
Compatibility Definition

Android 7.1
Last updated: February 24th, 2017

Copyright © 2016, Google Inc. All rights reserved.

compatibility@android.com

1. Introduction
2. Device Types

2.1 Device Configurations

3. Software
3.1. Managed API Compatibility

3.1.1. Android Extensions

3.2. Soft API Compatibility
3.2.1. Permissions
3.2.2. Build Parameters
3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents
3.2.3.2. Intent Resolution
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents
3.2.3.5. Default App Settings

3.3. Native API Compatibility
3.3.1. Application Binary Interfaces

3.3.1.1. Graphic Libraries

3.3.2. 32-bit ARM Native Code Compatibility

3.4. Web Compatibility
3.4.1. WebView Compatibility
3.4.2. Browser Compatibility

3.5. API Behavioral Compatibility

3.6. API Namespaces

3.7. Runtime Compatibility

3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)
3.8.2. Widgets
3.8.3. Notifications
3.8.4. Search
3.8.5. Toasts
3.8.6. Themes
3.8.7. Live Wallpapers
3.8.8. Activity Switching

3.8.9. Input Management
3.8.10. Lock Screen Media Control
3.8.11. Screen savers (previously Dreams)
3.8.12. Location
3.8.13. Unicode and Font
3.8.14. Multi-windows

3.9. Device Administration
3.9.1 Device Provisioning

3.9.1.1 Device owner provisioning
3.9.1.2 Managed profile provisioning

3.9.2 Managed Profile Support

3.10. Accessibility

3.11. Text-to-Speech

3.12. TV Input Framework
3.12.1. TV App

3.12.1.1. Electronic Program Guide
3.12.1.2. Navigation
3.12.1.3. TV input app linking
3.12.1.4. Time shifting
3.12.1.5. TV recording

3.13. Quick Settings

3.14. Vehicle UI APIs
3.14.1. Vehicle Media UI

4. Application Packaging Compatibility
5. Multimedia Compatibility

5.1. Media Codecs
5.1.1. Audio Codecs
5.1.2. Image Codecs
5.1.3. Video Codecs

5.2. Video Encoding
5.2.1. H.263
5.2.2. H-264
5.2.3. VP8

5.3. Video Decoding

Table of Contents

Page 2 of 88

5.3.1. MPEG-2
5.3.2. H.263
5.3.3. MPEG-4
5.3.4. H.264
5.3.5. H.265 (HEVC)
5.3.6. VP8
5.3.7. VP9

5.4. Audio Recording
5.4.1. Raw Audio Capture
5.4.2. Capture for Voice Recognition
5.4.3. Capture for Rerouting of Playback

5.5. Audio Playback
5.5.1. Raw Audio Playback
5.5.2. Audio Effects
5.5.3. Audio Output Volume

5.6. Audio Latency

5.7. Network Protocols

5.8. Secure Media

5.9. Musical Instrument Digital Interface
(MIDI)

5.10. Professional Audio

5.11. Capture for Unprocessed

6. Developer Tools and Options
Compatibility

6.1. Developer Tools

6.2. Developer Options

7. Hardware Compatibility
7.1. Display and Graphics

7.1.1. Screen Configuration
7.1.1.1. Screen Size
7.1.1.2. Screen Aspect Ratio
7.1.1.3. Screen Density

7.1.2. Display Metrics
7.1.3. Screen Orientation
7.1.4. 2D and 3D Graphics Acceleration
7.1.5. Legacy Application Compatibility Mode

7.1.6. Screen Technology
7.1.7. Secondary Displays

7.2. Input Devices
7.2.1. Keyboard
7.2.2. Non-touch Navigation
7.2.3. Navigation Keys
7.2.4. Touchscreen Input
7.2.5. Fake Touch Input
7.2.6. Game Controller Support

7.2.6.1. Button Mappings

7.2.7. Remote Control

7.3. Sensors
7.3.1. Accelerometer
7.3.2. Magnetometer
7.3.3. GPS
7.3.4. Gyroscope
7.3.5. Barometer
7.3.6. Thermometer
7.3.7. Photometer
7.3.8. Proximity Sensor
7.3.9. High Fidelity Sensors
7.3.10. Fingerprint Sensor
7.3.11. Android Automotive-only sensors

7.3.11.1. Current Gear
7.3.11.2. Day Night Mode
7.3.11.3. Driving Status
7.3.11.4. Wheel Speed

7.3.12. Pose Sensor

7.4. Data Connectivity
7.4.1. Telephony

7.4.1.1. Number Blocking Compatibility

7.4.2. IEEE 802.11 (Wi-Fi)
7.4.2.1. Wi-Fi Direct
7.4.2.2. Wi-Fi Tunneled Direct Link Setup

Page 3 of 88

7.4.3. Bluetooth
7.4.4. Near-Field Communications
7.4.5. Minimum Network Capability
7.4.6. Sync Settings
7.4.7. Data Saver

7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. External Camera
7.5.4. Camera API Behavior
7.5.5. Camera Orientation

7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage
7.6.3. Adoptable Storage

7.7. USB
7.7.1. USB peripheral mode
7.7.2. USB host mode

7.8. Audio
7.8.1. Microphone
7.8.2. Audio Output

7.8.2.1. Analog Audio Ports

7.8.3. Near-Ultrasound

7.9. Virtual Reality
7.9.1. Virtual Reality Mode
7.9.2. Virtual Reality High Performance

8. Performance and Power
8.1. User Experience Consistency

8.2. File I/O Access Performance

8.3. Power-Saving Modes

8.4. Power Consumption Accounting

8.5. Consistent Performance

9. Security Model Compatibility
9.1. Permissions

9.2. UID and Process Isolation

9.3. Filesystem Permissions

9.4. Alternate Execution Environments

9.5. Multi-User Support

9.6. Premium SMS Warning

9.7. Kernel Security Features

9.8. Privacy

9.9. Data Storage Encryption
9.9.1. Direct Boot
9.9.2. File Based Encryption
9.9.3. Full Disk Encryption

9.10. Device Integrity

9.11. Keys and Credentials
9.11.1. Secure Lock Screen

9.12. Data Deletion

9.13. Safe Boot Mode

9.14. Automotive Vehicle System Isolation

10. Software Compatibility Testing
10.1. Compatibility Test Suite

10.2. CTS Verifier

11. Updatable Software
12. Document Changelog

12.1. Changelog Viewing Tips

13. Contact Us

Page 4 of 88

1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible
with Android 7.1.
The use of â€œMUSTâ€ , â€œMUST NOTâ€ , â€œREQUIREDâ€ , â€œSHALLâ€ , â€œSHALL
NOTâ€ , â€œSHOULDâ€ , â€œSHOULD NOTâ€ , â€œRECOMMENDEDâ€ , â€œMAYâ€ , and
â€œOPTIONALâ€ is per the IETF standard defined in RFC2119.
As used in this document, a â€œdevice implementerâ€ or â€œimplementerâ€ is a person or
organization developing a hardware/software solution running Android 7.1. A â€œdevice
implementationâ€ or â€œimplementation is the hardware/software solution so developed.
To be considered compatible with Android 7.1, device implementations MUST meet the requirements
presented in this Compatibility Definition, including any documents incorporated via reference.
Where this definition or the software tests described in section 10 is silent, ambiguous, or incomplete,
it is the responsibility of the device implementer to ensure compatibility with existing implementations.
For this reason, the Android Open Source Project is both the reference and preferred implementation
of Android. Device implementers are STRONGLY RECOMMENDED to base their implementations to
the greatest extent possible on the â€œupstreamâ€ source code available from the Android Open
Source Project. While some components can hypothetically be replaced with alternate
implementations, it is STRONGLY RECOMMENDED to not follow this practice, as passing the
software tests will become substantially more difficult. It is the implementerâ€™s responsibility to
ensure full behavioral compatibility with the standard Android implementation, including and beyond
the Compatibility Test Suite. Finally, note that certain component substitutions and modifications are
explicitly forbidden by this document.
Many of the resources linked to in this document are derived directly or indirectly from the Android
SDK and will be functionally identical to the information in that SDKâ€™s documentation. In any cases
where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK
documentation, the SDK documentation is considered authoritative. Any technical details provided in
the linked resources throughout this document are considered by inclusion to be part of this
Compatibility Definition.

2. Device Types

While the Android Open Source Project has been used in the implementation of a variety of device
types and form factors, many aspects of the architecture and compatibility requirements were
optimized for handheld devices. Starting from Android 5.0, the Android Open Source Project aims to
embrace a wider variety of device types as described in this section.
Android Handheld device refers to an Android device implementation that is typically used by
holding it in the hand, such as mp3 players, phones, and tablets. Android Handheld device
implementations:

MUST have a touchscreen embedded in the device.
MUST have a power source that provides mobility, such as a battery.

Android Television device refers to an Android device implementation that is an entertainment
interface for consuming digital media, movies, games, apps, and/or live TV for users sitting about ten
feet away (a â€œlean backâ€ or â€œ10-foot user interfaceâ€). Android Television devices:

MUST have an embedded screen OR include a video output port, such as VGA, HDMI, or
a wireless port for display.
MUST declare the features android.software.leanback and
android.hardware.type.television.

Page 5 of 88

http://www.ietf.org/rfc/rfc2119.txt
http://source.android.com/
http://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_LEANBACK

Android Watch device refers to an Android device implementation intended to be worn on the body,
perhaps on the wrist, and:

MUST have a screen with the physical diagonal length in the range from 1.1 to 2.5 inches.
MUST declare the feature android.hardware.type.watch.
MUST support uiMode = UI_MODE_TYPE_WATCH.

Android Automotive implementation refers to a vehicle head unit running Android as an operating
system for part or all of the system and/or infotainment functionality. Android Automotive
implementations:

MUST have a screen with the physical diagonal length equal to or greater than 6 inches.
MUST declare the feature android.hardware.type.automotive.
MUST support uiMode = UI_MODE_TYPE_CAR.
Android Automotive implementations MUST support all public APIs in the android.car.*
namespace.

All Android device implementations that do not fit into any of the above device types still MUST meet
all requirements in this document to be Android 7.1 compatible, unless the requirement is explicitly
described to be only applicable to a specific Android device type from above.

2.1 Device Configurations

This is a summary of major differences in hardware configuration by device type. (Empty cells denote
a â€œMAYâ€). Not all configurations are covered in this table; see relevant hardware sections for
more detail.

Category Feature Section Handheld Television Watch Automotive Other

Input

D-pad
7.2.2. Non-
touch
Navigation

MUST

Touchscreen
7.2.4.
Touchscreen
input

MUST MUST SHOULD

Microphone 7.8.1.
Microphone MUST SHOULD MUST MUST SHOULD

Sensors
Accelerometer 7.3.1

Accelerometer SHOULD SHOULD SHOULD

GPS 7.3.3. GPS SHOULD SHOULD

Connectivity

Wi-Fi 7.4.2. IEEE
802.11 SHOULD SHOULD SHOULD SHOULD

Wi-Fi Direct 7.4.2.1. Wi-Fi
Direct SHOULD SHOULD SHOULD

Bluetooth
7.4.3.
Bluetooth SHOULD MUST MUST MUST SHOULD

Bluetooth Low
Energy

7.4.3.
Bluetooth SHOULD MUST SHOULD SHOULD SHOULD

7.4.5.

Page 6 of 88

http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_WATCH
http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_CAR

Cellular radio Minimum
Network
Capability

SHOULD

USB
peripheral/host
mode

7.7. USB SHOULD SHOULD SHOULD

Output
Speaker
and/or Audio
output ports

7.8.2. Audio
Output MUST MUST MUST MUST

3. Software

3.1. Managed API Compatibility

The managed Dalvik bytecode execution environment is the primary vehicle for Android applications.
The Android application programming interface (API) is the set of Android platform interfaces exposed
to applications running in the managed runtime environment. Device implementations MUST provide
complete implementations, including all documented behaviors, of any documented API exposed by
the Android SDK or any API decorated with the â€œ@SystemApiâ€ marker in the upstream Android
source code.
Device implementations MUST support/preserve all classes, methods, and associated elements
marked by the TestApi annotation (@TestApi).
Device implementations MUST NOT omit any managed APIs, alter API interfaces or signatures,
deviate from the documented behavior, or include no-ops, except where specifically allowed by this
Compatibility Definition.
This Compatibility Definition permits some types of hardware for which Android includes APIs to be
omitted by device implementations. In such cases, the APIs MUST still be present and behave in a
reasonable way. See section 7 for specific requirements for this scenario.

3.1.1. Android Extensions

Android includes the support of extending the managed APIs while keeping the same API level
version. Android device implementations MUST preload the AOSP implementation of both the shared
library ExtShared and services ExtServices with versions higher than or equal to the minimum versions
allowed per each API level. For example, Android 7.0 device implementations, running API level 24
MUST include at least version 1.

3.2. Soft API Compatibility

In addition to the managed APIs from section 3.1, Android also includes a significant runtime-only
â€œsoftâ€ API, in the form of such things as intents, permissions, and similar aspects of Android
applications that cannot be enforced at application compile time.

3.2.1. Permissions

Device implementers MUST support and enforce all permission constants as documented by the
Permission reference page. Note that section 9 lists additional requirements related to the Android
security model.

3.2.2. Build Parameters

Page 7 of 88

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/android/Manifest.permission.html

The Android APIs include a number of constants on the android.os.Build class that are intended to
describe the current device. To provide consistent, meaningful values across device implementations,
the table below includes additional restrictions on the formats of these values to which device
implementations MUST conform.

Parameter Details

VERSION.RELEASE
The version of the currently-executing Android system, in human-
readable format. This field MUST have one of the string values
defined in 7.1.

VERSION.SDK
The version of the currently-executing Android system, in a format
accessible to third-party application code. For Android 7.1, this field
MUST have the integer value 7.1_INT.

VERSION.SDK_INT
The version of the currently-executing Android system, in a format
accessible to third-party application code. For Android 7.1, this field
MUST have the integer value 7.1_INT.

VERSION.INCREMENTAL

A value chosen by the device implementer designating the specific
build of the currently-executing Android system, in human-readable
format. This value MUST NOT be reused for different builds made
available to end users. A typical use of this field is to indicate which
build number or source-control change identifier was used to generate
the build. There are no requirements on the specific format of this
field, except that it MUST NOT be null or the empty string ("").

BOARD

A value chosen by the device implementer identifying the specific
internal hardware used by the device, in human-readable format. A
possible use of this field is to indicate the specific revision of the board
powering the device. The value of this field MUST be encodable as 7-
bit ASCII and match the regular expression â€œ^[a-zA-Z0-9_-]+$â€ .

BRAND

A value reflecting the brand name associated with the device as
known to the end users. MUST be in human-readable format and
SHOULD represent the manufacturer of the device or the company
brand under which the device is marketed. The value of this field
MUST be encodable as 7-bit ASCII and match the regular expression
â€œ^[a-zA-Z0-9_-]+$â€ .

SUPPORTED_ABIS The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native API Compatibility.

SUPPORTED_32_BIT_ABIS The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native API Compatibility.

SUPPORTED_64_BIT_ABIS The name of the second instruction set (CPU type + ABI convention)
of native code. See section 3.3. Native API Compatibility.

CPU_ABI The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native API Compatibility.

CPU_ABI2 The name of the second instruction set (CPU type + ABI convention)
of native code. See section 3.3. Native API Compatibility.

DEVICE

A value chosen by the device implementer containing the
development name or code name identifying the configuration of the
hardware features and industrial design of the device. The value of
this field MUST be encodable as 7-bit ASCII and match the regular
expression â€œ^[a-zA-Z0-9_-]+$â€ . This device name MUST NOT

Page 8 of 88

http://developer.android.com/reference/android/os/Build.html
http://source.android.com/compatibility/7.1/versions.html

change during the lifetime of the product.

