO_STREAM(p, addr_type);
532         /* LSB : rat': responder's(local) address type */
533         UINT8_TO_STREAM(p, p_cb->addr_type);
534         /* concatinate preq */
535         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
536         /* concatinate pres */
537         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
538     }
539 #if SMP_DEBUG == TRUE
540     SMP_TRACE_DEBUG("p1 = pres || preq || rat' || iat'");
541     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1", 16);
542 #endif
543 }
544 
545 /*******************************************************************************
546 **
547 ** Function         smp_gen_p2_4_confirm
548 **
549 ** Description      Generate Confirm/Compare Step2:
550 **                  p2 = padding || ia || ra
551 **
552 ** Returns          void
553 **
554 *******************************************************************************/
smp_gen_p2_4_confirm(tSMP_CB * p_cb,BT_OCTET16 p2)555 void smp_gen_p2_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p2)
556 {
557     UINT8       *p = (UINT8 *)p2;
558     BD_ADDR     remote_bda;
559     tBLE_ADDR_TYPE  addr_type = 0;
560 
561     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
562     {
563         SMP_TRACE_ERROR("can not generate confirm p2 for unknown device");
564         return;
565     }
566 
567     SMP_TRACE_DEBUG ("smp_gen_p2_4_confirm");
568 
569     memset(p, 0, sizeof(BT_OCTET16));
570 
571     if (p_cb->role == HCI_ROLE_MASTER)
572     {
573         /* LSB ra */
574         BDADDR_TO_STREAM(p, remote_bda);
575         /* ia */
576         BDADDR_TO_STREAM(p, p_cb->local_bda);
577     }
578     else
579     {
580         /* LSB ra */
581         BDADDR_TO_STREAM(p, p_cb->local_bda);
582         /* ia */
583         BDADDR_TO_STREAM(p, remote_bda);
584     }
585 #if SMP_DEBUG == TRUE
586     SMP_TRACE_DEBUG("p2 = padding || ia || ra");
587     smp_debug_print_nbyte_little_endian(p2, (const UINT8 *)"p2", 16);
588 #endif
589 }
590 
591 /*******************************************************************************
592 **
593 ** Function         smp_calculate_comfirm
594 **
595 ** Description      This function is called to calculate Confirm value.
596 **
597 ** Returns          void
598 **
599 *******************************************************************************/
smp_calculate_comfirm(tSMP_CB * p_cb,BT_OCTET16 rand,BD_ADDR bda)600 void smp_calculate_comfirm (tSMP_CB *p_cb, BT_OCTET16 rand, BD_ADDR bda)
601 {
602     UNUSED(bda);
603 
604     BT_OCTET16      p1;
605     tSMP_ENC       output;
606     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
607 
608     SMP_TRACE_DEBUG ("smp_calculate_comfirm ");
609     /* generate p1 = pres || preq || rat' || iat' */
610     smp_gen_p1_4_confirm(p_cb, p1);
611 
612     /* p1 = rand XOR p1 */
613     smp_xor_128(p1, rand);
614 
615     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1' = r XOR p1", 16);
616 
617     /* calculate e(k, r XOR p1), where k = TK */
618     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, &output))
619     {
620         SMP_TRACE_ERROR("smp_generate_csrk failed");
621         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
622     }
623     else
624     {
625         smp_calculate_comfirm_cont(p_cb, &output);
626     }
627 }
628 
629 /*******************************************************************************
630 **
631 ** Function         smp_calculate_comfirm_cont
632 **
633 ** Description      This function is called when SConfirm/MConfirm is generated
634 **                  proceed to send the Confirm request/response to peer device.
635 **
636 ** Returns          void
637 **
638 *******************************************************************************/
smp_calculate_comfirm_cont(tSMP_CB * p_cb,tSMP_ENC * p)639 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p)
640 {
641     BT_OCTET16    p2;
642     tSMP_ENC      output;
643     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
644 
645     SMP_TRACE_DEBUG ("smp_calculate_comfirm_cont ");
646 #if SMP_DEBUG == TRUE
647     SMP_TRACE_DEBUG("Confirm step 1 p1' = e(k, r XOR p1)  Generated");
648     smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"C1", 16);
649 #endif
650 
651     smp_gen_p2_4_confirm(p_cb, p2);
652 
653     /* calculate p2 = (p1' XOR p2) */
654     smp_xor_128(p2, p->param_buf);
655     smp_debug_print_nbyte_little_endian ((UINT8 *)p2, (const UINT8 *)"p2' = C1 xor p2", 16);
656 
657     /* calculate: Confirm = E(k, p1' XOR p2) */
658     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, &output))
659     {
660         SMP_TRACE_ERROR("smp_calculate_comfirm_cont failed");
661         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
662     }
663     else
664     {
665         switch (p_cb->rand_enc_proc_state)
666         {
667             case SMP_GEN_CONFIRM:
668                 smp_process_confirm(p_cb, &output);
669                 break;
670 
671             case SMP_GEN_COMPARE:
672                 smp_process_compare(p_cb, &output);
673                 break;
674         }
675     }
676 }
677 
678 /*******************************************************************************
679 **
680 ** Function         smp_generate_confirm
681 **
682 ** Description      This function is called when a 48 bits random number is generated
683 **                  as SRand or MRand, continue to calculate Sconfirm or MConfirm.
684 **
685 ** Returns          void
686 **
687 *******************************************************************************/
smp_generate_confirm(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)688 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
689 {
690     UNUSED(p_data);
691 
692     SMP_TRACE_DEBUG ("%s", __func__);
693     p_cb->rand_enc_proc_state = SMP_GEN_CONFIRM;
694     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rand,  (const UINT8 *)"local rand", 16);
695     smp_calculate_comfirm(p_cb, p_cb->rand, p_cb->pairing_bda);
696 }
697 
698 /*******************************************************************************
699 **
700 ** Function         smp_generate_compare
701 **
702 ** Description      This function is called to generate SConfirm for Slave device,
703 **                  or MSlave for Master device. This function can be also used for
704 **                  generating Compare number for confirm value check.
705 **
706 ** Returns          void
707 **
708 *******************************************************************************/
smp_generate_compare(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)709 void smp_generate_compare (tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
710 {
711     UNUSED(p_data);
712 
713     SMP_TRACE_DEBUG ("smp_generate_compare ");
714     p_cb->rand_enc_proc_state = SMP_GEN_COMPARE;
715     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rrand,  (const UINT8 *)"peer rand", 16);
716     smp_calculate_comfirm(p_cb, p_cb->rrand, p_cb->local_bda);
717 }
718 
719 /*******************************************************************************
720 **
721 ** Function         smp_process_confirm
722 **
723 ** Description      This function is called when SConfirm/MConfirm is generated
724 **                  proceed to send the Confirm request/response to peer device.
725 **
726 ** Returns          void
727 **
728 *******************************************************************************/
smp_process_confirm(tSMP_CB * p_cb,tSMP_ENC * p)729 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p)
730 {
731     tSMP_KEY    key;
732 
733     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
734     memcpy(p_cb->confirm, p->param_buf, BT_OCTET16_LEN);
735 
736 #if (SMP_DEBUG == TRUE)
737     SMP_TRACE_DEBUG("Confirm  Generated");
738     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->confirm,  (const UINT8 *)"Confirm", 16);
739 #endif
740 
741     key.key_type = SMP_KEY_TYPE_CFM;
742     key.p_data = p->param_buf;
743     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
744 }
745 
746 /*******************************************************************************
747 **
748 ** Function         smp_process_compare
749 **
750 ** Description      This function is called when Compare is generated using the
751 **                  RRand and local BDA, TK information.
752 **
753 ** Returns          void
754 **
755 *******************************************************************************/
smp_process_compare(tSMP_CB * p_cb,tSMP_ENC * p)756 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p)
757 {
758     tSMP_KEY    key;
759 
760     SMP_TRACE_DEBUG ("smp_process_compare ");
761 #if (SMP_DEBUG == TRUE)
762     SMP_TRACE_DEBUG("Compare Generated");
763     smp_debug_print_nbyte_little_endian (p->param_buf,  (const UINT8 *)"Compare", 16);
764 #endif
765     key.key_type = SMP_KEY_TYPE_CMP;
766     key.p_data   = p->param_buf;
767 
768     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
769 }
770 
771 /*******************************************************************************
772 **
773 ** Function         smp_process_stk
774 **
775 ** Description      This function is called when STK is generated
776 **                  proceed to send the encrypt the link using STK.
777 **
778 ** Returns          void
779 **
780 *******************************************************************************/
smp_process_stk(tSMP_CB * p_cb,tSMP_ENC * p)781 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p)
782 {
783     tSMP_KEY    key;
784 
785     SMP_TRACE_DEBUG ("smp_process_stk ");
786 #if (SMP_DEBUG == TRUE)
787     SMP_TRACE_ERROR("STK Generated");
788 #endif
789     smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf);
790 
791     key.key_type = SMP_KEY_TYPE_STK;
792     key.p_data   = p->param_buf;
793 
794     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
795 }
796 
797 /*******************************************************************************
798 **
799 ** Function         smp_generate_ltk_cont
800 **
801 ** Description      This function is to calculate LTK = d1(ER, DIV, 0)= e(ER, DIV)
802 **
803 ** Returns          void
804 **
805 *******************************************************************************/
smp_generate_ltk_cont(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)806 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
807 {
808     UNUSED(p_data);
809 
810     BT_OCTET16  er;
811     tSMP_ENC    output;
812     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
813 
814     SMP_TRACE_DEBUG ("%s", __func__);
815     BTM_GetDeviceEncRoot(er);
816 
817     /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/
818     if (!SMP_Encrypt(er, BT_OCTET16_LEN, (UINT8 *)&p_cb->div,
819                      sizeof(UINT16), &output))
820     {
821         SMP_TRACE_ERROR("%s failed", __func__);
822         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
823     }
824     else
825     {
826         /* mask the LTK */
827         smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf);
828         memcpy((void *)p_cb->ltk, output.param_buf, BT_OCTET16_LEN);
829         smp_generate_rand_vector(p_cb, NULL);
830     }
831 }
832 
833 /*******************************************************************************
834 **
835 ** Function         smp_generate_y
836 **
837 ** Description      This function is to proceed generate Y = E(DHK, Rand)
838 **
839 ** Returns          void
840 **
841 *******************************************************************************/
smp_generate_y(tSMP_CB * p_cb,tSMP_INT_DATA * p)842 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p)
843 {
844     UNUSED(p);
845 
846     BT_OCTET16  dhk;
847     tSMP_ENC   output;
848     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
849 
850 
851     SMP_TRACE_DEBUG ("smp_generate_y ");
852     BTM_GetDeviceDHK(dhk);
853 
854     if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, p_cb->enc_rand,
855                      BT_OCTET8_LEN, &output))
856     {
857         SMP_TRACE_ERROR("smp_generate_y failed");
858         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
859     }
860     else
861     {
862         smp_process_ediv(p_cb, &output);
863     }
864 }
865 
866 /*******************************************************************************
867 **
868 ** Function         smp_generate_rand_vector
869 **
870 ** Description      This function is called when LTK is generated, send state machine
871 **                  event to SMP.
872 **
873 ** Returns          void
874 **
875 *******************************************************************************/
smp_generate_rand_vector(tSMP_CB * p_cb,tSMP_INT_DATA * p)876 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p)
877 {
878     UNUSED(p);
879 
880     /* generate EDIV and rand now */
881     /* generate random vector */
882     SMP_TRACE_DEBUG ("smp_generate_rand_vector ");
883     p_cb->rand_enc_proc_state = SMP_GEN_RAND_V;
884     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
885         smp_rand_back(NULL);
886 }
887 
888 /*******************************************************************************
889 **
890 ** Function         smp_process_ediv
891 **
892 ** Description      This function is to calculate EDIV = Y xor DIV
893 **
894 ** Returns          void
895 **
896 *******************************************************************************/
smp_process_ediv(tSMP_CB * p_cb,tSMP_ENC * p)897 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p)
898 {
899     tSMP_KEY    key;
900     UINT8 *pp= p->param_buf;
901     UINT16  y;
902 
903     SMP_TRACE_DEBUG ("smp_process_ediv ");
904     STREAM_TO_UINT16(y, pp);
905 
906     /* EDIV = Y xor DIV */
907     p_cb->ediv = p_cb->div ^ y;
908     /* send LTK ready */
909     SMP_TRACE_ERROR("LTK ready");
910     key.key_type = SMP_KEY_TYPE_LTK;
911     key.p_data   = p->param_buf;
912 
913     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
914 }
915 
916 /*******************************************************************************
917 **
918 ** Function         smp_calculate_legacy_short_term_key
919 **
920 ** Description      The function calculates legacy STK.
921 **
922 ** Returns          FALSE if out of resources, TRUE in other cases.
923 **
924 *******************************************************************************/
smp_calculate_legacy_short_term_key(tSMP_CB * p_cb,tSMP_ENC * output)925 BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output)
926 {
927     BT_OCTET16 ptext;
928     UINT8 *p = ptext;
929 
930     SMP_TRACE_DEBUG ("%s", __func__);
931     memset(p, 0, BT_OCTET16_LEN);
932     if (p_cb->role == HCI_ROLE_MASTER)
933     {
934         memcpy(p, p_cb->rand, BT_OCTET8_LEN);
935         memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN);
936     }
937     else
938     {
939         memcpy(p, p_cb->rrand, BT_OCTET8_LEN);
940         memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN);
941     }
942 
943     BOOLEAN encrypted;
944     /* generate STK = Etk(rand|rrand)*/
945     encrypted = SMP_Encrypt( p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output);
946     if (!encrypted)
947     {
948         SMP_TRACE_ERROR("%s failed", __func__);
949     }
950     return encrypted;
951 }
952 
953 /*******************************************************************************
954 **
955 ** Function         smp_create_private_key
956 **
957 ** Description      This function is called to create private key used to
958 **                  calculate public key and DHKey.
959 **                  The function starts private key creation requesting controller
960 **                  to generate [0-7] octets of private key.
961 **
962 ** Returns          void
963 **
964 *******************************************************************************/
smp_create_private_key(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)965 void smp_create_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
966 {
967     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
968     p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_0_7;
969     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
970         smp_rand_back(NULL);
971 }
972 
973 /*******************************************************************************
974 **
975 ** Function         smp_use_oob_private_key
976 **
977 ** Description      This function is called
978 **                  - to save the secret key used to calculate the public key used
979 **                    in calculations of commitment sent OOB to a peer
980 **                  - to use this secret key to recalculate the public key and
981 **                    start the process of sending this public key to the peer
982 **                  if secret/public keys have to be reused.