FINGERPRINT

A string that uniquely identifies this build. It SHOULD be reasonably
human-readable. It MUST follow this template:
$(BRAND)/$(PRODUCT)/

 $(DEVICE):$(VERSION.RELEASE)/$(ID)/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)

For example:
acme/myproduct/

 mydevice:7.1/LMYXX/3359:userdebug/test-keys

The fingerprint MUST NOT include whitespace characters. If other
fields included in the template above have whitespace characters,
they MUST be replaced in the build fingerprint with another character,
such as the underscore ("_") character. The value of this field MUST
be encodable as 7-bit ASCII.

HARDWARE

The name of the hardware (from the kernel command line or /proc). It
SHOULD be reasonably human-readable. The value of this field
MUST be encodable as 7-bit ASCII and match the regular expression
â€œ^[a-zA-Z0-9_-]+$â€ .

HOST

A string that uniquely identifies the host the build was built on, in
human-readable format. There are no requirements on the specific
format of this field, except that it MUST NOT be null or the empty
string ("").

ID

An identifier chosen by the device implementer to refer to a specific
release, in human-readable format. This field can be the same as
android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software
builds. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression â€œ^[a-zA-Z0-9._-]+$â€ .

MANUFACTURER
The trade name of the Original Equipment Manufacturer (OEM) of the
product. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string ("").

MODEL

A value chosen by the device implementer containing the name of the
device as known to the end user. This SHOULD be the same name
under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it
MUST NOT be null or the empty string ("").

PRODUCT

A value chosen by the device implementer containing the
development name or code name of the specific product (SKU) that
MUST be unique within the same brand. MUST be human-readable,
but is not necessarily intended for view by end users. The value of this
field MUST be encodable as 7-bit ASCII and match the regular
expression â€œ^[a-zA-Z0-9_-]+$â€ . This product name MUST NOT
change during the lifetime of the product.

SERIAL

A hardware serial number, which MUST be available and unique
across devices with the same MODEL and MANUFACTURER. The
value of this field MUST be encodable as 7-bit ASCII and match the
regular expression â€œ^([a-zA-Z0-9]{6,20})$â€ .

TAGS

A comma-separated list of tags chosen by the device implementer
that further distinguishes the build. This field MUST have one of the
values corresponding to the three typical Android platform signing

Page 9 of 88

configurations: release-keys, dev-keys, test-keys.
TIME A value representing the timestamp of when the build occurred.

TYPE

A value chosen by the device implementer specifying the runtime
configuration of the build. This field MUST have one of the values
corresponding to the three typical Android runtime configurations:
user, userdebug, or eng.

USER
A name or user ID of the user (or automated user) that generated the
build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string ("").

SECURITY_PATCH

A value indicating the security patch level of a build. It MUST signify
that the build includes all security patches issued up through the
designated Android Public Security Bulletin. It MUST be in the format
[YYYY-MM-DD], matching one of the Android Security Patch Level
strings of the Public Security Bulletins, for example "2015-11-01".

BASE_OS

A value representing the FINGERPRINT parameter of the build that is
otherwise identical to this build except for the patches provided in the
Android Public Security Bulletin. It MUST report the correct value and
if such a build does not exist, report an empty string ("").

3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents

Android intents allow application components to request functionality from other Android components.
The Android upstream project includes a list of applications considered core Android applications,
which implements several intent patterns to perform common actions. The core Android applications
are:

Desk Clock
Browser
Calendar
Contacts
Gallery
GlobalSearch
Launcher
Music
Settings

Device implementations MUST include the core Android applications as appropriate or a component
implementing the same intent patterns defined by all the Activity or Service components of these core
Android applications exposed to other applications, implicitly or explicitly, through the android:exported
attribute.

3.2.3.2. Intent Resolution

As Android is an extensible platform, device implementations MUST allow each intent pattern
referenced in section 3.2.3.1 to be overridden by third-party applications. The upstream Android open
source implementation allows this by default; device implementers MUST NOT attach special
privileges to system applications' use of these intent patterns, or prevent third-party applications from

Page 10 of 88

file:///usr/local/google/home/gdimino/external/master/docs/source.android.com/src/compatibility/source.android.com/security/bulletin

binding to and assuming control of these patterns. This prohibition specifically includes but is not
limited to disabling the â€œChooserâ€ user interface that allows the user to select between multiple
applications that all handle the same intent pattern.
Device implementations MUST provide a user interface for users to modify the default activity for
intents.
However, device implementations MAY provide default activities for specific URI patterns (e.g.
http://play.google.com) when the default activity provides a more specific attribute for the data URI.
For example, an intent filter pattern specifying the data URI â€œhttp://www.android.comâ€ is more
specific than the browser's core intent pattern for â€œhttp://â€ .
Android also includes a mechanism for third-party apps to declare an authoritative default app linking
behavior for certain types of web URI intents. When such authoritative declarations are defined in an
app's intent filter patterns, device implementations:

MUST attempt to validate any intent filters by performing the validation steps defined in the
Digital Asset Links specification as implemented by the Package Manager in the upstream
Android Open Source Project.
MUST attempt validation of the intent filters during the installation of the application and set
all successfully validated UIR intent filters as default app handlers for their UIRs.
MAY set specific URI intent filters as default app handlers for their URIs, if they are
successfully verified but other candidate URI filters fail verification. If a device
implementation does this, it MUST provide the user appropriate per-URI pattern overrides
in the settings menu.
MUST provide the user with per-app App Links controls in Settings as follows:

The user MUST be able to override holistically the default app links behavior for
an app to be: always open, always ask, or never open, which must apply to all
candidate URI intent filters equally.
The user MUST be able to see a list of the candidate URI intent filters.
The device implementation MAY provide the user with the ability to override
specific candidate URI intent filters that were successfully verified, on a per-
intent filter basis.
The device implementation MUST provide users with the ability to view and
override specific candidate URI intent filters if the device implementation lets
some candidate URI intent filters succeed verification while some others can
fail.

3.2.3.3. Intent Namespaces

Device implementations MUST NOT include any Android component that honors any new intent or
broadcast intent patterns using an ACTION, CATEGORY, or other key string in the android. or
com.android. namespace. Device implementers MUST NOT include any Android components that
honor any new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key string
in a package space belonging to another organization. Device implementers MUST NOT alter or
extend any of the intent patterns used by the core apps listed in section 3.2.3.1. Device
implementations MAY include intent patterns using namespaces clearly and obviously associated with
their own organization. This prohibition is analogous to that specified for Java language classes in
section 3.6.

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain intents to notify them of changes in
the hardware or software environment. Android-compatible devices MUST broadcast the public

Page 11 of 88

https://developer.android.com/training/app-links
https://developers.google.com/digital-asset-links

broadcast intents in response to appropriate system events. Broadcast intents are described in the
SDK documentation.

3.2.3.5. Default App Settings

Android includes settings that provide users an easy way to select their default applications, for
example for Home screen or SMS. Where it makes sense, device implementations MUST provide a
similar settings menu and be compatible with the intent filter pattern and API methods described in the
SDK documentation as below.
Device implementations:

MUST honor the android.settings.HOME_SETTINGS intent to show a default app settings
menu for Home Screen, if the device implementation reports
android.software.home_screen.
MUST provide a settings menu that will call the
android.provider.Telephony.ACTION_CHANGE_DEFAULT intent to show a dialog to
change the default SMS application, if the device implementation reports
android.hardware.telephony.
MUST honor the android.settings.NFC_PAYMENT_SETTINGS intent to show a default
app settings menu for Tap and Pay, if the device implementation reports
android.hardware.nfc.hce.
MUST honor the android.telecom.action.CHANGE_DEFAULT_DIALER intent to show a
dialog to allow the user to change the default Phone application, if the device
implementation reports android.hardware.telephony.
MUST honor the android.settings.ACTION_VOICE_INPUT_SETTINGS intent when the
device supports the VoiceInteractionService and show a default app settings menu for
voice input and assist.

3.3. Native API Compatibility

Native code compatibility is challenging. For this reason, device implementers are STRONGLY
RECOMMENDED to use the implementations of the libraries listed below from the upstream Android
Open Source Project.

3.3.1. Application Binary Interfaces

Managed Dalvik bytecode can call into native code provided in the application.apk file as an ELF.so
file compiled for the appropriate device hardware architecture. As native code is highly dependent on
the underlying processor technology, Android defines a number of Application Binary Interfaces (ABIs)
in the Android NDK. Device implementations MUST be compatible with one or more defined ABIs, and
MUST implement compatibility with the Android NDK, as below.
If a device implementation includes support for an Android ABI, it:

MUST include support for code running in the managed environment to call into native
code, using the standard Java Native Interface (JNI) semantics.
MUST be source-compatible (i.e. header compatible) and binary-compatible (for the ABI)
with each required library in the list below.
MUST support the equivalent 32-bit ABI if any 64-bit ABI is supported.
MUST accurately report the native Application Binary Interface (ABI) supported by the
device, via the android.os.Build.SUPPORTED_ABIS,
android.os.Build.SUPPORTED_32_BIT_ABIS, and
android.os.Build.SUPPORTED_64_BIT_ABIS parameters, each a comma separated list of

Page 12 of 88

http://developer.android.com/reference/android/provider/Settings.html#ACTION_HOME_SETTINGS
http://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html
http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFC_PAYMENT_SETTINGS
https://developer.android.com/reference/android/telecom/TelecomManager.html#ACTION_CHANGE_DEFAULT_DIALER
https://developer.android.com/reference/android/provider/Settings.html#ACTION_VOICE_INPUT_SETTINGS

ABIs ordered from the most to the least preferred one.
MUST report, via the above parameters, only those ABIs documented and described in the
latest version of the Android NDK ABI Management documentation, and MUST include
support for the Advanced SIMD (a.k.a. NEON) extension.
SHOULD be built using the source code and header files available in the upstream Android
Open Source Project

Note that future releases of the Android NDK may introduce support for additional ABIs. If a device
implementation is not compatible with an existing predefined ABI, it MUST NOT report support for any
ABIs at all.
The following native code APIs MUST be available to apps that include native code:

libandroid.so (native Android activity support)
libc (C library)
libcamera2ndk.so
libdl (dynamic linker)
libEGL.so (native OpenGL surface management)
libGLESv1_CM.so (OpenGL ES 1.x)
libGLESv2.so (OpenGL ES 2.0)
libGLESv3.so (OpenGL ES 3.x)
libicui18n.so
libicuuc.so
libjnigraphics.so
liblog (Android logging)
libmediandk.so (native media APIs support)
libm (math library)
libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
libOpenSLES.so (OpenSL ES 1.0.1 audio support)
libRS.so
libstdc++ (Minimal support for C++)
libvulkan.so (Vulkan)
libz (Zlib compression)
JNI interface
Support for OpenGL, as described below

For the native libraries listed above, the device implementation MUST NOT add or remove the public
functions.
Native libraries not listed above but implemented and provided in AOSP as system libraries are
reserved and MUST NOT be exposed to third-party apps targeting API level 24 or higher.
Device implementations MAY add non-AOSP libraries and expose them directly as an API to third-
party apps but the additional libraries SHOULD be in /vendor/lib or /vendor/lib64 and MUST be listed in
/vendor/etc/public.libraries.txt.
Note that device implementations MUST include libGLESv3.so and in turn, MUST export all the
OpenGL ES 3.1 and Android Extension Pack function symbols as defined in the NDK release android-
24. Although all the symbols must be present, only the corresponding functions for OpenGL ES
versions and extensions actually supported by the device must be fully implemented.

3.3.1.1. Graphic Libraries

Page 13 of 88

https://developer.android.com/ndk/guides/abis.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/Beijfcja.html
http://developer.android.com/guide/topics/graphics/opengl.html#aep

Vulkan is a low-overhead, cross-platform API for high-performance 3D graphics. Device
implementations, even if not including support of the Vulkan APIs, MUST satisfy the following
requirements:

It MUST always provide a native library named libvulkan.so which exports function symbols
for the core Vulkan 1.0 API as well as the VK_KHR_surface, VK_KHR_android_surface, and
VK_KHR_swapchain extensions.

Device implementations, if including support of the Vulkan APIs:

MUST report, one or more VkPhysicalDevices through the vkEnumeratePhysicalDevices call.
Each enumerated VkPhysicalDevices MUST fully implement the Vulkan 1.0 API.
MUST report the correct PackageManager#FEATURE_VULKAN_HARDWARE_LEVEL and
PackageManager#FEATURE_VULKAN_HARDWARE_VERSION feature flags.
MUST enumerate layers, contained in native libraries named libVkLayer*.so in the
application packageâ€™s native library directory, through the
vkEnumerateInstanceLayerProperties and vkEnumerateDeviceLayerProperties functions in
libvulkan.so
MUST NOT enumerate layers provided by libraries outside of the application package, or
provide other ways of tracing or intercepting the Vulkan API, unless the application has the
android:debuggable=â€ trueâ€ attribute.

Device implementations, if not including support of the Vulkan APIs:

MUST report 0 VkPhysicalDevices through the vkEnumeratePhysicalDevices call.
MUST NOT declare any of the Vulkan feature flags
PackageManager#FEATURE_VULKAN_HARDWARE_LEVEL and
PackageManager#FEATURE_VULKAN_HARDWARE_VERSION.

3.3.2. 32-bit ARM Native Code Compatibility

The ARMv8 architecture deprecates several CPU operations, including some operations used in
existing native code. On 64-bit ARM devices, the following deprecated operations MUST remain
available to 32-bit native ARM code, either through native CPU support or through software emulation:

SWP and SWPB instructions
SETEND instruction
CP15ISB, CP15DSB, and CP15DMB barrier operations

Legacy versions of the Android NDK used /proc/cpuinfo to discover CPU features from 32-bit ARM
native code. For compatibility with applications built using this NDK, devices MUST include the
following lines in /proc/cpuinfo when it is read by 32-bit ARM applications:

"Features: ", followed by a list of any optional ARMv7 CPU features supported by the
device.
"CPU architecture: ", followed by an integer describing the device's highest supported ARM
architecture (e.g., "8" for ARMv8 devices).

These requirements only apply when /proc/cpuinfo is read by 32-bit ARM applications. Devices
SHOULD not alter /proc/cpuinfo when read by 64-bit ARM or non-ARM applications.

3.4. Web Compatibility

Page 14 of 88

https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/xhtml/vkspec.html
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_VULKAN_HARDWARE_LEVEL
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_VULKAN_HARDWARE_VERSION
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_VULKAN_HARDWARE_LEVEL
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_VULKAN_HARDWARE_VERSION

3.4.1. WebView Compatibility

Android Watch devices MAY, but all other device implementations MUST provide a complete
implementation of the android.webkit.Webview API.

The platform feature android.software.webview MUST be reported on any device that provides a
complete implementation of the android.webkit.WebView API, and MUST NOT be reported on devices
without a complete implementation of the API. The Android Open Source implementation uses code
from the Chromium Project to implement the android.webkit.WebView. Because it is not feasible to
develop a comprehensive test suite for a web rendering system, device implementers MUST use the
specific upstream build of Chromium in the WebView implementation. Specifically:

Device android.webkit.WebView implementations MUST be based on the Chromium build
from the upstream Android Open Source Project for Android 7.1. This build includes a
specific set of functionality and security fixes for the WebView.

The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; Android $(VERSION); $(MODEL) Build/$(BUILD); wv)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 $(CHROMIUM_VER) Mobile
Safari/537.36

The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE.
The value of the $(MODEL) string MUST be the same as the value for
android.os.Build.MODEL.
The value of the $(BUILD) string MUST be the same as the value for
android.os.Build.ID.
The value of the $(CHROMIUM_VER) string MUST be the version of
Chromium in the upstream Android Open Source Project.
Device implementations MAY omit Mobile in the user agent string.