983 **                  If the keys aren't supposed to be reused, continue from the
984 **                  point from which request for OOB data was issued.
985 **
986 ** Returns          void
987 **
988 *******************************************************************************/
smp_use_oob_private_key(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)989 void smp_use_oob_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
990 {
991     SMP_TRACE_DEBUG ("%s req_oob_type: %d, role: %d",
992                       __func__, p_cb->req_oob_type, p_cb->role);
993 
994     switch (p_cb->req_oob_type)
995     {
996         case SMP_OOB_BOTH:
997         case SMP_OOB_LOCAL:
998             SMP_TRACE_DEBUG("%s restore secret key", __func__)
999             memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, BT_OCTET32_LEN);
1000             smp_process_private_key(p_cb);
1001             break;
1002         default:
1003             SMP_TRACE_DEBUG("%s create secret key anew", __func__);
1004             smp_set_state(SMP_STATE_PAIR_REQ_RSP);
1005             smp_decide_association_model(p_cb, NULL);
1006             break;
1007     }
1008 }
1009 
1010 /*******************************************************************************
1011 **
1012 ** Function         smp_continue_private_key_creation
1013 **
1014 ** Description      This function is used to continue private key creation.
1015 **
1016 ** Returns          void
1017 **
1018 *******************************************************************************/
smp_continue_private_key_creation(tSMP_CB * p_cb,tBTM_RAND_ENC * p)1019 void smp_continue_private_key_creation (tSMP_CB *p_cb, tBTM_RAND_ENC *p)
1020 {
1021     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
1022     SMP_TRACE_DEBUG ("%s state=0x%x", __func__, state);
1023 
1024     switch (state)
1025     {
1026         case SMP_GENERATE_PRIVATE_KEY_0_7:
1027             memcpy((void *)p_cb->private_key, p->param_buf, p->param_len);
1028             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_8_15;
1029             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
1030                 smp_rand_back(NULL);
1031             break;
1032 
1033         case SMP_GENERATE_PRIVATE_KEY_8_15:
1034             memcpy((void *)&p_cb->private_key[8], p->param_buf, p->param_len);
1035             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_16_23;
1036             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
1037                 smp_rand_back(NULL);
1038             break;
1039 
1040         case SMP_GENERATE_PRIVATE_KEY_16_23:
1041             memcpy((void *)&p_cb->private_key[16], p->param_buf, p->param_len);
1042             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_24_31;
1043             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
1044                 smp_rand_back(NULL);
1045             break;
1046 
1047         case SMP_GENERATE_PRIVATE_KEY_24_31:
1048             memcpy((void *)&p_cb->private_key[24], p->param_buf, p->param_len);
1049             smp_process_private_key (p_cb);
1050             break;
1051 
1052         default:
1053             break;
1054     }
1055 
1056     return;
1057 }
1058 
1059 /*******************************************************************************
1060 **
1061 ** Function         smp_process_private_key
1062 **
1063 ** Description      This function processes private key.
1064 **                  It calculates public key and notifies SM that private key /
1065 **                  public key pair is created.
1066 **
1067 ** Returns          void
1068 **
1069 *******************************************************************************/
smp_process_private_key(tSMP_CB * p_cb)1070 void smp_process_private_key(tSMP_CB *p_cb)
1071 {
1072     Point       public_key;
1073     BT_OCTET32  private_key;
1074 
1075     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1076 
1077     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
1078     ECC_PointMult(&public_key, &(curve_p256.G), (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
1079     memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN);
1080     memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN);
1081 
1082     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
1083                                          BT_OCTET32_LEN);
1084     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.x, (const UINT8 *)"local public(x)",
1085                                          BT_OCTET32_LEN);
1086     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.y, (const UINT8 *)"local public(y)",
1087                                          BT_OCTET32_LEN);
1088     p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY;
1089     smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL);
1090 }
1091 
1092 /*******************************************************************************
1093 **
1094 ** Function         smp_compute_dhkey
1095 **
1096 ** Description      The function:
1097 **                  - calculates a new public key using as input local private
1098 **                    key and peer public key;
1099 **                  - saves the new public key x-coordinate as DHKey.
1100 **
1101 ** Returns          void
1102 **
1103 *******************************************************************************/
smp_compute_dhkey(tSMP_CB * p_cb)1104 void smp_compute_dhkey (tSMP_CB *p_cb)
1105 {
1106     Point       peer_publ_key, new_publ_key;
1107     BT_OCTET32  private_key;
1108 
1109     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1110 
1111     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
1112     memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN);
1113     memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN);
1114 
1115     ECC_PointMult(&new_publ_key, &peer_publ_key, (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
1116 
1117     memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN);
1118 
1119     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Old DHKey",
1120                                          BT_OCTET32_LEN);
1121 
1122     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
1123                                          BT_OCTET32_LEN);
1124     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.x, (const UINT8 *)"rem public(x)",
1125                                          BT_OCTET32_LEN);
1126     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.y, (const UINT8 *)"rem public(y)",
1127                                          BT_OCTET32_LEN);
1128     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Reverted DHKey",
1129                                          BT_OCTET32_LEN);
1130 }
1131 
1132 /*******************************************************************************
1133 **
1134 ** Function         smp_calculate_local_commitment
1135 **
1136 ** Description      The function calculates and saves local commmitment in CB.
1137 **
1138 ** Returns          void
1139 **
1140 *******************************************************************************/
smp_calculate_local_commitment(tSMP_CB * p_cb)1141 void smp_calculate_local_commitment(tSMP_CB *p_cb)
1142 {
1143     UINT8 random_input;
1144 
1145     SMP_TRACE_DEBUG("%s", __FUNCTION__);
1146 
1147     switch (p_cb->selected_association_model)
1148     {
1149         case SMP_MODEL_SEC_CONN_JUSTWORKS:
1150         case SMP_MODEL_SEC_CONN_NUM_COMP:
1151             if (p_cb->role  == HCI_ROLE_MASTER)
1152                 SMP_TRACE_WARNING ("local commitment calc on master is not expected \
1153                                     for Just Works/Numeric Comparison models");
1154             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0,
1155                              p_cb->commitment);
1156             break;
1157         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
1158         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
1159             random_input = smp_calculate_random_input(p_cb->local_random, p_cb->round);
1160             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
1161                              random_input, p_cb->commitment);
1162             break;
1163         case SMP_MODEL_SEC_CONN_OOB:
1164             SMP_TRACE_WARNING ("local commitment calc is expected for OOB model BEFORE pairing");
1165             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0,
1166                              p_cb->commitment);
1167             break;
1168         default:
1169             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
1170                              p_cb->selected_association_model);
1171             return;
1172     }
1173 
1174     SMP_TRACE_EVENT ("local commitment calculation is completed");
1175 }
1176 
1177 /*******************************************************************************
1178 **
1179 ** Function         smp_calculate_peer_commitment
1180 **
1181 ** Description      The function calculates and saves peer commmitment at the
1182 **                  provided output buffer.
1183 **
1184 ** Returns          void
1185 **
1186 *******************************************************************************/
smp_calculate_peer_commitment(tSMP_CB * p_cb,BT_OCTET16 output_buf)1187 void smp_calculate_peer_commitment(tSMP_CB *p_cb, BT_OCTET16 output_buf)
1188 {
1189     UINT8 ri;
1190 
1191     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1192 
1193     switch (p_cb->selected_association_model)
1194     {
1195         case SMP_MODEL_SEC_CONN_JUSTWORKS:
1196         case SMP_MODEL_SEC_CONN_NUM_COMP:
1197             if (p_cb->role  == HCI_ROLE_SLAVE)
1198                 SMP_TRACE_WARNING ("peer commitment calc on slave is not expected \
1199                 for Just Works/Numeric Comparison models");
1200             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0,
1201                              output_buf);
1202             break;
1203         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
1204         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
1205             ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round);
1206             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri,
1207                              output_buf);
1208             break;
1209         case SMP_MODEL_SEC_CONN_OOB:
1210             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0,
1211                              output_buf);
1212             break;
1213         default:
1214             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
1215                              p_cb->selected_association_model);
1216             return;
1217     }
1218 
1219     SMP_TRACE_EVENT ("peer commitment calculation is completed");
1220 }
1221 
1222 /*******************************************************************************
1223 **
1224 ** Function         smp_calculate_f4
1225 **
1226 ** Description      The function calculates
1227 **                  C = f4(U, V, X, Z) = AES-CMAC (U||V||Z)
1228 **                                               X
1229 **                  where
1230 **                  input:  U is 256 bit,
1231 **                          V is 256 bit,
1232 **                          X is 128 bit,
1233 **                          Z is 8 bit,
1234 **                  output: C is 128 bit.
1235 **
1236 ** Returns          void
1237 **
1238 ** Note             The LSB is the first octet, the MSB is the last octet of
1239 **                  the AES-CMAC input/output stream.
1240 **
1241 *******************************************************************************/
smp_calculate_f4(UINT8 * u,UINT8 * v,UINT8 * x,UINT8 z,UINT8 * c)1242 void smp_calculate_f4(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 z, UINT8 *c)
1243 {
1244     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + 1 /* Z size */;
1245     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1];
1246     UINT8   key[BT_OCTET16_LEN];
1247     UINT8   cmac[BT_OCTET16_LEN];
1248     UINT8   *p = NULL;
1249 #if SMP_DEBUG == TRUE
1250     UINT8   *p_prnt = NULL;
1251 #endif
1252 
1253     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1254 
1255 #if SMP_DEBUG == TRUE
1256     p_prnt = u;
1257     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
1258     p_prnt = v;
1259     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
1260     p_prnt = x;
1261     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
1262     p_prnt = &z;
1263     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Z", 1);
1264 #endif
1265 
1266     p = msg;
1267     UINT8_TO_STREAM(p, z);
1268     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
1269     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
1270 #if SMP_DEBUG == TRUE
1271     p_prnt = msg;
1272     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
1273 #endif
1274 
1275     p = key;
1276     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
1277 #if SMP_DEBUG == TRUE
1278     p_prnt = key;
1279     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1280 #endif
1281 
1282     aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac);
1283 #if SMP_DEBUG == TRUE
1284     p_prnt = cmac;
1285     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES_CMAC", BT_OCTET16_LEN);
1286 #endif
1287 
1288     p = c;
1289     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1290 }
1291 
1292 /*******************************************************************************
1293 **
1294 ** Function         smp_calculate_numeric_comparison_display_number
1295 **
1296 ** Description      The function calculates and saves number to display in numeric
1297 **                  comparison association mode.
1298 **
1299 ** Returns          void
1300 **
1301 *******************************************************************************/
smp_calculate_numeric_comparison_display_number(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1302 void smp_calculate_numeric_comparison_display_number(tSMP_CB *p_cb,
1303                                                      tSMP_INT_DATA *p_data)
1304 {
1305     SMP_TRACE_DEBUG ("%s", __func__);
1306 
1307     if (p_cb->role == HCI_ROLE_MASTER)
1308     {
1309         p_cb->number_to_display =
1310             smp_calculate_g2(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
1311                              p_cb->rrand);
1312     }
1313     else
1314     {
1315         p_cb->number_to_display =
1316             smp_calculate_g2(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand,
1317                              p_cb->rand);
1318     }
1319 
1320     if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1))
1321     {
1322         UINT8 reason;
1323         reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN;
1324         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason);
1325         return;
1326     }
1327 
1328     SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display);
1329     p_cb->cb_evt = SMP_NC_REQ_EVT;
1330     smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display);
1331     return;
1332 }
1333 
1334 /*******************************************************************************
1335 **
1336 ** Function         smp_calculate_g2
1337 **
1338 ** Description      The function calculates
1339 **                  g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6
1340 **                                           X
1341 **                  and
1342 **                  Vres = g2(U, V, X, Y) mod 10**6
1343 **                  where
1344 **                  input:  U     is 256 bit,
1345 **                          V     is 256 bit,
1346 **                          X     is 128 bit,
1347 **                          Y     is 128 bit,
1348 **
1349 ** Returns          Vres.
1350 **                  Expected value has to be in the range [0 - 999999] i.e. [0 - 0xF423F].
1351 **                  Vres = 1000000 means that the calculation fails.
1352 **
1353 ** Note             The LSB is the first octet, the MSB is the last octet of
1354 **                  the AES-CMAC input/output stream.
1355 **
1356 *******************************************************************************/
smp_calculate_g2(UINT8 * u,UINT8 * v,UINT8 * x,UINT8 * y)1357 UINT32 smp_calculate_g2(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 *y)
1358 {
1359     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */
1360                       + BT_OCTET16_LEN /* Y size */;
1361     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN];
1362     UINT8   key[BT_OCTET16_LEN];
1363     UINT8   cmac[BT_OCTET16_LEN];
1364     UINT8   *p = NULL;
1365     UINT32  vres;
1366 #if SMP_DEBUG == TRUE
1367     UINT8   *p_prnt = NULL;
1368 #endif
1369 
1370     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1371 
1372     p = msg;
1373     ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN);
1374     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
1375     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
1376 #if SMP_DEBUG == TRUE
1377     p_prnt = u;
1378     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
1379     p_prnt = v;
1380     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
1381     p_prnt = x;
1382     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
1383     p_prnt = y;
1384     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Y", BT_OCTET16_LEN);
1385 #endif
1386 
1387     p = key;
1388     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
1389 #if SMP_DEBUG == TRUE
1390     p_prnt = key;
1391     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1392 #endif
1393 
1394     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
1395     {
1396         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
1397         return (BTM_MAX_PASSKEY_VAL + 1);
1398     }
1399 
1400 #if SMP_DEBUG == TRUE
1401     p_prnt = cmac;
1402     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1403 #endif
1404 
1405     /* vres = cmac mod 2**32 mod 10**6 */
1406     p = &cmac[0];
1407     STREAM_TO_UINT32(vres, p);
1408 #if SMP_DEBUG == TRUE
1409     p_prnt = (UINT8 *) &vres;
1410     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32", 4);
1411 #endif
1412 
1413     while (vres > BTM_MAX_PASSKEY_VAL)
1414         vres -= (BTM_MAX_PASSKEY_VAL + 1);
1415 #if SMP_DEBUG == TRUE
1416     p_prnt = (UINT8 *) &vres;
1417     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32 mod 10**6", 4);
1418 #endif
1419 
1420     SMP_TRACE_ERROR("Value for numeric comparison = %d", vres);
1421     return vres;
1422 }
1423 
1424 /*******************************************************************************
1425 **
1426 ** Function         smp_calculate_f5
1427 **
1428 ** Description      The function provides two AES-CMAC that are supposed to be used as
1429 **                  - MacKey (MacKey is used in pairing DHKey check calculation);
1430 **                  - LTK (LTK is used to ecrypt the link after completion of Phase 2
1431 **                    and on reconnection, to derive BR/EDR LK).