The WebView component SHOULD include support for as many HTML5 features as possible and if it
supports the feature SHOULD conform to the HTML5 specification.

3.4.2. Browser Compatibility

Android Television, Watch, and Android Automotive implementations MAY omit a browser
application, but MUST support the public intent patterns as described in section 3.2.3.1. All
other types of device implementations MUST include a standalone Browser application for
general user web browsing.

The standalone Browser MAY be based on a browser technology other than WebKit. However, even if
an alternate Browser application is used, the android.webkit.WebView component provided to third-
party applications MUST be based on WebKit, as described in section 3.4.1.
Implementations MAY ship a custom user agent string in the standalone Browser application.
The standalone Browser application (whether based on the upstream WebKit Browser application or a
third-party replacement) SHOULD include support for as much of HTML5 as possible. Minimally,
device implementations MUST support each of these APIs associated with HTML5:

application cache/offline operation
<video> tag
geolocation

Additionally, device implementations MUST support the HTML5/W3C webstorage API and SHOULD
support the HTML5/W3C IndexedDB API. Note that as the web development standards bodies are

Page 15 of 88

http://developer.android.com/reference/android/webkit/WebView.html
http://www.chromium.org/
http://html.spec.whatwg.org/multipage/
http://html.spec.whatwg.org/multipage/
http://www.w3.org/html/wg/drafts/html/master/browsers.html#offline
http://www.w3.org/html/wg/drafts/html/master/semantics.html#video
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/IndexedDB/

transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a required
component in a future version of Android.

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the
preferred implementation of the upstream Android Open Source Project. Some specific areas of
compatibility are:

Devices MUST NOT change the behavior or semantics of a standard intent.
Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of system
component (such as Service, Activity, ContentProvider, etc.).
Devices MUST NOT change the semantics of a standard permission.

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of
the platform for behavioral compatibility, but not all. It is the responsibility of the implementer to ensure
behavioral compatibility with the Android Open Source Project. For this reason, device implementers
SHOULD use the source code available via the Android Open Source Project where possible, rather
than re-implement significant parts of the system.

3.6. API Namespaces

Android follows the package and class namespace conventions defined by the Java programming
language. To ensure compatibility with third-party applications, device implementers MUST NOT make
any prohibited modifications (see below) to these package namespaces:

java.*
javax.*
sun.*
android.*
com.android.*

Prohibited modifications include:

Device implementations MUST NOT modify the publicly exposed APIs on the Android
platform by changing any method or class signatures, or by removing classes or class
fields.
Device implementers MAY modify the underlying implementation of the APIs, but such
modifications MUST NOT impact the stated behavior and Java-language signature of any
publicly exposed APIs.
Device implementers MUST NOT add any publicly exposed elements (such as classes or
interfaces, or fields or methods to existing classes or interfaces) to the APIs above.

A â€œpublicly exposed elementâ€ is any construct that is not decorated with theâ€œ@hideâ€ marker
as used in the upstream Android source code. In other words, device implementers MUST NOT
expose new APIs or alter existing APIs in the namespaces noted above. Device implementers MAY
make internal-only modifications, but those modifications MUST NOT be advertised or otherwise
exposed to developers.
Device implementers MAY add custom APIs, but any such APIs MUST NOT be in a namespace
owned by or referring to another organization. For instance, device implementers MUST NOT add
APIs to the com.google.* or similar namespace: only Google may do so. Similarly, Google MUST NOT
add APIs to other companies' namespaces. Additionally, if a device implementation includes custom

Page 16 of 88

http://source.android.com/

APIs outside the standard Android namespace, those APIs MUST be packaged in an Android shared
library so that only apps that explicitly use them (via the <uses-library> mechanism) are affected by
the increased memory usage of such APIs.
If a device implementer proposes to improve one of the package namespaces above (such as by
adding useful new functionality to an existing API, or adding a new API), the implementer SHOULD
visit source.android.com and begin the process for contributing changes and code, according to the
information on that site.
Note that the restrictions above correspond to standard conventions for naming APIs in the Java
programming language; this section simply aims to reinforce those conventions and make them
binding through inclusion in this Compatibility Definition.

3.7. Runtime Compatibility

Device implementations MUST support the full Dalvik Executable (DEX) format and Dalvik bytecode
specification and semantics. Device implementers SHOULD use ART, the reference upstream
implementation of the Dalvik Executable Format, and the reference implementationâ€™s package
management system.
Device implementations MUST configure Dalvik runtimes to allocate memory in accordance with the
upstream Android platform, and as specified by the following table. (See section 7.1.1 for screen size
and screen density definitions.) Note that memory values specified below are considered minimum
values and device implementations MAY allocate more memory per application.

Screen Layout Screen Density Minimum Application Memory

Android Watch

120 dpi (ldpi)

32MB160 dpi (mdpi)

213 dpi (tvdpi)

240 dpi (hdpi)
36MB

280 dpi (280dpi)

320 dpi (xhdpi)
48MB

360 dpi (360dpi)

400 dpi (400dpi) 56MB

420 dpi (420dpi) 64MB

480 dpi (xxhdpi) 88MB

560 dpi (560dpi) 112MB

640 dpi (xxxhdpi) 154MB

small/normal

120 dpi (ldpi)
32MB

160 dpi (mdpi)

213 dpi (tvdpi)

48MB240 dpi (hdpi)

280 dpi (280dpi)

320 dpi (xhdpi)
80MB

360 dpi (360dpi)

400 dpi (400dpi) 96MB

Page 17 of 88

http://source.android.com/
https://android.googlesource.com/platform/dalvik/

420 dpi (420dpi) 112MB
480 dpi (xxhdpi) 128MB

560 dpi (560dpi) 192MB

640 dpi (xxxhdpi) 256MB

large

120 dpi (ldpi) 32MB

160 dpi (mdpi) 48MB

213 dpi (tvdpi)
80MB

240 dpi (hdpi)

280 dpi (280dpi) 96MB

320 dpi (xhdpi) 128MB

360 dpi (360dpi) 160MB

400 dpi (400dpi) 192MB

420 dpi (420dpi) 228MB

480 dpi (xxhdpi) 256MB

560 dpi (560dpi) 384MB

640 dpi (xxxhdpi) 512MB

xlarge

120 dpi (ldpi) 48MB

160 dpi (mdpi) 80MB

213 dpi (tvdpi)
96MB

240 dpi (hdpi)

280 dpi (280dpi) 144MB

320 dpi (xhdpi) 192MB

360 dpi (360dpi) 240MB

400 dpi (400dpi) 288MB

420 dpi (420dpi) 336MB

480 dpi (xxhdpi) 384MB

560 dpi (560dpi) 576MB

640 dpi (xxxhdpi) 768MB

3.8. User Interface Compatibility

3.8.1. Launcher (Home Screen)

Android includes a launcher application (home screen) and support for third-party applications to
replace the device launcher (home screen). Device implementations that allow third-party applications
to replace the device home screen MUST declare the platform feature android.software.home_screen.

3.8.2. Widgets

Widgets are optional for all Android device implementations, but SHOULD be supported on

Page 18 of 88

Android Handheld devices.

Android defines a component type and corresponding API and lifecycle that allows applications to
expose an â€œAppWidgetâ€ to the end user, a feature that is STRONGLY RECOMMENDED to be
supported on Handheld Device implementations. Device implementations that support embedding
widgets on the home screen MUST meet the following requirements and declare support for platform
feature android.software.app_widgets.

Device launchers MUST include built-in support for AppWidgets and expose user interface
affordances to add, configure, view, and remove AppWidgets directly within the Launcher.
Device implementations MUST be capable of rendering widgets that are 4 x 4 in the
standard grid size. See the App Widget Design Guidelines in the Android SDK
documentation for details.
Device implementations that include support for lock screen MAY support application
widgets on the lock screen.
SHOULD trigger the fast-switch action between the two most recently used apps, when the
recents function key is tapped twice.
SHOULD trigger the split-screen multiwindow-mode, if supported, when the recents
functions key is long pressed.

3.8.3. Notifications

Android includes APIs that allow developers to notify users of notable events using hardware and
software features of the device.
Some APIs allow applications to perform notifications or attract attention using hardwareâ€”specifically
sound, vibration, and light. Device implementations MUST support notifications that use hardware
features, as described in the SDK documentation, and to the extent possible with the device
implementation hardware. For instance, if a device implementation includes a vibrator, it MUST
correctly implement the vibration APIs. If a device implementation lacks hardware, the corresponding
APIs MUST be implemented as no-ops. This behavior is further detailed in section 7.
Additionally, the implementation MUST correctly render all resources (icons, animation files etc.)
provided for in the APIs, or in the Status/System Bar icon style guide, which in the case of an Android
Television device includes the possibility to not display the notifications. Device implementers MAY
provide an alternative user experience for notifications than that provided by the reference Android
Open Source implementation; however, such alternative notification systems MUST support existing
notification resources, as above.

Android Automotive implementations MAY manage the visibility and timing of notifications to
mitigate driver distraction, but MUST display notifications that use CarExtender when
requested by applications.

Android includes support for various notifications, such as:

Rich notifications. Interactive Views for ongoing notifications.
Heads-up notifications. Interactive Views users can act on or dismiss without leaving the
current app.
Lock screen notifications. Notifications shown over a lock screen with granular control
on visibility.

Android device implementations, when such notifications are made visible, MUST properly execute
Rich and Heads-up notifications and include the title/name, icon, text as documented in the Android
APIs.
Android includes Notification Listener Service APIs that allow apps (once explicitly enabled by the
user) to receive a copy of all notifications as they are posted or updated. Device implementations

Page 19 of 88

http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/design/style/iconography.html
https://developer.android.com/reference/android/app/Notification.CarExtender.html
https://developer.android.com/design/patterns/notifications.html

MUST correctly and promptly send notifications in their entirety to all such installed and user-enabled
listener services, including any and all metadata attached to the Notification object.
Handheld device implementations MUST support the behaviors of updating, removing, replying to,
and bundling notifications as described in this section.
Also, handheld device implementations MUST provide:

The ability to control notifications directly in the notification shade.
The visual affordance to trigger the control panel in the notification shade.
The ability to BLOCK, MUTE and RESET notification preference from a package, both in
the inline control panel as well as in the settings app.

All 6 direct subclasses of the Notification.Style class MUST be supported as described in the SDK
documents.
Device implementations that support the DND (Do not Disturb) feature MUST meet the following
requirements:

MUST implement an activity where the user can grant or deny the app access to DND
policy configurations in response to the intent
ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS.
MUST display Automatic DND rules created by applications alongside the user-created
and pre-defined rules.
MUST honor the suppressedVisualEffects values passed along the NotificationManager.Policy
and if an app has set any of the SUPPRESSED_EFFECT_SCREEN_OFF or
SUPPRESSED_EFFECT_SCREEN_ON flags, it SHOULD indicate to the user that the
visual effects are suppressed in the DND settings menu.

3.8.4. Search

Android includes APIs that allow developers to incorporate search into their applications and expose
their applicationâ€™s data into the global system search. Generally speaking, this functionality
consists of a single, system-wide user interface that allows users to enter queries, displays
suggestions as users type, and displays results. The Android APIs allow developers to reuse this
interface to provide search within their own apps and allow developers to supply results to the
common global search user interface.
Android device implementations SHOULD include global search, a single, shared, system-wide
search user interface capable of real-time suggestions in response to user input. Device
implementations SHOULD implement the APIs that allow developers to reuse this user interface to
provide search within their own applications. Device implementations that implement the global search
interface MUST implement the APIs that allow third-party applications to add suggestions to the
search box when it is run in global search mode. If no third-party applications are installed that make
use of this functionality, the default behavior SHOULD be to display web search engine results and
suggestions.
Android device implementations SHOULD, and Android Automotive implementations MUST,
implement an assistant on the device to handle the Assist action.
Android also includes the Assist APIs to allow applications to elect how much information of the
current context is shared with the assistant on the device. Device implementations supporting the
Assist action MUST indicate clearly to the end user when the context is shared by displaying a white
light around the edges of the screen. To ensure clear visibility to the end user, the indication MUST
meet or exceed the duration and brightness of the Android Open Source Project implementation.
This indication MAY be disabled by default for preinstalled apps using the Assist and
VoiceInteractionService API, if all following requirements are met:

Page 20 of 88

https://developer.android.com/guide/topics/ui/notifiers/notifications.html#Managing
https://developer.android.com/reference/android/app/Notification.Style.html
https://developer.android.com/reference/android/provider/Settings.html#ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS
https://developer.android.com/reference/android/app/NotificationManager.html#addAutomaticZenRule%28android.app.AutomaticZenRule%29
https://developer.android.com/reference/android/app/NotificationManager.Policy.html#suppressedVisualEffects
https://developer.android.com/reference/android/app/NotificationManager.Policy.html#NotificationManager.Policy%28int, int, int, int%29
http://developer.android.com/reference/android/app/SearchManager.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://developer.android.com/reference/android/app/assist/package-summary.html

The preinstalled app MUST request the context to be shared only when the user invoked
the app by one of the following means, and the app is running in the foreground:

hotword invocation
input of the ASSIST navigation key/button/gesture

The device implementation MUST provide an affordance to enable the indication, less than
two navigations away from (the default voice input and assistant app settings menu)
section 3.2.3.5.

3.8.5. Toasts

Applications can use the â€œToastâ€ API to display short non-modal strings to the end user that
disappear after a brief period of time. Device implementations MUST display Toasts from applications
to end users in some high-visibility manner.

3.8.6. Themes

Android provides â€œthemesâ€ as a mechanism for applications to apply styles across an entire
Activity or application.
Android includes a â€œHoloâ€ theme family as a set of defined styles for application developers to
use if they want to match the Holo theme look and feel as defined by the Android SDK. Device
implementations MUST NOT alter any of the Holo theme attributes exposed to applications.
Android includes a â€œMaterialâ€ theme family as a set of defined styles for application developers to
use if they want to match the design themeâ€™s look and feel across the wide variety of different
Android device types. Device implementations MUST support the â€œMaterialâ€ theme family and
MUST NOT alter any of the Material theme attributes or their assets exposed to applications.
Android also includes a â€œDevice Defaultâ€ theme family as a set of defined styles for application
developers to use if they want to match the look and feel of the device theme as defined by the device
implementer. Device implementations MAY modify the Device Default theme attributes exposed to
applications.
Android supports a variant theme with translucent system bars, which allows application developers to
fill the area behind the status and navigation bar with their app content. To enable a consistent
developer experience in this configuration, it is important the status bar icon style is maintained across
different device implementations. Therefore, Android device implementations MUST use white for
system status icons (such as signal strength and battery level) and notifications issued by the system,
unless the icon is indicating a problematic status or an app requests a light status bar using the
SYSTEM_UI_FLAG_LIGHT_STATUS_BAR flag. When an app requests a light status bar, Android
device implementations MUST change the color of the system status icons to black (for details, refer
to R.style).

3.8.7. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows applications to
expose one or more â€œLive Wallpapersâ€ to the end user. Live wallpapers are animations, patterns,
or similar images with limited input capabilities that display as a wallpaper, behind other applications.
Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with
no limitations on functionality, at a reasonable frame rate with no adverse effects on other
applications. If limitations in the hardware cause wallpapers and/or applications to crash, malfunction,
consume excessive CPU or battery power, or run at unacceptably low frame rates, the hardware is
considered incapable of running live wallpaper. As an example, some live wallpapers may use an
OpenGL 2.0 or 3.x context to render their content. Live wallpaper will not run reliably on hardware that
does not support multiple OpenGL contexts because the live wallpaper use of an OpenGL context

Page 21 of 88

http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html#Theme_Material
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/service/wallpaper/WallpaperService.html

may conflict with other applications that also use an OpenGL context.
Device implementations capable of running live wallpapers reliably as described above SHOULD
implement live wallpapers, and when implemented MUST report the platform feature flag
android.software.live_wallpaper.