1432 **                  The function inputs are W, N1, N2, A1, A2.
1433 **                  F5 rules:
1434 **                  - the value used as key in MacKey/LTK (T) is calculated
1435 **                    (function smp_calculate_f5_key(...));
1436 **                    The formula is:
1437 **                          T = AES-CMAC    (W)
1438 **                                      salt
1439 **                    where salt is internal parameter of smp_calculate_f5_key(...).
1440 **                  - MacKey and LTK are calculated as AES-MAC values received with the
1441 **                    key T calculated in the previous step and the plaintext message
1442 **                    built from the external parameters N1, N2, A1, A2 and the internal
1443 **                    parameters counter, keyID, length.
1444 **                    The function smp_calculate_f5_mackey_or_long_term_key(...) is used in the
1445 **                    calculations.
1446 **                    The same formula is used in calculation of MacKey and LTK and the
1447 **                    same parameter values except the value of the internal parameter
1448 **                    counter:
1449 **                    - in MacKey calculations the value is 0;
1450 **                    - in LTK calculations the value is 1.
1451 **                      MacKey  = AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256)
1452 **                                        T
1453 **                      LTK     = AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256)
1454 **                                        T
1455 **                  The parameters are
1456 **                  input:
1457 **                          W       is 256 bits,
1458 **                          N1      is 128 bits,
1459 **                          N2      is 128 bits,
1460 **                          A1 is 56 bit,
1461 **                          A2 is 56 bit.
1462 **                  internal:
1463 **                          Counter is 8 bits,  its value is 0 for MacKey,
1464 **                                                          1 for LTK;
1465 **                          KeyId   is 32 bits, its value is
1466 **                                              0x62746c65 (MSB~LSB);
1467 **                          Length  is 16 bits, its value is 0x0100
1468 **                                              (MSB~LSB).
1469 **                  output:
1470 **                          MacKey  is 128 bits;
1471 **                          LTK     is 128 bits
1472 **
1473 ** Returns          FALSE if out of resources, TRUE in other cases.
1474 **
1475 ** Note             The LSB is the first octet, the MSB is the last octet of
1476 **                  the AES-CMAC input/output stream.
1477 **
1478 *******************************************************************************/
smp_calculate_f5(UINT8 * w,UINT8 * n1,UINT8 * n2,UINT8 * a1,UINT8 * a2,UINT8 * mac_key,UINT8 * ltk)1479 BOOLEAN smp_calculate_f5(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
1480                          UINT8 *mac_key, UINT8 *ltk)
1481 {
1482     BT_OCTET16  t;    /* AES-CMAC output in smp_calculate_f5_key(...), key in */
1483                       /* smp_calculate_f5_mackey_or_long_term_key(...) */
1484 #if SMP_DEBUG == TRUE
1485     UINT8   *p_prnt = NULL;
1486 #endif
1487     /* internal parameters: */
1488 
1489     /*
1490         counter is 0 for MacKey,
1491                 is 1 for LTK
1492     */
1493     UINT8   counter_mac_key[1]  = {0};
1494     UINT8   counter_ltk[1]      = {1};
1495     /*
1496         keyID   62746c65
1497     */
1498     UINT8   key_id[4] = {0x65, 0x6c, 0x74, 0x62};
1499     /*
1500         length  0100
1501     */
1502     UINT8   length[2] = {0x00, 0x01};
1503 
1504     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1505 #if SMP_DEBUG == TRUE
1506     p_prnt = w;
1507     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
1508     p_prnt = n1;
1509     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
1510     p_prnt = n2;
1511     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
1512     p_prnt = a1;
1513     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
1514     p_prnt = a2;
1515     smp_debug_print_nbyte_little_endian (p_prnt,(const UINT8 *) "A2", 7);
1516 #endif
1517 
1518     if (!smp_calculate_f5_key(w, t))
1519     {
1520         SMP_TRACE_ERROR("%s failed to calc T",__FUNCTION__);
1521         return FALSE;
1522     }
1523 #if SMP_DEBUG == TRUE
1524     p_prnt = t;
1525     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
1526 #endif
1527 
1528     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, n2, a1, a2,
1529                                                   length, mac_key))
1530     {
1531         SMP_TRACE_ERROR("%s failed to calc MacKey", __FUNCTION__);
1532         return FALSE;
1533     }
1534 #if SMP_DEBUG == TRUE
1535     p_prnt = mac_key;
1536     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"MacKey", BT_OCTET16_LEN);
1537 #endif
1538 
1539     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, a1, a2,
1540                                                   length, ltk))
1541     {
1542         SMP_TRACE_ERROR("%s failed to calc LTK",__FUNCTION__);
1543         return FALSE;
1544     }
1545 #if SMP_DEBUG == TRUE
1546     p_prnt = ltk;
1547     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"LTK", BT_OCTET16_LEN);
1548 #endif
1549 
1550     return TRUE;
1551 }
1552 
1553 /*******************************************************************************
1554 **
1555 ** Function         smp_calculate_f5_mackey_or_long_term_key
1556 **
1557 ** Description      The function calculates the value of MacKey or LTK by the rules
1558 **                  defined for f5 function.
1559 **                  At the moment exactly the same formula is used to calculate
1560 **                  LTK and MacKey.
1561 **                  The difference is the value of input parameter Counter:
1562 **                  - in MacKey calculations the value is 0;
1563 **                  - in LTK calculations the value is 1.
1564 **                  The formula:
1565 **                  mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length)
1566 **                                T
1567 **                  where
1568 **                  input:      T       is 256 bits;
1569 **                              Counter is 8 bits, its value is 0 for MacKey,
1570 **                                                              1 for LTK;
1571 **                              keyID   is 32 bits, its value is 0x62746c65;
1572 **                              N1      is 128 bits;
1573 **                              N2      is 128 bits;
1574 **                              A1      is 56 bits;
1575 **                              A2      is 56 bits;
1576 **                              Length  is 16 bits, its value is 0x0100
1577 **                  output:     LTK     is 128 bit.
1578 **
1579 ** Returns          FALSE if out of resources, TRUE in other cases.
1580 **
1581 ** Note             The LSB is the first octet, the MSB is the last octet of
1582 **                  the AES-CMAC input/output stream.