3.8.8. Activity Switching

As the Recent function navigation key is OPTIONAL, the requirement to implement the
overview screen is OPTIONAL for Android Watch and Android Automotive implementations,
and RECOMMENDED for Android Television devices. There SHOULD still be a method to
switch between activities on Android Automotive implementations.

The upstream Android source code includes the overview screen, a system-level user interface for
task switching and displaying recently accessed activities and tasks using a thumbnail image of the
applicationâ€™s graphical state at the moment the user last left the application. Device
implementations including the recents function navigation key as detailed in section 7.2.3 MAY alter
the interface but MUST meet the following requirements:

MUST support at least up to 20 displayed activities.
SHOULD display the titles of at least 4 activities at a time.
MUST implement the screen pinning behavior and provide the user with a settings menu to
toggle the feature.
SHOULD display highlight color, icon, screen title in recents.
SHOULD display a closing affordance ("x") but MAY delay this until user interacts with
screens.
SHOULD implement a shortcut to switch easily to the previous activity
MAY display affiliated recents as a group that moves together.

Device implementations are STRONGLY RECOMMENDED to use the upstream Android user
interface (or a similar thumbnail-based interface) for the overview screen.

3.8.9. Input Management

Android includes support for Input Management and support for third-party input method editors.
Device implementations that allow users to use third-party input methods on the device MUST declare
the platform feature android.software.input_methods and support IME APIs as defined in the Android
SDK documentation.
Device implementations that declare the android.software.input_methods feature MUST provide a
user-accessible mechanism to add and configure third-party input methods. Device implementations
MUST display the settings interface in response to the android.settings.INPUT_METHOD_SETTINGS
intent.

3.8.10. Lock Screen Media Control

The Remote Control Client API is deprecated from Android 5.0 in favor of the Media Notification
Template that allows media applications to integrate with playback controls that are displayed on the
lock screen. Device implementations that support a lock screen, unless an Android Automotive or
Watch implementation, MUST display the Lock screen Notifications including the Media Notification
Template.

3.8.11. Screen savers (previously Dreams)

Page 22 of 88

http://developer.android.com/guide/components/recents.html
http://developer.android.com/about/versions/android-5.0.html#ScreenPinning
http://developer.android.com/guide/topics/text/creating-input-method.html
http://developer.android.com/reference/android/app/Notification.MediaStyle.html

Android includes support for interactivescreensavers, previously referred to as Dreams. Screen savers
allow users to interact with applications when a device connected to a power source is idle or docked
in a desk dock. Android Watch devices MAY implement screen savers, but other types of device
implementations SHOULD include support for screen savers and provide a settings option for users
toconfigure screen savers in response to the android.settings.DREAM_SETTINGS intent.

3.8.12. Location

When a device has a hardware sensor (e.g. GPS) that is capable of providing the location
coordinates, location modes MUST be displayed in the Location menu within Settings.

3.8.13. Unicode and Font

Android includes support for the emoji characters defined in Unicode 9.0. All device implementations
MUST be capable of rendering these emoji characters in color glyph and when Android device
implementations include an IME, it SHOULD provide an input method to the user for these emoji
characters.
Android handheld devices SHOULD support the skin tone and diverse family emojis as specified in the
Unicode Technical Report #51.
Android includes support for Roboto 2 font with different weightsâ€”sans-serif-thin, sans-serif-light,
sans-serif-medium, sans-serif-black, sans-serif-condensed, sans-serif-condensed-lightâ€”which
MUST all be included for the languages available on the device and full Unicode 7.0 coverage of
Latin, Greek, and Cyrillic, including the Latin Extended A, B, C, and D ranges, and all glyphs in the
currency symbols block of Unicode 7.0.

3.8.14. Multi-windows

A device implementation MAY choose not to implement any multi-window modes, but if it has the
capability to display multiple activities at the same time it MUST implement such multi-window mode(s)
in accordance with the application behaviors and APIs described in the Android SDK multi-window
mode support documentation and meet the following requirements:

Applications can indicate whether they are capable of operating in multi-window mode in
the AndroidManifest.xml file, either explicitly via the android:resizeableActivity attribute or
implicitly by having the targetSdkVersion > 24. Apps that explicitly set this attribute to false
in their manifest MUST not be launched in multi-window mode. Apps that don't set the
attribute in their manifest file (targetSdkVersion < 24) can be launched in multi-window
mode, but the system MUST provide warning that the app may not work as expected in
multi-window mode.
Device implementations MUST NOT offer split-screen or freeform mode if both the screen
height and width is less than 440 dp.
Device implementations with screen size xlarge SHOULD support freeform mode.
Android Television device implementations MUST support picture-in-picture (PIP) mode
multi-window and place the PIP multi-window in the top right corner when PIP is ON.
Device implementations with PIP mode multi-window support MUST allocate at least
240x135 dp for the PIP window.
If the PIP multi-window mode is supported the KeyEvent.KEYCODE_WINDOW key MUST
be used to control the PIP window; otherwise, the key MUST be available to the
foreground activity.

3.9. Device Administration

Page 23 of 88

http://developer.android.com/reference/android/service/dreams/DreamService.html
http://developer.android.com/reference/android/provider/Settings.Secure.html#LOCATION_MODE
http://www.unicode.org/versions/Unicode9.0.0/
http://unicode.org/reports/tr51
https://developer.android.com/preview/features/multi-window.html
https://developer.android.com/reference/android/R.attr.html#resizeableActivity
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_WINDOW

Android includes features that allow security-aware applications to perform device administration
functions at the system level, such as enforcing password policies or performing remote wipe, through
the Android Device Administration API]. Device implementations MUST provide an implementation of
the DevicePolicyManager class. Device implementations that supports a secure lock screen MUST
implement the full range of device administration policies defined in the Android SDK documentation
and report the platform feature android.software.device_admin.

3.9.1 Device Provisioning

3.9.1.1 Device owner provisioning

If a device implementation declares the android.software.device_admin feature then it MUST implement
the provisioning of the Device Owner app of a Device Policy Client (DPC) application as indicated
below:

When the device implementation has no user data configured yet, it:
MUST report true for
DevicePolicyManager.isProvisioningAllowed(ACTION_PROVISION_MANAGED_DEVICE).
MUST enroll the DPC application as the Device Owner app in response to the
intent action android.app.action.PROVISION_MANAGED_DEVICE.
MUST enroll the DPC application as the Device Owner app if the device
declares Near-Field Communications (NFC) support via the feature flag
android.hardware.nfc and receives an NFC message containing a record with
MIME type MIME_TYPE_PROVISIONING_NFC.

When the device implementation has user data, it:
MUST report false for the
DevicePolicyManager.isProvisioningAllowed(ACTION_PROVISION_MANAGED_DEVICE).
MUST not enroll any DPC application as the Device Owner App any more.

Device implementations MAY have a preinstalled application performing device administration
functions but this application MUST NOT be set as the Device Owner app without explicit consent or
action from the user or the administrator of the device.

3.9.1.2 Managed profile provisioning

If a device implementation declares the android.software.managed_users, it MUST be possible to
enroll a Device Policy Controller (DPC) application as the owner of a new Managed Profile.
The managed profile provisioning process (the flow initiated by
android.app.action.PROVISION_MANAGED_PROFILE) user experience MUST align with the AOSP
implementation.
Device implementations MUST provide the following user affordances within the Settings user
interface to indicate to the user when a particular system function has been disabled by the Device
Policy Controller (DPC):

A consistent icon or other user affordance (for example the upstream AOSP info icon) to
represent when a particular setting is restricted by a Device Admin.
A short explanation message, as provided by the Device Admin via the
setShortSupportMessage.
The DPC applicationâ€™s icon.

3.9.2 Managed Profile Support

Page 24 of 88

http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isDeviceOwnerApp(java.lang.String)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProvisioningAllowed(java.lang.String)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_DEVICE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#MIME_TYPE_PROVISIONING_NFC
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProvisioningAllowed(java.lang.String)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProfileOwnerApp(java.lang.String)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setShortSupportMessage%28android.content.ComponentName, java.lang.CharSequence%29

Managed profile capable devices are those devices that:

Declare android.software.device_admin (see section 3.9 Device Administration).
Are not low RAM devices (see section 7.6.1).
Allocate internal (non-removable) storage as shared storage (see section 7.6.2).

Managed profile capable devices MUST:

Declare the platform feature flag android.software.managed_users.
Support managed profiles via the android.app.admin.DevicePolicyManager APIs.
Allow one and only one managed profile to be created.
Use an icon badge (similar to the AOSP upstream work badge) to represent the managed
applications and widgets and other badged UI elements like Recents & Notifications.
Display a notification icon (similar to the AOSP upstream work badge) to indicate when
user is within a managed profile application.
Display a toast indicating that the user is in the managed profile if and when the device
wakes up (ACTION_USER_PRESENT) and the foreground application is within the
managed profile.
Where a managed profile exists, show a visual affordance in the Intent 'Chooser' to allow
the user to forward the intent from the managed profile to the primary user or vice versa, if
enabled by the Device Policy Controller.
Where a managed profile exists, expose the following user affordances for both the
primary user and the managed profile:

Separate accounting for battery, location, mobile data and storage usage for
the primary user and managed profile.
Independent management of VPN Applications installed within the primary user
or managed profile.
Independent management of applications installed within the primary user or
managed profile.
Independent management of accounts within the primary user or managed
profile.

Ensure the preinstalled dialer, contacts and messaging applications can search for and
look up caller information from the managed profile (if one exists) alongside those from the
primary profile, if the Device Policy Controller permits it. When contacts from the managed
profile are displayed in the preinstalled call log, in-call UI, in-progress and missed-call
notifications, contacts and messaging apps they SHOULD be badged with the same badge
used to indicate managed profile applications.
MUST ensure that it satisfies all the security requirements applicable for a device with
multiple users enabled (see section 9.5), even though the managed profile is not counted
as another user in addition to the primary user.
Support the ability to specify a separate lock screen meeting the following requirements to
grant access to apps running in a managed profile.

Device implementations MUST honor the
DevicePolicyManager.ACTION_SET_NEW_PASSWORD intent and show an
interface to configure a separate lock screen credential for the managed profile.
The lock screen credentials of the managed profile MUST use the same
credential storage and management mechanisms as the parent profile, as
documented on the Android Open Source Project Site
The DPC password policies MUST apply to only the managed profile's lock
screen credentials unless called upon the DevicePolicyManager instance
returned by getParentProfileInstance.

Page 25 of 88

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_SET_NEW_PASSWORD
http://source.android.com/security/authentication/index.html
https://developer.android.com/guide/topics/admin/device-admin.html#pwd
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#getParentProfileInstance%28android.content.ComponentName%29

3.10. Accessibility

Android provides an accessibility layer that helps users with disabilities to navigate their devices more
easily. In addition, Android provides platform APIs that enable accessibility service implementations to
receive callbacks for user and system events and generate alternate feedback mechanisms, such as
text-to-speech, haptic feedback, and trackball/d-pad navigation.
Device implementations include the following requirements:

Android Automotive implementations SHOULD provide an implementation of the Android
accessibility framework consistent with the default Android implementation.
Device implementations (Android Automotive excluded) MUST provide an implementation
of the Android accessibility framework consistent with the default Android implementation.
Device implementations (Android Automotive excluded) MUST support third-party
accessibility service implementations through the android.accessibilityservice APIs.
Device implementations (Android Automotive excluded) MUST generate
AccessibilityEvents and deliver these events to all registered AccessibilityService
implementations in a manner consistent with the default Android implementation

Device implementations (Android Automotive and Android Watch devices with no audio
output excluded), MUST provide a user-accessible mechanism to enable and disable
accessibility services, and MUST display this interface in response to the
android.provider.Settings.ACTION_ACCESSIBILITY_SETTINGS intent.

Android device implementations with audio output are STRONGLY RECOMMENDED to
provide implementations of accessibility services on the device comparable in or
exceeding functionality of the TalkBack** and Switch Access accessibility services
(https://github.com/google/talkback).
Android Watch devices with audio output SHOULD provide implementations of an
accessibility service on the device comparable in or exceeding functionality of the
TalkBack accessibility service (https://github.com/google/talkback).
Device implementations SHOULD provide a mechanism in the out-of-box setup flow for
users to enable relevant accessibility services, as well as options to adjust the font size,
display size and magnification gestures.

** For languages supported by Text-to-speech.
Also, note that if there is a preloaded accessibility service, it MUST be a Direct Boot aware
{directBootAware} app if the device has encrypted storage using File Based Encryption (FBE).

3.11. Text-to-Speech

Android includes APIs that allow applications to make use of text-to-speech (TTS) services and allows
service providers to provide implementations of TTS services. Device implementations reporting the
feature android.hardware.audio.output MUST meet these requirements related to the Android TTS
framework.
Android Automotive implementations:

MUST support the Android TTS framework APIs.
MAY support installation of third-party TTS engines. If supported, partners MUST provide a
user-accessible interface that allows the user to select a TTS engine for use at system
level.

All other device implementations:

Page 26 of 88

http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
http://developer.android.com/reference/android/view/accessibility/package-summary.html
http://developer.android.com/reference/android/speech/tts/package-summary.html

MUST support the Android TTS framework APIs and SHOULD include a TTS engine
supporting the languages available on the device. Note that the upstream Android open
source software includes a full-featured TTS engine implementation.
MUST support installation of third-party TTS engines.
MUST provide a user-accessible interface that allows users to select a TTS engine for use
at the system level.

3.12. TV Input Framework

The Android Television Input Framework (TIF) simplifies the delivery of live content to Android
Television devices. TIF provides a standard API to create input modules that control Android
Television devices. Android Television device implementations MUST support TV Input Framework.
Device implementations that support TIF MUST declare the platform feature android.software.live_tv.

3.12.1. TV App

Any device implementation that declares support for Live TV MUST have an installed TV application
(TV App). The Android Open Source Project provides an implementation of the TV App.
The TV App MUST provide facilities to install and use TV Channels and meet the following
requirements:

Device implementations MUST allow third-party TIF-based inputs (third-party inputs) to
be installed and managed.
Device implementations MAY provide visual separation between pre-installed TIF-based
inputs (installed inputs) and third-party inputs.
Device implementations MUST NOT display the third-party inputs more than a single
navigation action away from the TV App (i.e. expanding a list of third-party inputs from the
TV App).

3.12.1.1. Electronic Program Guide

Android Television device implementations MUST show an informational and interactive overlay,
which MUST include an electronic program guide (EPG) generated from the values in the
TvContract.Programs fields. The EPG MUST meet the following requirements:

The EPG MUST display information from all installed inputs and third-party inputs.
The EPG MAY provide visual separation between the installed inputs and third-party
inputs.
The EPG is STRONGLY RECOMMENDED to display installed inputs and third-party
inputs with equal prominence. The EPG MUST NOT display the third-party inputs more
than a single navigation action away from the installed inputs on the EPG.
On channel change, device implementations MUST display EPG data for the currently
playing program.

3.12.1.2. Navigation

The TV App MUST allow navigation for the following functions via the D-pad, Back, and Home keys
on the Android Television deviceâ€™s input device(s) (i.e. remote control, remote control application,
or game controller):

Changing TV channels

Page 27 of 88

http://source.android.com/devices/tv/index.html
http://developer.android.com/reference/android/media/tv/TvContract.Channels.html
https://source.android.com/devices/tv/index.html#third-party_input_example
https://source.android.com/devices/tv/index.html#tv_inputs
https://developer.android.com/reference/android/media/tv/TvContract.Programs.html

Opening EPG
Configuring and tuning to third-party TIF-based inputs
Opening Settings menu

The TV App SHOULD pass key events to HDMI inputs through CEC.

3.12.1.3. TV input app linking

Android Television device implementations MUST support TV input app linking, which allows all inputs
to provide activity links from the current activity to another activity (i.e. a link from live programming to
related content). The TV App MUST show TV input app linking when it is provided.

3.12.1.4. Time shifting

Android Television device implementations MUST support time shifting, which allows the user to
pause and resume live content. Device implementations MUST provide the user a way to pause and
resume the currently playing program, if time shifting for that program is available.

3.12.1.5. TV recording

Android Television device implementations are STRONGLY RECOMMENDED to support TV
recording. If the TV input supports recording, the EPG MAY provide a way to record a program if the
recording of such a program is not prohibited. Device implementations SHOULD provide a user
interface to play recorded programs.

3.13. Quick Settings

Android device implementations SHOULD include a Quick Settings UI component that allow quick
access to frequently used or urgently needed actions.
Android includes the quicksettings API allowing third party apps to implement tiles that can be added by
the user alongside the system-provided tiles in the Quick Settings UI component. If a device
implementation has a Quick Settings UI component, it:

MUST allow the user to add or remove tiles from a third-party app to Quick Settings.
MUST NOT automatically add a tile from a third-party app directly to Quick Settings.
MUST display all the user-added tiles from third-party apps alongside the system-provided
quick setting tiles.

3.14. Vehicle UI APIs

3.14.1. Vehicle Media UI

Any device implementation that declares automotive support MUST include a UI framework to support
third-party apps consuming the MediaBrowser and MediaSession APIs.
The UI framework supporting third-party apps that depend on MediaBrowser and MediaSession has
the following visual requirements:

MUST display MediaItem icons and notification icons unaltered.
MUST display those items as described by MediaSession, e.g., metadata, icons, imagery.
MUST show app title.

Page 28 of 88

http://developer.android.com/reference/android/media/tv/TvContract.Channels.html#COLUMN_APP_LINK_INTENT_URI
https://developer.android.com/reference/android/media/tv/TvInputManager.html#TIME_SHIFT_STATUS_AVAILABLE
https://developer.android.com/reference/android/media/tv/TvInputInfo.html#canRecord%28%29
https://developer.android.com/reference/android/media/tv/TvContract.Programs.html#COLUMN_RECORDING_PROHIBITED
https://developer.android.com/reference/android/service/quicksettings/package-summary.html
https://developer.android.com/reference/android/content/pm/PackageManager.html?#FEATURE_AUTOMOTIVE?
http://developer.android.com/reference/android/media/browse/MediaBrowser.html
http://developer.android.com/reference/android/media/session/MediaSession.html
http://developer.android.com/reference/android/media/browse/MediaBrowser.MediaItem.html

MUST have drawer to present MediaBrowser hierarchy.

4. Application Packaging Compatibility

Device implementations MUST install and run Android â€œ.apkâ€ files as generated by the
â€œaaptâ€ tool included in the official Android SDK. For this reason device implementations SHOULD
use the reference implementationâ€™s package management system.
The package manager MUST support verifying â€œ.apkâ€ files using the APK Signature Scheme v2.
Devices implementations MUST NOT extend either the .apk, Android Manifest, Dalvik bytecode, or
RenderScript bytecode formats in such a way that would prevent those files from installing and
running correctly on other compatible devices.
Device implementations MUST NOT allow apps other than the current "installer of record" for the
package to silently uninstall the app without any prompt, as documented in the SDK for the
DELETE_PACKAGE permission. The only exceptions are the system package verifier app handling
PACKAGE_NEEDS_VERIFICATION intent and the storage manager app handling
ACTION_MANAGE_STORAGE intent.

5. Multimedia Compatibility

5.1. Media Codecs

Device implementationsâ€”

MUST support the core media formats specified in the Android SDK documentation,
except where explicitly permitted in this document.

MUST support the media formats, encoders, decoders, file types, and container formats
defined in the tables below and reported via MediaCodecList.

MUST also be able to decode all profiles reported in its CamcorderProfile

MUST be able to decode all formats it can encode. This includes all bitstreams that its
encoders generate.

Codecs SHOULD aim for minimum codec latency, in other words, codecsâ€”

SHOULD NOT consume and store input buffers and return input buffers only once
processed
SHOULD NOT hold onto decoded buffers for longer than as specified by the standard (e.g.
SPS).
SHOULD NOT hold onto encoded buffers longer than required by the GOP structure.

All of the codecs listed in the table below are provided as software implementations in the preferred
Android implementation from the Android Open Source Project.
Please note that neither Google nor the Open Handset Alliance make any representation that these
codecs are free from third-party patents. Those intending to use this source code in hardware or
software products are advised that implementations of this code, including in open source software or
shareware, may require patent licenses from the relevant patent holders.

5.1.1. Audio Codecs

Supported File

Page 29 of 88

http://developer.android.com/reference/android/media/browse/MediaBrowser.html
http://developer.android.com/tools/help/index.html
https://source.android.com/security/apksigning/v2.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://android.googlesource.com/platform/dalvik/
https://developer.android.com/reference/android/Manifest.permission.html#DELETE_PACKAGES
https://developer.android.com/reference/android/content/Intent.html#ACTION_PACKAGE_NEEDS_VERIFICATION
https://developer.android.com/reference/android/os/storage/StorageManager.html#ACTION_MANAGE_STORAGE
http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/reference/android/media/MediaCodecList.html
http://developer.android.com/reference/android/media/CamcorderProfile.html

Format/Codec Encoder Decoder Details Types/Container
Formats

MPEG-4 AAC
Profile
(AAC LC)

REQUIRED
1 REQUIRED

Support for mono/stereo/5.0/5.1 2
content with standard sampling
rates from 8 to 48 kHz.

3GPP (.3gp)
MPEG-4
(.mp4,.m4a)
ADTS raw AAC
(.aac, decode in
Android 3.1+,
encode in
Android 4.0+,
ADIF not
supported)
MPEG-TS (.ts,
not seekable,
Android 3.0+)

MPEG-4 HE
AAC Profile
(AAC+)

REQUIRED
1

(Android
4.1+)

REQUIRED
Support for mono/stereo/5.0/5.1 2
content with standard sampling
rates from 16 to 48 kHz.

MPEG-4 HE
AACv2
Profile
(enhanced
AAC+)

REQUIRED
Support for mono/stereo/5.0/5.1 2
content with standard sampling
rates from 16 to 48 kHz.

AAC ELD
(enhanced low
delay AAC)

REQUIRED
1

(Android
4.1+)

REQUIRED
(Android
4.1+)

Support for mono/stereo content
with standard sampling rates from
16 to 48 kHz.

AMR-NB
REQUIRED
3

REQUIRED
3

4.75 to 12.2 kbps sampled @ 8
kHz 3GPP (.3gp)

AMR-WB
REQUIRED
3

REQUIRED
3

9 rates from 6.60 kbit/s to 23.85
kbit/s sampled @ 16 kHz

FLAC
REQUIRED
(Android
3.1+)

Mono/Stereo (no multichannel).
Sample rates up to 48 kHz (but up
to 44.1 kHz is RECOMMENDED on
devices with 44.1 kHz output, as
the 48 to 44.1 kHz downsampler
does not include a low-pass filter).
16-bit RECOMMENDED; no dither
applied for 24-bit.

FLAC (.flac) only

MP3 REQUIRED Mono/Stereo 8-320Kbps constant
(CBR) or variable bitrate (VBR) MP3 (.mp3)

MIDI REQUIRED

MIDI Type 0 and 1. DLS Version 1
and 2. XMF and Mobile XMF.
Support for ringtone formats

Type 0 and 1
(.mid,.xmf,.mxmf)
RTTTL/RTX
(.rtttl,.rtx)

Page 30 of 88

RTTTL/RTX, OTA, and iMelody OTA (.ota)
iMelody (.imy)

Vorbis REQUIRED
Ogg (.ogg)
Matroska (.mkv,
Android 4.0+)

PCM/WAVE

REQUIRED
4

(Android
4.1+)

REQUIRED

16-bit linear PCM (rates up to limit
of hardware). Devices MUST
support sampling rates for raw
PCM recording at 8000, 11025,
16000, and 44100 Hz frequencies.

WAVE (.wav)

Opus
REQUIRED
(Android
5.0+)

Matroska (.mkv),
Ogg(.ogg)

1 Required for device implementations that define android.hardware.microphone but optional for Android Watch
device implementations.

2 Recording or playback MAY be performed in mono or stereo, but the decoding of AAC input buffers of
multichannel streams (i.e. more than two channels) to PCM through the default AAC audio decoder in the
android.media.MediaCodec API, the following MUST be supported:

decoding is performed without downmixing (e.g. a 5.0 AAC stream must be decoded to five
channels of PCM, a 5.1 AAC stream must be decoded to six channels of PCM),
dynamic range metadata, as defined in "Dynamic Range Control (DRC)" in ISO/IEC
14496-3, and the android.media.MediaFormat DRC keys to configure the dynamic range-
related behaviors of the audio decoder. The AAC DRC keys were introduced in API 21,and
are: KEY_AAC_DRC_ATTENUATION_FACTOR, KEY_AAC_DRC_BOOST_FACTOR,
KEY_AAC_DRC_HEAVY_COMPRESSION,
KEY_AAC_DRC_TARGET_REFERENCE_LEVEL and
KEY_AAC_ENCODED_TARGET_LEVEL

3 Required for Android Handheld device implementations.

4 Required for device implementations that define android.hardware.microphone, including Android Watch
device implementations.

5.1.2. Image Codecs

Format/Codec Encoder Decoder Details Supported File Types/Container
Formats

JPEG REQUIRED REQUIRED Base+progressive JPEG (.jpg)

GIF REQUIRED GIF (.gif)

PNG REQUIRED REQUIRED PNG (.png)

BMP REQUIRED BMP (.bmp)

WebP REQUIRED REQUIRED WebP (.webp)

Raw REQUIRED

ARW (.arw), CR2 (.cr2), DNG (.dng),
NEF (.nef), NRW (.nrw), ORF (.orf),
PEF (.pef), RAF (.raf), RW2 (.rw2),
SRW (.srw)

Page 31 of 88

5.1.3. Video Codecs

Codecs advertising HDR profile support MUST support HDR static metadata parsing and
handling.

If a media codec advertises intra refresh support, then it MUST support the refresh periods
in the range of 10 - 60 frames and accurately operate within 20% of configured refresh
period.

Video codecs MUST support output and input bytebuffer sizes that accommodate the
largest feasible compressed and uncompressed frame as dictated by the standard and
configuration but also not overallocate.

Video encoders and decoders MUST support YUV420 flexible color format
(COLOR_FormatYUV420Flexible).

Format/Codec Encoder Decoder Details Supported File Types/
Container Formats

H.263 MAY MAY
3GPP (.3gp)
MPEG-4 (.mp4)

H.264 AVC
REQUIRED
2 REQUIRED 2

See section 5.2
and 5.3 for
details

3GPP (.3gp)
MPEG-4 (.mp4)
MPEG-2 TS (.ts, AAC audio
only, not seekable, Android
3.0+)

H.265 HEVC REQUIRED 5 See section 5.3
for details MPEG-4 (.mp4)

MPEG-2
STRONGLY
RECOMMENDED
6

Main Profile MPEG2-TS

MPEG-4 SP REQUIRED 2 3GPP (.3gp)

VP8 3

REQUIRED
2

(Android
4.3+)

REQUIRED 2

(Android 2.3.3+)

See section 5.2
and 5.3 for
details

WebM (.webm)
Matroska (.mkv, Android
4.0+) 4

VP9 REQUIRED 2

(Android 4.4+)
See section 5.3
for details

WebM (.webm)
Matroska (.mkv, Android
4.0+) 4

1 Required for device implementations that include camera hardware and define android.hardware.camera or
android.hardware.camera.front.

2 Required for device implementations except Android Watch devices.

3 For acceptable quality of web video streaming and video-conference services, device implementations
SHOULD use a hardware VP8 codec that meets the requirements.

Page 32 of 88

http://www.webmproject.org/
http://www.webmproject.org/
http://www.webmproject.org/hardware/rtc-coding-requirements/

4 Device implementations SHOULD support writing Matroska WebM files.

5 STRONGLY RECOMMENDED for Android Automotive, optional for Android Watch, and required for all other
device types.

6 Applies only to Android Television device implementations.

5.2. Video Encoding

Video codecs are optional for Android Watch device implementations.

H.264, VP8, VP9 and HEVC video encodersâ€”

MUST support dynamically configurable bitrates.
SHOULD support variable frame rates, where video encoder SHOULD determine
instantaneous frame duration based on the timestamps of input buffers, and allocate its bit
bucket based on that frame duration.

H.263 and MPEG-4 video encoder SHOULD support dynamically configurable bitrates.
All video encoders SHOULD meet the following bitrate targets over two sliding windows:

It SHOULD be not more than ~15% over the bitrate between intraframe (I-frame) intervals.
It SHOULD be not more than ~100% over the bitrate over a sliding window of 1 second.

5.2.1. H.263

Android device implementations with H.263 encoders MUST support Baseline Profile Level 45.

5.2.2. H-264

Android device implementations with H.264 codec support:

MUST support Baseline Profile Level 3.
However, support for ASO (Arbitrary Slice Ordering), FMO (Flexible Macroblock Ordering)
and RS (Redundant Slices) is OPTIONAL. Moreover, to maintain compatibility with other
Android devices, it is RECOMMENDED that ASO, FMO and RS are not used for Baseline
Profile by encoders.
MUST support the SD (Standard Definition) video encoding profiles in the following table.
SHOULD support Main Profile Level 4.
SHOULD support the HD (High Definition) video encoding profiles as indicated in the
following table.
In addition, Android Television devices are STRONGLY RECOMMENDED to encode HD
1080p video at 30 fps.

SD (Low quality) SD (High quality) HD 720p 1 HD 1080p 1

Video resolution 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px

Video frame rate 20 fps 30 fps 30 fps 30 fps

Video bitrate 384 Kbps 2 Mbps 4 Mbps 10 Mbps

1 When supported by hardware, but STRONGLY RECOMMENDED for Android Television devices.

5.2.3. VP8

Page 33 of 88

Android device implementations with VP8 codec support MUST support the SD video encoding
profiles and SHOULD support the following HD (High Definition) video encoding profiles.

SD (Low quality) SD (High quality) HD 720p 1 HD 1080p 1

Video resolution 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px

Video frame rate 30 fps 30 fps 30 fps 30 fps

Video bitrate 800 Kbps 2 Mbps 4 Mbps 10 Mbps

1 When supported by hardware.

5.3. Video Decoding

Video codecs are optional for Android Watch device implementations.

Device implementationsâ€”

MUST support dynamic video resolution and frame rate switching through the standard
Android APIs within the same stream for all VP8, VP9, H.264, and H.265 codecs in real
time and up to the maximum resolution supported by each codec on the device.

Implementations that support the Dolby Vision decoderâ€”
MUST provide a Dolby Vision-capable extractor.

MUST properly display Dolby Vision content on the device screen or on a standard video
output port (e.g., HDMI).

Implementations that provide a Dolby Vision-capable extractor MUST set the track index of
backward-compatible base-layer(s) (if present) to be the same as the combined Dolby
Vision layer's track index.

5.3.1. MPEG-2

Android device implementations with MPEG-2 decoders must support the Main Profile High Level.