1583 **
1584 *******************************************************************************/
smp_calculate_f5_mackey_or_long_term_key(UINT8 * t,UINT8 * counter,UINT8 * key_id,UINT8 * n1,UINT8 * n2,UINT8 * a1,UINT8 * a2,UINT8 * length,UINT8 * mac)1585 BOOLEAN smp_calculate_f5_mackey_or_long_term_key(UINT8 *t, UINT8 *counter,
1586                                   UINT8 *key_id, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
1587                                   UINT8 *length, UINT8 *mac)
1588 {
1589     UINT8   *p = NULL;
1590     UINT8   cmac[BT_OCTET16_LEN];
1591     UINT8   key[BT_OCTET16_LEN];
1592     UINT8   msg_len = 1 /* Counter size */ + 4 /* keyID size */ +
1593             BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
1594             7 /* A1 size*/ + 7 /* A2 size*/ + 2 /* Length size */;
1595     UINT8   msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2];
1596     BOOLEAN ret = TRUE;
1597 #if SMP_DEBUG == TRUE
1598     UINT8   *p_prnt = NULL;
1599 #endif
1600 
1601     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1602 #if SMP_DEBUG == TRUE
1603     p_prnt = t;
1604     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
1605     p_prnt = counter;
1606     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Counter", 1);
1607     p_prnt = key_id;
1608     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"KeyID", 4);
1609     p_prnt = n1;
1610     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
1611     p_prnt = n2;
1612     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
1613     p_prnt = a1;
1614     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
1615     p_prnt = a2;
1616     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A2", 7);
1617     p_prnt = length;
1618     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Length", 2);
1619 #endif
1620 
1621     p = key;
1622     ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN);
1623 #if SMP_DEBUG == TRUE
1624     p_prnt = key;
1625     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1626 #endif
1627     p = msg;
1628     ARRAY_TO_STREAM(p, length, 2);
1629     ARRAY_TO_STREAM(p, a2, 7);
1630     ARRAY_TO_STREAM(p, a1, 7);
1631     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
1632     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
1633     ARRAY_TO_STREAM(p, key_id, 4);
1634     ARRAY_TO_STREAM(p, counter, 1);
1635 #if SMP_DEBUG == TRUE
1636     p_prnt = msg;
1637     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
1638 #endif
1639 
1640     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
1641     {
1642         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1643         ret = FALSE;
1644     }
1645 
1646 #if SMP_DEBUG == TRUE
1647     p_prnt = cmac;
1648     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1649 #endif
1650 
1651     p = mac;
1652     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1653     return ret;
1654 }
1655 
1656 /*******************************************************************************
1657 **
1658 ** Function         smp_calculate_f5_key
1659 **
1660 ** Description      The function calculates key T used in calculation of
1661 **                  MacKey and LTK (f5 output is defined as MacKey || LTK).
1662 **                  T = AES-CMAC    (W)
1663 **                              salt
1664 **                  where
1665 **                  Internal:   salt    is 128 bit.
1666 **                  input:      W       is 256 bit.
1667 **                  Output:     T       is 128 bit.
1668 **
1669 ** Returns          FALSE if out of resources, TRUE in other cases.
1670 **
1671 ** Note             The LSB is the first octet, the MSB is the last octet of
1672 **                  the AES-CMAC input/output stream.
1673 **
1674 *******************************************************************************/
smp_calculate_f5_key(UINT8 * w,UINT8 * t)1675 BOOLEAN smp_calculate_f5_key(UINT8 *w, UINT8 *t)
1676 {
1677     UINT8 *p = NULL;
1678     /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */
1679     /*
1680         salt:   6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE
1681     */
1682     BT_OCTET16  salt = {
1683         0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60,
1684         0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C
1685     };
1686 #if SMP_DEBUG == TRUE
1687     UINT8   *p_prnt = NULL;
1688 #endif
1689 
1690     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1691 #if SMP_DEBUG == TRUE
1692     p_prnt = salt;
1693     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"salt", BT_OCTET16_LEN);
1694     p_prnt = w;
1695     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
1696 #endif
1697 
1698     BT_OCTET16 key;
1699     BT_OCTET32 msg;
1700 
1701     p = key;
1702     ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN);
1703     p = msg;
1704     ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN);
1705 #if SMP_DEBUG == TRUE
1706     p_prnt = key;
1707     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1708     p_prnt = msg;
1709     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", BT_OCTET32_LEN);
1710 #endif
1711 
1712     BT_OCTET16 cmac;
1713     BOOLEAN ret = TRUE;
1714     if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, cmac))
1715     {
1716         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1717         ret = FALSE;
1718     }
1719 
1720 #if SMP_DEBUG == TRUE
1721     p_prnt = cmac;
1722     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1723 #endif
1724 
1725     p = t;
1726     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1727     return ret;
1728 }
1729 
1730 /*******************************************************************************
1731 **
1732 ** Function         smp_calculate_local_dhkey_check
1733 **
1734 ** Description      The function calculates and saves local device DHKey check
1735 **                  value in CB.
1736 **                  Before doing this it calls smp_calculate_f5_mackey_and_long_term_key(...).
1737 **                  to calculate MacKey and LTK.
1738 **                  MacKey is used in dhkey calculation.
1739 **
1740 ** Returns          void
1741 **
1742 *******************************************************************************/
smp_calculate_local_dhkey_check(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1743 void smp_calculate_local_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1744 {
1745     UINT8   iocap[3], a[7], b[7];
1746 
1747     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1748 
1749     smp_calculate_f5_mackey_and_long_term_key(p_cb);
1750 
1751     smp_collect_local_io_capabilities(iocap, p_cb);
1752 
1753     smp_collect_local_ble_address(a, p_cb);
1754     smp_collect_peer_ble_address(b, p_cb);
1755     smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b,
1756                      p_cb->dhkey_check);
1757 
1758     SMP_TRACE_EVENT ("local DHKey check calculation is completed");
1759 }
1760 
1761 /*******************************************************************************
1762 **
1763 ** Function         smp_calculate_peer_dhkey_check
1764 **
1765 ** Description      The function calculates peer device DHKey check value.
1766 **
1767 ** Returns          void
1768 **
1769 *******************************************************************************/
smp_calculate_peer_dhkey_check(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1770 void smp_calculate_peer_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1771 {
1772     UINT8       iocap[3], a[7], b[7];
1773     BT_OCTET16  param_buf;
1774     BOOLEAN     ret;
1775     tSMP_KEY    key;
1776     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
1777 
1778     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1779 
1780     smp_collect_peer_io_capabilities(iocap, p_cb);
1781 
1782     smp_collect_local_ble_address(a, p_cb);
1783     smp_collect_peer_ble_address(b, p_cb);
1784     ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap,
1785                            b, a, param_buf);
1786 
1787     if (ret)
1788     {
1789         SMP_TRACE_EVENT ("peer DHKey check calculation is completed");
1790 #if (SMP_DEBUG == TRUE)
1791         smp_debug_print_nbyte_little_endian (param_buf, (const UINT8 *)"peer DHKey check",
1792                                              BT_OCTET16_LEN);
1793 #endif
1794         key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK;
1795         key.p_data   = param_buf;
1796         smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key);
1797     }
1798     else
1799     {
1800         SMP_TRACE_EVENT ("peer DHKey check calculation failed");
1801         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
1802     }
1803 }
1804 
1805 /*******************************************************************************
1806 **
1807 ** Function         smp_calculate_f6
1808 **
1809 ** Description      The function calculates
1810 **                  C = f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMAC (N1||N2||R||IOcap||A1||A2)
1811 **                                                                W
1812 **                  where
1813 **                  input:  W is 128 bit,
1814 **                          N1 is 128 bit,
1815 **                          N2 is 128 bit,
1816 **                          R is 128 bit,
1817 **                          IOcap is 24 bit,
1818 **                          A1 is 56 bit,
1819 **                          A2 is 56 bit,
1820 **                  output: C is 128 bit.
1821 **
1822 ** Returns          FALSE if out of resources, TRUE in other cases.
1823 **
1824 ** Note             The LSB is the first octet, the MSB is the last octet of
1825 **                  the AES-CMAC input/output stream.