5.3.2. H.263

Android device implementations with H.263 decoders MUST support Baseline Profile Level 30 and
Level 45.

5.3.3. MPEG-4

Android device implementations with MPEG-4 decoders MUST support Simple Profile Level 3.

5.3.4. H.264

Android device implementations with H.264 decoders:

MUST support Main Profile Level 3.1 and Baseline Profile.
Support for ASO (Arbitrary Slice Ordering), FMO (Flexible Macroblock Ordering) and RS
(Redundant Slices) is OPTIONAL.
MUST be capable of decoding videos with the SD (Standard Definition) profiles listed in the
following table and encoded with the Baseline Profile and Main Profile Level 3.1 (including
720p30).

Page 34 of 88

SHOULD be capable of decoding videos with the HD (High Definition) profiles as indicated
in the following table.
In addition, Android Television devicesâ€”

MUST support High Profile Level 4.2 and the HD 1080p60 decoding profile.
MUST be capable of decoding videos with both HD profiles as indicated in the
following table and encoded with either the Baseline Profile, Main Profile, or the
High Profile Level 4.2

SD (Low quality) SD (High quality) HD 720p 1 HD 1080p 1

Video resolution 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px

Video frame rate 30 fps 30 fps 60 fps 30 fps (60 fps 2)

Video bitrate 800 Kbps 2 Mbps 8 Mbps 20 Mbps

1 REQUIRED for when the height as reported by the Display.getSupportedModes() method is equal or greater
than the video resolution.

2 REQUIRED for Android Television device implementations.

5.3.5. H.265 (HEVC)

Android device implementations, when supporting H.265 codec as described in section 5.1.3:

MUST support the Main Profile Level 3 Main tier and the SD video decoding profiles as
indicated in the following table.
SHOULD support the HD decoding profiles as indicated in the following table.
MUST support the HD decoding profiles as indicated in the following table if there is a
hardware decoder.
In addition, Android Television devices:
MUST support the HD 720p decoding profile.
STRONGLY RECOMMENDED to support the HD 1080p decoding profile. If the HD 1080p
decoding profile is supported, it MUST support the Main Profile Level 4.1 Main tier.
SHOULD support the UHD decoding profile. If the UHD decoding profile is supported the
codec MUST support Main10 Level 5 Main Tier profile.

SD (Low
quality)

SD (High
quality) HD 720p HD 1080p UHD

Video
resolution 352 x 288 px 720 x 480 px 1280 x 720

px
1920 x 1080
px

3840 x 2160
px

Video frame
rate 30 fps 30 fps 30 fps 30 fps (60 fps 1

)
60 fps

Video bitrate 600 Kbps 1.6 Mbps 4 Mbps 5 Mbps 20 Mbps

1 REQUIRED for Android Television device implementations with H.265 hardware decoding.

5.3.6. VP8

Android device implementations, when supporting VP8 codec as described in section 5.1.3:

MUST support the SD decoding profiles in the following table.
SHOULD support the HD decoding profiles in the following table.

Page 35 of 88

https://source.android.com/compatibility/android-cdd.html#5_1_3_video_codecs

Android Television devices MUST support the HD 1080p60 decoding profile.

SD (Low quality) SD (High quality) HD 720p 1 HD 1080p 1

Video resolution 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px

Video frame rate 30 fps 30 fps 30 fps (60 fps 2) 30 (60 fps 2)

Video bitrate 800 Kbps 2 Mbps 8 Mbps 20 Mbps

1 REQUIRED for when the height as reported by the Display.getSupportedModes() method is equal or greater
than the video resolution.

2 REQUIRED for Android Television device implementations.

5.3.7. VP9

Android device implementations, when supporting VP9 codec as described in section 5.1.3:

MUST support the SD video decoding profiles as indicated in the following table.
SHOULD support the HD decoding profiles as indicated in the following table.
MUST support the HD decoding profiles as indicated in the following table, if there is a
hardware decoder.

In addition, Android Television devices:
MUST support the HD 720p decoding profile.
STRONGLY RECOMMENDED to support the HD 1080p decoding profile.
SHOULD support the UHD decoding profile. If the UHD video decoding profile
is supported, it MUST support 8-bit color depth and SHOULD support VP9
Profile 2 (10-bit).

SD (Low
quality)

SD (High
quality) HD 720p HD 1080p UHD

Video
resolution 320 x 180 px 640 x 360 px 1280 x 720

px
1920 x 1080
px

3840 x 2160
px

Video frame
rate 30 fps 30 fps 30 fps 30 fps (60 fps 1

)
60 fps

Video bitrate 600 Kbps 1.6 Mbps 4 Mbps 5 Mbps 20 Mbps

1 REQUIRED for Android Television device implementations with VP9 hardware decoding.

5.4. Audio Recording

While some of the requirements outlined in this section are stated as SHOULD since Android 4.3, the
Compatibility Definition for a future version is planned to change these to MUST. Existing and new
Android devices are STRONGLY RECOMMENDED to meet these requirements that are stated as
SHOULD, or they will not be able to attain Android compatibility when upgraded to the future version.

5.4.1. Raw Audio Capture

Device implementations that declare android.hardware.microphone MUST allow capture of raw audio
content with the following characteristics:

Page 36 of 88

https://source.android.com/compatibility/android-cdd.html#5_1_3_video_codecs

Format: Linear PCM, 16-bit
Sampling rates: 8000, 11025, 16000, 44100
Channels: Mono

The capture for the above sample rates MUST be done without up-sampling, and any down-sampling
MUST include an appropriate anti-aliasing filter.
Device implementations that declare android.hardware.microphone SHOULD allow capture of raw
audio content with the following characteristics:

Format: Linear PCM, 16-bit
Sampling rates: 22050, 48000
Channels: Stereo

If capture for the above sample rates is supported, then the capture MUST be done without up-
sampling at any ratio higher than 16000:22050 or 44100:48000. Any up-sampling or down-sampling
MUST include an appropriate anti-aliasing filter.

5.4.2. Capture for Voice Recognition

The android.media.MediaRecorder.AudioSource.VOICE_RECOGNITION audio source MUST support
capture at one of the sampling rates, 44100 and 48000.
In addition to the above recording specifications, when an application has started recording an audio
stream using the android.media.MediaRecorder.AudioSource.VOICE_RECOGNITION audio source:

The device SHOULD exhibit approximately flat amplitude versus frequency characteristics:
specifically, Â±3 dB, from 100 Hz to 4000 Hz.
Audio input sensitivity SHOULD be set such that a 90 dB sound power level (SPL) source
at 1000 Hz yields RMS of 2500 for 16-bit samples.
PCM amplitude levels SHOULD linearly track input SPL changes over at least a 30 dB
range from -18 dB to +12 dB re 90 dB SPL at the microphone.
Total harmonic distortion SHOULD be less than 1% for 1 kHz at 90 dB SPL input level at
the microphone.
Noise reduction processing, if present, MUST be disabled.
Automatic gain control, if present, MUST be disabled.

If the platform supports noise suppression technologies tuned for speech recognition, the effect MUST
be controllable from the android.media.audiofx.NoiseSuppressor API. Moreover, the UUID field for the
noise suppressorâ€™s effect descriptor MUST uniquely identify each implementation of the noise
suppression technology.

5.4.3. Capture for Rerouting of Playback

The android.media.MediaRecorder.AudioSource class includes the REMOTE_SUBMIX audio source.
Devices that declare android.hardware.audio.output MUST properly implement the
REMOTE_SUBMIX audio source so that when an application uses the android.media.AudioRecord
API to record from this audio source, it can capture a mix of all audio streams except for the following:

STREAM_RING
STREAM_ALARM
STREAM_NOTIFICATION

Page 37 of 88

5.5. Audio Playback

Device implementations that declare android.hardware.audio.output MUST conform to the
requirements in this section.

5.5.1. Raw Audio Playback

The device MUST allow playback of raw audio content with the following characteristics:

Format: Linear PCM, 16-bit
Sampling rates: 8000, 11025, 16000, 22050, 32000, 44100
Channels: Mono, Stereo

The device SHOULD allow playback of raw audio content with the following characteristics:

Sampling rates: 24000, 48000

5.5.2. Audio Effects

Android provides an API for audio effects for device implementations. Device implementations that
declare the feature android.hardware.audio.output:

MUST support the EFFECT_TYPE_EQUALIZER and
EFFECT_TYPE_LOUDNESS_ENHANCER implementations controllable through the
AudioEffect subclasses Equalizer, LoudnessEnhancer.
MUST support the visualizer API implementation, controllable through the Visualizer class.
SHOULD support the EFFECT_TYPE_BASS_BOOST, EFFECT_TYPE_ENV_REVERB,
EFFECT_TYPE_PRESET_REVERB, and EFFECT_TYPE_VIRTUALIZER
implementations controllable through the AudioEffect sub-classes BassBoost,
EnvironmentalReverb, PresetReverb, and Virtualizer.

5.5.3. Audio Output Volume

Android Television device implementations MUST include support for system Master Volume and
digital audio output volume attenuation on supported outputs, except for compressed audio
passthrough output (where no audio decoding is done on the device).
Android Automotive device implementations SHOULD allow adjusting audio volume separately per
each audio stream using the content type or usage as defined by AudioAttributes and car audio usage
as publicly defined in android.car.CarAudioManager.

5.6. Audio Latency

Audio latency is the time delay as an audio signal passes through a system. Many classes of
applications rely on short latencies, to achieve real-time sound effects.
For the purposes of this section, use the following definitions:

output latency. The interval between when an application writes a frame of PCM-coded
data and when the corresponding sound is presented to environment at an on-device
transducer or signal leaves the device via a port and can be observed externally.
cold output latency. The output latency for the first frame, when the audio output system
has been idle and powered down prior to the request.

Page 38 of 88

http://developer.android.com/reference/android/media/audiofx/AudioEffect.html

continuous output latency. The output latency for subsequent frames, after the device is
playing audio.
input latency. The interval between when a sound is presented by environment to device
at an on-device transducer or signal enters the device via a port and when an application
reads the corresponding frame of PCM-coded data.
lost input. The initial portion of an input signal that is unusable or unavailable.
cold input latency. The sum of lost input time and the input latency for the first frame,
when the audio input system has been idle and powered down prior to the request.
continuous input latency. The input latency for subsequent frames, while the device is
capturing audio.
cold output jitter. The variability among separate measurements of cold output latency
values.
cold input jitter. The variability among separate measurements of cold input latency
values.
continuous round-trip latency. The sum of continuous input latency plus continuous
output latency plus one buffer period. The buffer period allows time for the app to process
the signal and time for the app to mitigate phase difference between input and output
streams.
OpenSL ES PCM buffer queue API. The set of PCM-related OpenSL ES APIs within
Android NDK.

Device implementations that declare android.hardware.audio.output are STRONGLY
RECOMMENDED to meet or exceed these audio output requirements:

cold output latency of 100 milliseconds or less
continuous output latency of 45 milliseconds or less
minimize the cold output jitter

If a device implementation meets the requirements of this section after any initial calibration when
using the OpenSL ES PCM buffer queue API, for continuous output latency and cold output latency
over at least one supported audio output device, it is STRONGLY RECOMMENDED to report support
for low-latency audio, by reporting the feature android.hardware.audio.low_latency via the
android.content.pm.PackageManager class. Conversely, if the device implementation does not meet
these requirements it MUST NOT report support for low-latency audio.
Device implementations that include android.hardware.microphone are STRONGLY
RECOMMENDED to meet these input audio requirements:

cold input latency of 100 milliseconds or less
continuous input latency of 30 milliseconds or less
continuous round-trip latency of 50 milliseconds or less
minimize the cold input jitter

5.7. Network Protocols

Devices MUST support the media network protocols for audio and video playback as specified in the
Android SDK documentation. Specifically, devices MUST support the following media network
protocols:

HTTP(S) progressive streaming
All required codecs and container formats in section 5.1 MUST be supported over
HTTP(S)

Page 39 of 88

https://developer.android.com/ndk/index.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/guide/appendix/media-formats.html

HTTP Live Streaming draft protocol, Version 7
The following media segment formats MUST be supported:

Segment formats Reference(s) Required codec support

MPEG-2 Transport Stream ISO 13818

Video codecs:

H264 AVC
MPEG-4 SP
MPEG-2

See section 5.1.3 for details on H264 AVC,
MPEG2-4 SP,
and MPEG-2.
Audio codecs:

AAC

See section 5.1.1 for details on AAC and its
variants.

AAC with ADTS framing and ID3
tags ISO 13818-7 See section 5.1.1 for details on AAC and its

variants

WebVTT WebVTT

RTSP (RTP, SDP)
The following RTP audio video profile and related codecs MUST be supported. For
exceptions please see the table footnotes in section 5.1.

Profile name Reference(s) Required codec support

H264 AVC RFC 6184 See section 5.1.3 for details on H264 AVC

MP4A-LATM RFC 6416 See section 5.1.1 for details on AAC and its variants

H263-1998
RFC 3551
RFC 4629
RFC 2190

See section 5.1.3 for details on H263

H263-2000 RFC 4629 See section 5.1.3 for details on H263

AMR RFC 4867 See section 5.1.1 for details on AMR-NB

AMR-WB RFC 4867 See section 5.1.1 for details on AMR-WB

MP4V-ES RFC 6416 See section 5.1.3 for details on MPEG-4 SP

mpeg4-
generic RFC 3640 See section 5.1.1 for details on AAC and its variants

MP2T RFC 2250 See MPEG-2 Transport Stream underneath HTTP Live Streaming for
details

5.8. Secure Media

Device implementations that support secure video output and are capable of supporting secure
surfaces MUST declare support for Display.FLAG_SECURE. Device implementations that declare

Page 40 of 88

http://tools.ietf.org/html/draft-pantos-http-live-streaming-07
http://www.iso.org/iso/catalogue_detail?csnumber=44169
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43345
http://dev.w3.org/html5/webvtt/
https://tools.ietf.org/html/rfc6184
https://tools.ietf.org/html/rfc6416
https://tools.ietf.org/html/rfc3551
https://tools.ietf.org/html/rfc4629
https://tools.ietf.org/html/rfc2190
https://tools.ietf.org/html/rfc4629
https://tools.ietf.org/html/rfc4867
https://tools.ietf.org/html/rfc4867
https://tools.ietf.org/html/rfc6416
https://tools.ietf.org/html/rfc3640
https://tools.ietf.org/html/rfc2250

support for Display.FLAG_SECURE, if they support a wireless display protocol, MUST secure the link
with a cryptographically strong mechanism such as HDCP 2.x or higher for Miracast wireless displays.
Similarly if they support a wired external display, the device implementations MUST support HDCP 1.2
or higher. Android Television device implementations MUST support HDCP 2.2 for devices supporting
4K resolution and HDCP 1.4 or above for lower resolutions. The upstream Android open source
implementation includes support for wireless (Miracast) and wired (HDMI) displays that satisfies this
requirement.

5.9. Musical Instrument Digital Interface (MIDI)

If a device implementation supports the inter-app MIDI software transport (virtual MIDI devices), and it
supports MIDI over all of the following MIDI-capable hardware transports for which it provides generic
non-MIDI connectivity, it is STRONGLY RECOMMENDED to report support for feature
android.software.midi via the android.content.pm.PackageManager class.
The MIDI-capable hardware transports are:

USB host mode (section 7.7 USB)
USB peripheral mode (section 7.7 USB)
MIDI over Bluetooth LE acting in central role (section 7.4.3 Bluetooth)

Conversely, if the device implementation provides generic non-MIDI connectivity over a particular
MIDI-capable hardware transport listed above, but does not support MIDI over that hardware
transport, it MUST NOT report support for feature android.software.midi.

5.10. Professional Audio

If a device implementation meets all of the following requirements, it is STRONGLY RECOMMENDED
to report support for feature android.hardware.audio.pro via the android.content.pm.PackageManager
class.

The device implementation MUST report support for feature
android.hardware.audio.low_latency.
The continuous round-trip audio latency, as defined in section 5.6 Audio Latency, MUST be
20 milliseconds or less and SHOULD be 10 milliseconds or less over at least one
supported path.
If the device includes a 4 conductor 3.5mm audio jack, the continuous round-trip audio
latency MUST be 20 milliseconds or less over the audio jack path, and SHOULD be 10
milliseconds or less over at the audio jack path.
The device implementation MUST include a USB port(s) supporting USB host mode and
USB peripheral mode.
The USB host mode MUST implement the USB audio class.
If the device includes an HDMI port, the device implementation MUST support output in
stereo and eight channels at 20-bit or 24-bit depth and 192 kHz without bit-depth loss or
resampling.
The device implementation MUST report support for feature android.software.midi.
If the device includes a 4 conductor 3.5mm audio jack, the device implementation is
STRONGLY RECOMMENDED to comply with section Mobile device (jack) specifications
of the Wired Audio Headset Specification (v1.1).

Latencies and USB audio requirements MUST be met using the OpenSL ES PCM buffer queue API.
In addition, a device implementation that reports support for this feature SHOULD:

Page 41 of 88

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
https://source.android.com/accessories/headset/specification.html#mobile_device_jack_specifications
https://source.android.com/accessories/headset/specification.html
https://developer.android.com/ndk/guides/audio/opensl-for-android.html

Provide a sustainable level of CPU performance while audio is active.
Minimize audio clock inaccuracy and drift relative to standard time.
Minimize audio clock drift relative to the CPU CLOCK_MONOTONIC when both are active.
Minimize audio latency over on-device transducers.
Minimize audio latency over USB digital audio.
Document audio latency measurements over all paths.
Minimize jitter in audio buffer completion callback entry times, as this affects usable
percentage of full CPU bandwidth by the callback.
Provide zero audio underruns (output) or overruns (input) under normal use at reported
latency.
Provide zero inter-channel latency difference.
Minimize MIDI mean latency over all transports.
Minimize MIDI latency variability under load (jitter) over all transports.
Provide accurate MIDI timestamps over all transports.
Minimize audio signal noise over on-device transducers, including the period immediately
after cold start.
Provide zero audio clock difference between the input and output sides of corresponding
end-points, when both are active. Examples of corresponding end-points include the on-
device microphone and speaker, or the audio jack input and output.
Handle audio buffer completion callbacks for the input and output sides of corresponding
end-points on the same thread when both are active, and enter the output callback
immediately after the return from the input callback. Or if it is not feasible to handle the
callbacks on the same thread, then enter the output callback shortly after entering the input
callback to permit the application to have a consistent timing of the input and output sides.
Minimize the phase difference between HAL audio buffering for the input and output sides
of corresponding end-points.
Minimize touch latency.
Minimize touch latency variability under load (jitter).

5.11. Capture for Unprocessed

Starting from Android 7.0, a new recording source has been added. It can be accessed using the
android.media.MediaRecorder.AudioSource.UNPROCESSED audio source. In OpenSL ES, it can be
accessed with the record preset SL_ANDROID_RECORDING_PRESET_UNPROCESSED.
A device MUST satisfy all of the following requirements to report support of the unprocessed audio
source via the android.media.AudioManager property
PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED:

The device MUST exhibit approximately flat amplitude-versus-frequency characteristics in
the mid-frequency range: specifically Â±10dB from 100 Hz to 7000 Hz.

The device MUST exhibit amplitude levels in the low frequency range: specifically from
Â±20 dB from 5 Hz to 100 Hz compared to the mid-frequency range.

The device MUST exhibit amplitude levels in the high frequency range: specifically from
Â±30 dB from 7000 Hz to 22 KHz compared to the mid-frequency range.

Audio input sensitivity MUST be set such that a 1000 Hz sinusoidal tone source played at
94 dB Sound Pressure Level (SPL) yields a response with RMS of 520 for 16 bit-samples
(or -36 dB Full Scale for floating point/double precision samples).

SNR > 60 dB (difference between 94 dB SPL and equivalent SPL of self noise, A-
weighted).

Page 42 of 88

http://developer.android.com/reference/android/media/AudioManager.html#PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED

Total harmonic distortion MUST be less than 1% for 1 kHZ at 90 dB SPL input level at the
microphone.

The only signal processing allowed in the path is a level multiplier to bring the level to
desired range. This level multiplier MUST NOT introduce delay or latency to the signal
path.

No other signal processing is allowed in the path, such as Automatic Gain Control, High
Pass Filter, or Echo Cancellation. If any signal processing is present in the architecture for
any reason, it MUST be disabled and effectively introduce zero delay or extra latency to
the signal path.

All SPL measurements are made directly next to the microphone under test.
For multiple microphone configurations, these requirements apply to each microphone.
It is STRONGLY RECOMMENDED that a device satisfy as many of the requirements for the signal
path for the unprocessed recording source; however, a device must satisfy all of these requirements,
listed above, if it claims to support the unprocessed audio source.

6. Developer Tools and Options Compatibility

6.1. Developer Tools

Device implementations MUST support the Android Developer Tools provided in the Android SDK.
Android compatible devices MUST be compatible with:

Android Debug Bridge (adb)
Device implementations MUST support all adb functions as documented in the
Android SDK including dumpsys.
The device-side adb daemon MUST be inactive by default and there MUST be
a user-accessible mechanism to turn on the Android Debug Bridge. If a device
implementation omits USB peripheral mode, it MUST implement the Android
Debug Bridge via local-area network (such as Ethernet or 802.11).
Android includes support for secure adb. Secure adb enables adb on known
authenticated hosts. Device implementations MUST support secure adb.

Dalvik Debug Monitor Service (ddms)
Device implementations MUST support all ddms features as documented in the
Android SDK.
As ddms uses adb, support for ddms SHOULD be inactive by default, but
MUST be supported whenever the user has activated the Android Debug
Bridge, as above.

Monkey Device implementations MUST include the Monkey framework, and make it
available for applications to use.
SysTrace

Device implementations MUST support systrace tool as documented in the
Android SDK. Systrace must be inactive by default, and there MUST be a user-
accessible mechanism to turn on Systrace.
Most Linux-based systems and Apple Macintosh systems recognize Android
devices using the standard Android SDK tools, without additional support;
however Microsoft Windows systems typically require a driver for new Android
devices. (For instance, new vendor IDs and sometimes new device IDs require
custom USB drivers for Windows systems.)
If a device implementation is unrecognized by the adb tool as provided in the

Page 43 of 88

http://developer.android.com/tools/help/adb.html
https://source.android.com/devices/input/diagnostics.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/systrace.html

standard Android SDK, device implementers MUST provide Windows drivers
allowing developers to connect to the device using the adb protocol. These
drivers MUST be provided for Windows XP, Windows Vista, Windows 7,
Windows 8, and Windows 10 in both 32-bit and 64-bit versions.

6.2. Developer Options

Android includes support for developers to configure application development-related settings. Device
implementations MUST honor the android.settings.APPLICATION_DEVELOPMENT_SETTINGS
intent to show application development-related settings The upstream Android implementation hides
the Developer Options menu by default and enables users to launch Developer Options after pressing
seven (7) times on the Settings > About Device > Build Number menu item. Device
implementations MUST provide a consistent experience for Developer Options. Specifically, device
implementations MUST hide Developer Options by default and MUST provide a mechanism to enable
Developer Options that is consistent with the upstream Android implementation.

Android Automotive implementations MAY limit access to the Developer Options menu by
visually hiding or disabling the menu when the vehicle is in motion.

7. Hardware Compatibility

If a device includes a particular hardware component that has a corresponding API for third-party
developers, the device implementation MUST implement that API as described in the Android SDK
documentation. If an API in the SDK interacts with a hardware component that is stated to be optional
and the device implementation does not possess that component:

Complete class definitions (as documented by the SDK) for the component APIs MUST
still be presented.
The APIâ€™s behaviors MUST be implemented as no-ops in some reasonable fashion.
API methods MUST return null values where permitted by the SDK documentation.
API methods MUST return no-op implementations of classes where null values are not
permitted by the SDK documentation.
API methods MUST NOT throw exceptions not documented by the SDK documentation.

A typical example of a scenario where these requirements apply is the telephony API: Even on non-
phone devices, these APIs must be implemented as reasonable no-ops.
Device implementations MUST consistently report accurate hardware configuration information via the
getSystemAvailableFeatures() and hasSystemFeature(String) methods on the
android.content.pm.PackageManager class for the same build fingerprint.

7.1. Display and Graphics

Android includes facilities that automatically adjust application assets and UI layouts appropriately for
the device to ensure that third-party applications run well on a variety of hardware configurations.
Devices MUST properly implement these APIs and behaviors, as detailed in this section.
The units referenced by the requirements in this section are defined as follows:

physical diagonal size. The distance in inches between two opposing corners of the
illuminated portion of the display.
dots per inch (dpi). The number of pixels encompassed by a linear horizontal or vertical
span of 1â€ . Where dpi values are listed, both horizontal and vertical dpi must fall within
the range.

Page 44 of 88

http://developer.android.com/reference/android/provider/Settings.html#ACTION_APPLICATION_DEVELOPMENT_SETTINGS
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/guide/practices/screens_support.html

aspect ratio. The ratio of the pixels of the longer dimension to the shorter dimension of the
screen. For example, a display of 480x854 pixels would be 854/480 = 1.779, or roughly
â€œ16:9â€ .
density-independent pixel (dp). The virtual pixel unit normalized to a 160 dpi screen,
calculated as: pixels = dps * (density/160).

7.1.1. Screen Configuration

7.1.1.1. Screen Size

Android Watch devices (detailed in section 2) MAY have smaller screen sizes as described in
this section.

The Android UI framework supports a variety of different screen sizes, and allows applications to
query the device screen size (aka â€œscreen layout") via
android.content.res.Configuration.screenLayout with the SCREENLAYOUT_SIZE_MASK. Device
implementations MUST report the correct screen size as defined in the Android SDK documentation
and determined by the upstream Android platform. Specifically, device implementations MUST report
the correct screen size according to the following logical density-independent pixel (dp) screen
dimensions.

Devices MUST have screen sizes of at least 426 dp x 320 dp (â€˜smallâ€™), unless it is
an Android Watch device.
Devices that report screen size â€˜normalâ€™ MUST have screen sizes of at least 480 dp
x 320 dp.
Devices that report screen size â€˜largeâ€™ MUST have screen sizes of at least 640 dp x
480 dp.
Devices that report screen size â€˜xlargeâ€™ MUST have screen sizes of at least 960 dp
x 720 dp.

In addition:

Android Watch devices MUST have a screen with the physical diagonal size in the range
from 1.1 to 2.5 inches.
Android Automotive devices MUST have a screen with the physical diagonal size greater
than or equal to 6 inches.
Android Automotive devices MUST have a screen size of at least 750 dp x 480 dp.
Other types of Android device implementations, with a physically integrated screen, MUST
have a screen at least 2.5 inches in physical diagonal size.

Devices MUST NOT change their reported screen size at any time.
Applications optionally indicate which screen sizes they support via the <supports-screens> attribute
in the AndroidManifest.xml file. Device implementations MUST correctly honor applications' stated
support for small, normal, large, and xlarge screens, as described in the Android SDK documentation.

7.1.1.2. Screen Aspect Ratio

Android Watch devices MAY have an aspect ratio of 1.0 (1:1).

The screen aspect ratio MUST be a value from 1.3333 (4:3) to 1.86 (roughly 16:9), but Android Watch
devices MAY have an aspect ratio of 1.0 (1:1) because such a device implementation will use a
UI_MODE_TYPE_WATCH as the android.content.res.Configuration.uiMode.

Page 45 of 88

http://developer.android.com/guide/practices/screens_support.html

7.1.1.3. Screen Density

The Android UI framework defines a set of standard logical densities to help application developers
target application resources. Device implementations MUST report only one of the following logical
Android framework densities through the android.util.DisplayMetrics APIs, and MUST execute
applications at this standard density and MUST NOT change the value at at any time for the default
display.

120 dpi (ldpi)
160 dpi (mdpi)
213 dpi (tvdpi)
240 dpi (hdpi)
280 dpi (280dpi)
320 dpi (xhdpi)
360 dpi (360dpi)
400 dpi (400dpi)
420 dpi (420dpi)
480 dpi (xxhdpi)
560 dpi (560dpi)
640 dpi (xxxhdpi)

Device implementations SHOULD define the standard Android framework density that is numerically
closest to the physical density of the screen, unless that logical density pushes the reported screen
size below the minimum supported. If the standard Android framework density that is numerically
closest to the physical density results in a screen size that is smaller than the smallest supported
compatible screen size (320 dp width), device implementations SHOULD report the next lowest
standard Android framework density.
Device implementations are STRONGLY RECOMMENDED to provide users a setting to change the
display size. If there is an implementation to change the display size of the device, it MUST align with
the AOSP implementation as indicated below:

The display size MUST NOT be scaled any larger than 1.5 times the native density or
produce an effective minimum screen dimension smaller than 320dp (equivalent to
resource qualifier sw320dp), whichever comes first.
Display size MUST NOT be scaled any smaller than 0.85 times the native density.
To ensure good usability and consistent font sizes, it is RECOMMENDED that the
following scaling of Native Display options be provided (while complying with the limits
specified above)
Small: 0.85x
Default: 1x (Native display scale)
Large: 1.15x
Larger: 1.3x
Largest 1.45x

7.1.2. Display Metrics

Device implementations MUST report correct values for all display metrics defined in
android.util.DisplayMetrics and MUST report the same values regardless of whether the embedded or
external screen is used as the default display.

Page 46 of 88

http://developer.android.com/reference/android/util/DisplayMetrics.html

7.1.3. Screen Orientation

Devices MUST report which screen orientations they support (android.hardware.screen.portrait and/or
android.hardware.screen.landscape) and MUST report at least one supported orientation. For
example, a device with a fixed orientation landscape screen, such as a television or laptop, SHOULD
only report android.hardware.screen.landscape.
Devices that report both screen orientations MUST support dynamic orientation by applications to
either portrait or landscape screen orientation. That is, the device must respect the applicationâ€™s
request for a specific screen orientation. Device implementations MAY select either portrait or
landscape orientation as the default.
Devices MUST report the correct value for the deviceâ€™s current orientation, whenever queried via
the android.content.res.Configuration.orientation, android.view.Display.getOrientation(), or other APIs.
Devices MUST NOT change the reported screen size or density when changing orientation.

7.1.4. 2D and 3D Graphics Acceleration

Device implementations MUST support both OpenGL ES 1.0 and 2.0, as embodied and detailed in the
Android SDK documentations. Device implementations SHOULD support OpenGL ES 3.0, 3.1, or 3.2
on devices capable of supporting it. Device implementations MUST also support Android
RenderScript, as detailed in the Android SDK documentation.
Device implementations MUST also correctly identify themselves as supporting OpenGL ES 1.0,
OpenGL ES 2.0, OpenGL ES 3.0, OpenGL 3.1, or OpenGL 3.2. That is:

The managed APIs (such as via the GLES10.getString() method) MUST report support for
OpenGL ES 1.0 and OpenGL ES 2.0.
The native C/C++ OpenGL APIs (APIs available to apps via libGLES_v1CM.so,
libGLES_v2.so, or libEGL.so) MUST report support for OpenGL ES 1.0 and OpenGL ES
2.0.
Device implementations that declare support for OpenGL ES 3.0, 3.1, or 3.2 MUST
support the corresponding managed APIs and include support for native C/C++ APIs. On
device implementations that declare support for OpenGL ES 3.0, 3.1, or 3.2 libGLESv2.so
MUST export the corresponding function symbols in addition to the OpenGL ES 2.0
function symbols.