1826 **
1827 *******************************************************************************/
smp_calculate_f6(UINT8 * w,UINT8 * n1,UINT8 * n2,UINT8 * r,UINT8 * iocap,UINT8 * a1,UINT8 * a2,UINT8 * c)1828 BOOLEAN smp_calculate_f6(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *r, UINT8 *iocap, UINT8 *a1,
1829                          UINT8 *a2, UINT8 *c)
1830 {
1831     UINT8   *p = NULL;
1832     UINT8   msg_len = BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
1833                       BT_OCTET16_LEN /* R size */ + 3 /* IOcap size */ + 7 /* A1 size*/
1834                       + 7 /* A2 size*/;
1835     UINT8   msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7];
1836 #if SMP_DEBUG == TRUE
1837     UINT8   *p_print = NULL;
1838 #endif
1839 
1840     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1841 #if SMP_DEBUG == TRUE
1842     p_print = w;
1843     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
1844     p_print = n1;
1845     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N1", BT_OCTET16_LEN);
1846     p_print = n2;
1847     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N2", BT_OCTET16_LEN);
1848     p_print = r;
1849     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"R", BT_OCTET16_LEN);
1850     p_print = iocap;
1851     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"IOcap", 3);
1852     p_print = a1;
1853     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A1", 7);
1854     p_print = a2;
1855     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A2", 7);
1856 #endif
1857 
1858     UINT8 cmac[BT_OCTET16_LEN];
1859     UINT8 key[BT_OCTET16_LEN];
1860 
1861     p = key;
1862     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
1863 #if SMP_DEBUG == TRUE
1864     p_print = key;
1865     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
1866 #endif
1867 
1868     p = msg;
1869     ARRAY_TO_STREAM(p, a2, 7);
1870     ARRAY_TO_STREAM(p, a1, 7);
1871     ARRAY_TO_STREAM(p, iocap, 3);
1872     ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN);
1873     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
1874     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
1875 #if SMP_DEBUG == TRUE
1876     p_print = msg;
1877     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"M", msg_len);
1878 #endif
1879 
1880     BOOLEAN ret = TRUE;
1881     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
1882     {
1883         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1884         ret = FALSE;
1885     }
1886 
1887 #if SMP_DEBUG == TRUE
1888     p_print = cmac;
1889     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1890 #endif
1891 
1892     p = c;
1893     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1894     return ret;
1895 }
1896 
1897 /*******************************************************************************
1898 **
1899 ** Function         smp_calculate_link_key_from_long_term_key
1900 **
1901 ** Description      The function calculates and saves BR/EDR link key derived from
1902 **                  LE SC LTK.
1903 **
1904 ** Returns          FALSE if out of resources, TRUE in other cases.
1905 **
1906 *******************************************************************************/
smp_calculate_link_key_from_long_term_key(tSMP_CB * p_cb)1907 BOOLEAN smp_calculate_link_key_from_long_term_key(tSMP_CB *p_cb)
1908 {
1909     tBTM_SEC_DEV_REC *p_dev_rec;
1910     BD_ADDR bda_for_lk;
1911     tBLE_ADDR_TYPE conn_addr_type;
1912 
1913     SMP_TRACE_DEBUG ("%s", __func__);
1914 
1915     if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC)
1916     {
1917         SMP_TRACE_DEBUG ("Use rcvd identity address as BD_ADDR of LK rcvd identity address");
1918         memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN);
1919     }
1920     else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) &&
1921               conn_addr_type == BLE_ADDR_PUBLIC)
1922     {
1923         SMP_TRACE_DEBUG ("Use rcvd connection address as BD_ADDR of LK");
1924     }
1925     else
1926     {
1927         SMP_TRACE_WARNING ("Don't have peer public address to associate with LK");
1928         return FALSE;
1929     }
1930 
1931     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
1932     {
1933         SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
1934         return FALSE;
1935     }
1936 
1937     BT_OCTET16 intermediate_link_key;
1938     BOOLEAN ret = TRUE;
1939 
1940     ret = smp_calculate_h6(p_cb->ltk, (UINT8 *)"1pmt" /* reversed "tmp1" */,intermediate_link_key);
1941     if (!ret)
1942     {
1943         SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__);
1944         return ret;
1945     }
1946 
1947     BT_OCTET16 link_key;
1948     ret = smp_calculate_h6(intermediate_link_key, (UINT8 *) "rbel" /* reversed "lebr" */, link_key);
1949     if (!ret)
1950     {
1951         SMP_TRACE_ERROR("%s failed", __func__);
1952     }
1953     else
1954     {
1955         UINT8 link_key_type;
1956         if (btm_cb.security_mode == BTM_SEC_MODE_SC)
1957         {
1958             /* Secure Connections Only Mode */
1959             link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
1960         }
1961         else if (controller_get_interface()->supports_secure_connections())
1962         {
1963             /* both transports are SC capable */
1964             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
1965                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
1966             else
1967                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256;
1968         }
1969         else if (btm_cb.security_mode == BTM_SEC_MODE_SP)
1970         {
1971             /* BR/EDR transport is SSP capable */
1972             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
1973                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB;
1974             else
1975                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB;
1976         }
1977         else
1978         {
1979             SMP_TRACE_ERROR ("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x",
1980                  __func__, btm_cb.security_mode, p_dev_rec->sm4);
1981             return FALSE;
1982         }
1983 
1984         link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET;
1985 
1986         UINT8 *p;
1987         BT_OCTET16 notif_link_key;
1988         p = notif_link_key;
1989         ARRAY16_TO_STREAM(p, link_key);
1990 
1991         btm_sec_link_key_notification (bda_for_lk, notif_link_key, link_key_type);
1992 
1993         SMP_TRACE_EVENT ("%s is completed", __func__);
1994     }
1995 
1996     return ret;
1997 }
1998 
1999 /*******************************************************************************
2000 **
2001 ** Function         smp_calculate_long_term_key_from_link_key
2002 **
2003 ** Description      The function calculates and saves SC LTK derived from BR/EDR
2004 **                  link key.
2005 **
2006 ** Returns          FALSE if out of resources, TRUE in other cases.
2007 **
2008 *******************************************************************************/
smp_calculate_long_term_key_from_link_key(tSMP_CB * p_cb)2009 BOOLEAN smp_calculate_long_term_key_from_link_key(tSMP_CB *p_cb)
2010 {
2011     BOOLEAN ret = TRUE;
2012     tBTM_SEC_DEV_REC *p_dev_rec;
2013     UINT8 rev_link_key[16];
2014 
2015     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
2016 
2017     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
2018     {
2019         SMP_TRACE_ERROR("%s failed to find Security Record",__FUNCTION__);
2020         return FALSE;
2021     }
2022 
2023     UINT8 br_link_key_type;
2024     if ((br_link_key_type = BTM_SecGetDeviceLinkKeyType (p_cb->pairing_bda))
2025         == BTM_LKEY_TYPE_IGNORE)
2026     {
2027         SMP_TRACE_ERROR("%s failed to retrieve BR link type",__FUNCTION__);
2028         return FALSE;
2029     }
2030 
2031     if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) &&
2032         (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256))
2033     {
2034         SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d",
2035                          __FUNCTION__, br_link_key_type);
2036         return FALSE;
2037     }
2038 
2039     UINT8 *p1;
2040     UINT8 *p2;
2041     p1 = rev_link_key;
2042     p2 = p_dev_rec->link_key;
2043     REVERSE_ARRAY_TO_STREAM(p1, p2, 16);
2044 
2045     BT_OCTET16 intermediate_long_term_key;
2046     /* "tmp2" obtained from the spec */
2047     ret = smp_calculate_h6(rev_link_key, (UINT8 *) "2pmt" /* reversed "tmp2" */,
2048                            intermediate_long_term_key);
2049 
2050     if (!ret)
2051     {
2052         SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key",__FUNCTION__);
2053         return ret;
2054     }
2055 
2056     /* "brle" obtained from the spec */
2057     ret = smp_calculate_h6(intermediate_long_term_key, (UINT8 *) "elrb" /* reversed "brle" */,
2058                            p_cb->ltk);
2059 
2060     if (!ret)
2061     {
2062         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
2063     }
2064     else
2065     {
2066         p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256)
2067                            ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE;
2068         SMP_TRACE_EVENT ("%s is completed",__FUNCTION__);
2069     }
2070 
2071     return ret;
2072 }
2073 
2074 /*******************************************************************************
2075 **
2076 ** Function         smp_calculate_h6
2077 **
2078 ** Description      The function calculates
2079 **                  C = h6(W, KeyID) = AES-CMAC (KeyID)
2080 **                                             W
2081 **                  where
2082 **                  input:  W is 128 bit,
2083 **                          KeyId is 32 bit,
2084 **                  output: C is 128 bit.
2085 **
2086 ** Returns          FALSE if out of resources, TRUE in other cases.
2087 **
2088 ** Note             The LSB is the first octet, the MSB is the last octet of
2089 **                  the AES-CMAC input/output stream.
2090 **
2091 *******************************************************************************/
smp_calculate_h6(UINT8 * w,UINT8 * keyid,UINT8 * c)2092 BOOLEAN smp_calculate_h6(UINT8 *w, UINT8 *keyid, UINT8 *c)
2093 {
2094 #if SMP_DEBUG == TRUE
2095     UINT8   *p_print = NULL;
2096 #endif
2097 
2098     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
2099 #if SMP_DEBUG == TRUE
2100     p_print = w;
2101     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
2102     p_print = keyid;
2103     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"keyID", 4);
2104 #endif
2105 
2106     UINT8 *p = NULL;
2107     UINT8 key[BT_OCTET16_LEN];
2108 
2109     p = key;
2110     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
2111 
2112 #if SMP_DEBUG == TRUE
2113     p_print = key;
2114     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
2115 #endif
2116 
2117     UINT8 msg_len = 4 /* KeyID size */;
2118     UINT8 msg[4];
2119 
2120     p = msg;
2121     ARRAY_TO_STREAM(p, keyid, 4);
2122 
2123 #if SMP_DEBUG == TRUE
2124     p_print = msg;
2125     smp_debug_print_nbyte_little_endian (p_print,(const UINT8 *) "M", msg_len);
2126 #endif
2127 
2128     BOOLEAN ret = TRUE;
2129     UINT8 cmac[BT_OCTET16_LEN];
2130     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
2131     {
2132         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
2133         ret = FALSE;
2134     }
2135 
2136 #if SMP_DEBUG == TRUE
2137     p_print = cmac;
2138     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
2139 #endif
2140 
2141     p = c;
2142     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
2143     return ret;
2144 }
2145 
2146 /*******************************************************************************
2147 **
2148 ** Function         smp_start_nonce_generation
2149 **
2150 ** Description      This function starts nonce generation.
2151 **
2152 ** Returns          void
2153 **
2154 *******************************************************************************/
smp_start_nonce_generation(tSMP_CB * p_cb)2155 void smp_start_nonce_generation(tSMP_CB *p_cb)
2156 {
2157     SMP_TRACE_DEBUG("%s", __FUNCTION__);
2158     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_0_7;
2159     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
2160         smp_rand_back(NULL);
2161 }
2162 
2163 /*******************************************************************************
2164 **
2165 ** Function         smp_finish_nonce_generation
2166 **
2167 ** Description      This function finishes nonce generation.
2168 **
2169 ** Returns          void
2170 **
2171 *******************************************************************************/
smp_finish_nonce_generation(tSMP_CB * p_cb)2172 void smp_finish_nonce_generation(tSMP_CB *p_cb)
2173 {
2174     SMP_TRACE_DEBUG("%s", __FUNCTION__);
2175     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_8_15;
2176     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
2177         smp_rand_back(NULL);
2178 }
2179 
2180 /*******************************************************************************
2181 **
2182 ** Function         smp_process_new_nonce
2183 **
2184 ** Description      This function notifies SM that it has new nonce.
2185 **
2186 ** Returns          void
2187 **
2188 *******************************************************************************/
smp_process_new_nonce(tSMP_CB * p_cb)2189 void smp_process_new_nonce(tSMP_CB *p_cb)
2190 {
2191     SMP_TRACE_DEBUG ("%s round %d", __FUNCTION__, p_cb->round);
2192     smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL);
2193 }
2194 
2195 /*******************************************************************************
2196 **
2197 ** Function         smp_rand_back
2198 **
2199 ** Description      This function is to process the rand command finished,
2200 **                  process the random/encrypted number for further action.
2201 **
2202 ** Returns          void
2203 **
2204 *******************************************************************************/
smp_rand_back(tBTM_RAND_ENC * p)2205 static void smp_rand_back(tBTM_RAND_ENC *p)
2206 {
2207     tSMP_CB *p_cb = &smp_cb;
2208     UINT8   *pp = p->param_buf;
2209     UINT8   failure = SMP_PAIR_FAIL_UNKNOWN;
2210     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
2211 
2212     SMP_TRACE_DEBUG ("%s state=0x%x", __FUNCTION__, state);
2213     if (p && p->status == HCI_SUCCESS)
2214     {
2215         switch (state)
2216         {
2217             case SMP_GEN_SRAND_MRAND:
2218                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
2219                 smp_generate_rand_cont(p_cb, NULL);
2220                 break;
2221 
2222             case SMP_GEN_SRAND_MRAND_CONT:
2223                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
2224                 smp_generate_confirm(p_cb, NULL);
2225                 break;
2226 
2227             case SMP_GEN_DIV_LTK:
2228                 STREAM_TO_UINT16(p_cb->div, pp);
2229                 smp_generate_ltk_cont(p_cb, NULL);
2230                 break;
2231 
2232             case SMP_GEN_DIV_CSRK:
2233                 STREAM_TO_UINT16(p_cb->div, pp);
2234                 smp_compute_csrk(p_cb, NULL);
2235                 break;
2236 
2237             case SMP_GEN_TK:
2238                 smp_proc_passkey(p_cb, p);
2239                 break;
2240 
2241             case SMP_GEN_RAND_V:
2242                 memcpy(p_cb->enc_rand, p->param_buf, BT_OCTET8_LEN);
2243                 smp_generate_y(p_cb, NULL);
2244                 break;
2245 
2246             case SMP_GENERATE_PRIVATE_KEY_0_7:
2247             case SMP_GENERATE_PRIVATE_KEY_8_15:
2248             case SMP_GENERATE_PRIVATE_KEY_16_23:
2249             case SMP_GENERATE_PRIVATE_KEY_24_31:
2250                 smp_continue_private_key_creation(p_cb, p);
2251                 break;
2252 
2253             case SMP_GEN_NONCE_0_7:
2254                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
2255                 smp_finish_nonce_generation(p_cb);
2256                 break;
2257 
2258             case SMP_GEN_NONCE_8_15:
2259                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
2260                 smp_process_new_nonce(p_cb);
2261                 break;
2262         }
2263 
2264         return;
2265     }
2266 
2267     SMP_TRACE_ERROR("%s key generation failed: (%d)", __FUNCTION__, p_cb->rand_enc_proc_state);
2268     smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &failure);
2269 }
2270 
2271 #endif
2272 
2273