Android provides an OpenGL ES extension pack with Java interfaces and native support for advanced
graphics functionality such as tessellation and the ASTC texture compression format. Android device
implementations MUST support the extension pack if the device supports OpenGL ES 3.2 and MAY
support it otherwise. If the extension pack is supported in its entirety, the device MUST identify the
support through the android.hardware.opengles.aep feature flag.
Also, device implementations MAY implement any desired OpenGL ES extensions. However, device
implementations MUST report via the OpenGL ES managed and native APIs all extension strings that
they do support, and conversely MUST NOT report extension strings that they do not support.
Note that Android includes support for applications to optionally specify that they require specific
OpenGL texture compression formats. These formats are typically vendor-specific. Device
implementations are not required by Android to implement any specific texture compression format.
However, they SHOULD accurately report any texture compression formats that they do support, via
the getString() method in the OpenGL API.
Android includes a mechanism for applications to declare that they want to enable hardware
acceleration for 2D graphics at the Application, Activity, Window, or View level through the use of a
manifest tag android:hardwareAccelerated or direct API calls.
Device implementations MUST enable hardware acceleration by default, and MUST disable hardware

Page 47 of 88

http://developer.android.com/guide/topics/renderscript/
https://developer.android.com/reference/android/opengl/GLES31Ext.html
http://developer.android.com/guide/topics/graphics/hardware-accel.html

acceleration if the developer so requests by setting android:hardwareAccelerated="falseâ€ or
disabling hardware acceleration directly through the Android View APIs.
In addition, device implementations MUST exhibit behavior consistent with the Android SDK
documentation on hardware acceleration.
Android includes a TextureView object that lets developers directly integrate hardware-accelerated
OpenGL ES textures as rendering targets in a UI hierarchy. Device implementations MUST support
the TextureView API, and MUST exhibit consistent behavior with the upstream Android
implementation.
Android includes support for EGL_ANDROID_RECORDABLE, an EGLConfig attribute that indicates
whether the EGLConfig supports rendering to an ANativeWindow that records images to a video.
Device implementations MUST support EGL_ANDROID_RECORDABLE extension.

7.1.5. Legacy Application Compatibility Mode

Android specifies a â€œcompatibility modeâ€ in which the framework operates in a 'normal' screen
size equivalent (320dp width) mode for the benefit of legacy applications not developed for old
versions of Android that pre-date screen-size independence.

Android Automotive does not support legacy compatibility mode.
All other device implementations MUST include support for legacy application compatibility
mode as implemented by the upstream Android open source code. That is, device
implementations MUST NOT alter the triggers or thresholds at which compatibility mode is
activated, and MUST NOT alter the behavior of the compatibility mode itself.

7.1.6. Screen Technology

The Android platform includes APIs that allow applications to render rich graphics to the display.
Devices MUST support all of these APIs as defined by the Android SDK unless specifically allowed in
this document.

Devices MUST support displays capable of rendering 16-bit color graphics and SHOULD
support displays capable of 24-bit color graphics.
Devices MUST support displays capable of rendering animations.
The display technology used MUST have a pixel aspect ratio (PAR) between 0.9 and 1.15.
That is, the pixel aspect ratio MUST be near square (1.0) with a 10 ~ 15% tolerance.

7.1.7. Secondary Displays

Android includes support for secondary display to enable media sharing capabilities and developer
APIs for accessing external displays. If a device supports an external display either via a wired,
wireless, or an embedded additional display connection then the device implementation MUST
implement the display manager API as described in the Android SDK documentation.

7.2. Input Devices

Devices MUST support a touchscreen or meet the requirements listed in 7.2.2 for non-touch
navigation.

7.2.1. Keyboard

Android Watch and Android Automotive implementations MAY implement a soft keyboard. All
other device implementations MUST implement a soft keyboard and:

Page 48 of 88

http://developer.android.com/guide/topics/graphics/hardware-accel.html
https://www.khronos.org/registry/egl/extensions/ANDROID/EGL_ANDROID_recordable.txt
http://developer.android.com/reference/android/hardware/display/DisplayManager.html

Device implementations:

MUST include support for the Input Management Framework (which allows third-party
developers to create Input Method Editorsâ€”i.e. soft keyboard) as detailed at
http://developer.android.com.
MUST provide at least one soft keyboard implementation (regardless of whether a hard
keyboard is present) except for Android Watch devices where the screen size makes it
less reasonable to have a soft keyboard.
MAY include additional soft keyboard implementations.
MAY include a hardware keyboard.
MUST NOT include a hardware keyboard that does not match one of the formats specified
in android.content.res.Configuration.keyboard (QWERTY or 12-key).

7.2.2. Non-touch Navigation

Android Television devices MUST support D-pad.

Device implementations:

MAY omit a non-touch navigation option (trackball, d-pad, or wheel) if the device
implementation is not an Android Television device.
MUST report the correct value for android.content.res.Configuration.navigation.
MUST provide a reasonable alternative user interface mechanism for the selection and
editing of text, compatible with Input Management Engines. The upstream Android open
source implementation includes a selection mechanism suitable for use with devices that
lack non-touch navigation inputs.

7.2.3. Navigation Keys

The availability and visibility requirement of the Home, Recents, and Back functions differ
between device types as described in this section.

The Home, Recents, and Back functions (mapped to the key events KEYCODE_HOME,
KEYCODE_APP_SWITCH, KEYCODE_BACK, respectively) are essential to the Android navigation
paradigm and therefore:

Android Handheld device implementations MUST provide the Home, Recents, and Back
functions.
Android Television device implementations MUST provide the Home and Back functions.
Android Watch device implementations MUST have the Home function available to the
user, and the Back function except for when it is in UI_MODE_TYPE_WATCH.
Android Watch device implementations, and no other Android device types, MAY consume
the long press event on the key event KEYCODE_BACK and omit it from being sent to the
foreground application.
Android Automotive implementations MUST provide the Home function and MAY provide
Back and Recent functions.
All other types of device implementations MUST provide the Home and Back functions.

These functions MAY be implemented via dedicated physical buttons (such as mechanical or
capacitive touch buttons), or MAY be implemented using dedicated software keys on a distinct portion
of the screen, gestures, touch panel, etc. Android supports both implementations. All of these
functions MUST be accessible with a single action (e.g. tap, double-click or gesture) when visible.
Recents function, if provided, MUST have a visible button or icon unless hidden together with other

Page 49 of 88

http://developer.android.com
http://developer.android.com/reference/android/content/res/Configuration.html
http://developer.android.com/reference/android/content/res/Configuration.html
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK

navigation functions in full-screen mode. This does not apply to devices upgrading from earlier
Android versions that have physical buttons for navigation and no recents key.
The Home and Back functions, if provided, MUST each have a visible button or icon unless hidden
together with other navigation functions in full-screen mode or when the uiMode
UI_MODE_TYPE_MASK is set to UI_MODE_TYPE_WATCH.
The Menu function is deprecated in favor of action bar since Android 4.0. Therefore the new device
implementations shipping with Android 7.1 and later MUST NOT implement a dedicated physical
button for the Menu function. Older device implementations SHOULD NOT implement a dedicated
physical button for the Menu function, but if the physical Menu button is implemented and the device is
running applications with targetSdkVersion > 10, the device implementation:

MUST display the action overflow button on the action bar when it is visible and the
resulting action overflow menu popup is not empty. For a device implementation launched
before Android 4.4 but upgrading to Android 7.1, this is RECOMMENDED.
MUST NOT modify the position of the action overflow popup displayed by selecting the
overflow button in the action bar.
MAY render the action overflow popup at a modified position on the screen when it is
displayed by selecting the physical menu button.

For backwards compatibility, device implementations MUST make the Menu function available to
applications when targetSdkVersion is less than 10, either by a physical button, a software key, or
gestures. This Menu function should be presented unless hidden together with other navigation
functions.
Android device implementations supporting the Assist action and/or VoiceInteractionService MUST be
able to launch an assist app with a single interaction (e.g. tap, double-click, or gesture) when other
navigation keys are visible. It is STRONGLY RECOMMENDED to use long press on home as this
interaction. The designated interaction MUST launch the user-selected assist app, in other words the
app that implements a VoiceInteractionService, or an activity handling the ACTION_ASSIST intent.
Device implementations MAY use a distinct portion of the screen to display the navigation keys, but if
so, MUST meet these requirements:

Device implementation navigation keys MUST use a distinct portion of the screen, not
available to applications, and MUST NOT obscure or otherwise interfere with the portion of
the screen available to applications.
Device implementations MUST make available a portion of the display to applications that
meets the requirements defined in section 7.1.1.
Device implementations MUST display the navigation keys when applications do not
specify a system UI mode, or specify SYSTEM_UI_FLAG_VISIBLE.
Device implementations MUST present the navigation keys in an unobtrusive â€œlow
profileâ€ (eg. dimmed) mode when applications specify
SYSTEM_UI_FLAG_LOW_PROFILE.
Device implementations MUST hide the navigation keys when applications specify
SYSTEM_UI_FLAG_HIDE_NAVIGATION.

7.2.4. Touchscreen Input

Android Handhelds and Watch Devices MUST support touchscreen input.

Device implementations SHOULD have a pointer input system of some kind (either mouse-like or
touch). However, if a device implementation does not support a pointer input system, it MUST NOT
report the android.hardware.touchscreen or android.hardware.faketouch feature constant. Device
implementations that do include a pointer input system:

Page 50 of 88

http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://developer.android.com/reference/android/service/voice/VoiceInteractionService.html

SHOULD support fully independently tracked pointers, if the device input system supports
multiple pointers.
MUST report the value of android.content.res.Configuration.touchscreen corresponding to
the type of the specific touchscreen on the device.

Android includes support for a variety of touchscreens, touch pads, and fake touch input devices.
Touchscreen-based device implementations are associated with a display such that the user has the
impression of directly manipulating items on screen. Since the user is directly touching the screen, the
system does not require any additional affordances to indicate the objects being manipulated. In
contrast, a fake touch interface provides a user input system that approximates a subset of
touchscreen capabilities. For example, a mouse or remote control that drives an on-screen cursor
approximates touch, but requires the user to first point or focus then click. Numerous input devices like
the mouse, trackpad, gyro-based air mouse, gyro-pointer, joystick, and multi-touch trackpad can
support fake touch interactions. Android includes the feature constant android.hardware.faketouch,
which corresponds to a high-fidelity non-touch (pointer-based) input device such as a mouse or
trackpad that can adequately emulate touch-based input (including basic gesture support), and
indicates that the device supports an emulated subset of touchscreen functionality. Device
implementations that declare the fake touch feature MUST meet the fake touch requirements in
section 7.2.5.
Device implementations MUST report the correct feature corresponding to the type of input used.
Device implementations that include a touchscreen (single-touch or better) MUST report the platform
feature constant android.hardware.touchscreen. Device implementations that report the platform
feature constant android.hardware.touchscreen MUST also report the platform feature constant
android.hardware.faketouch. Device implementations that do not include a touchscreen (and rely on a
pointer device only) MUST NOT report any touchscreen feature, and MUST report only
android.hardware.faketouch if they meet the fake touch requirements in section 7.2.5.

7.2.5. Fake Touch Input

Device implementations that declare support for android.hardware.faketouch:

MUST report the absolute X and Y screen positions of the pointer location and display a
visual pointer on the screen.
MUST report touch event with the action code that specifies the state change that occurs
on the pointer going down or up on the screen.
MUST support pointer down and up on an object on the screen, which allows users to
emulate tap on an object on the screen.
MUST support pointer down, pointer up, pointer down then pointer up in the same place on
an object on the screen within a time threshold, which allows users to emulate double tap
on an object on the screen.
MUST support pointer down on an arbitrary point on the screen, pointer move to any other
arbitrary point on the screen, followed by a pointer up, which allows users to emulate a
touch drag.
MUST support pointer down then allow users to quickly move the object to a different
position on the screen and then pointer up on the screen, which allows users to fling an
object on the screen.

Devices that declare support for android.hardware.faketouch.multitouch.distinct MUST meet the
requirements for faketouch above, and MUST also support distinct tracking of two or more
independent pointer inputs.

7.2.6. Game Controller Support

Page 51 of 88

http://developer.android.com/reference/android/content/res/Configuration.html
http://source.android.com/devices/tech/input/touch-devices.html
http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html

Android Television device implementations MUST support button mappings for game controllers as
listed below. The upstream Android implementation includes implementation for game controllers that
satisfies this requirement.

7.2.6.1. Button Mappings

Android Television device implementations MUST support the following key mappings:

Button HID Usage 2 Android Button

A 1 0x09 0x0001 KEYCODE_BUTTON_A (96)

B 1 0x09 0x0002 KEYCODE_BUTTON_B (97)

X 1 0x09 0x0004 KEYCODE_BUTTON_X (99)

Y 1 0x09 0x0005 KEYCODE_BUTTON_Y (100)

D-pad up 1

D-pad down 1 0x01 0x0039 3 AXIS_HAT_Y 4

D-pad left 1
D-pad right 1 0x01 0x0039 3 AXIS_HAT_X 4

Left shoulder button 1 0x09 0x0007 KEYCODE_BUTTON_L1 (102)

Right shoulder button 1 0x09 0x0008 KEYCODE_BUTTON_R1 (103)

Left stick click 1 0x09 0x000E KEYCODE_BUTTON_THUMBL (106)

Right stick click 1 0x09 0x000F KEYCODE_BUTTON_THUMBR (107)

Home 1 0x0c 0x0223 KEYCODE_HOME (3)

Back 1 0x0c 0x0224 KEYCODE_BACK (4)

1 KeyEvent

2 The above HID usages must be declared within a Game pad CA (0x01 0x0005).

3 This usage must have a Logical Minimum of 0, a Logical Maximum of 7, a Physical Minimum of 0, a Physical
Maximum of 315, Units in Degrees, and a Report Size of 4. The logical value is defined to be the clockwise
rotation away from the vertical axis; for example, a logical value of 0 represents no rotation and the up button
being pressed, while a logical value of 1 represents a rotation of 45 degrees and both the up and left keys being
pressed.

4 MotionEvent

Analog Controls 1 HID Usage Android Button

Left Trigger 0x02 0x00C5 AXIS_LTRIGGER

Right Trigger 0x02 0x00C4 AXIS_RTRIGGER

Left Joystick 0x01 0x0030
0x01 0x0031

AXIS_X
AXIS_Y

Right Joystick 0x01 0x0032
0x01 0x0035

AXIS_Z
AXIS_RZ

1 MotionEvent

Page 52 of 88

http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_A
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_B
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_X
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_Y
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_UP
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_DOWN
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_HAT_Y
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_LEFT
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_RIGHT
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_HAT_X
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_L1
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_R1
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_THUMBL
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_THUMBR
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_HOME
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
http://developer.android.com/reference/android/view/KeyEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_LTRIGGER
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_THROTTLE
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_Y
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_Z
http://developer.android.com/reference/android/view/MotionEvent.html

7.2.7. Remote Control

Android Television device implementations SHOULD provide a remote control to allow users to
access the TV interface. The remote control MAY be a physical remote or can be a software-based
remote that is accessible from a mobile phone or tablet. The remote control MUST meet the
requirements defined below.

Search affordance. Device implementations MUST fire KEYCODE_SEARCH when the
user invokes voice search either on the physical or software-based remote.
Navigation. All Android Television remotes MUST include Back, Home, and Select
buttons and support for D-pad events.

7.3. Sensors

Android includes APIs for accessing a variety of sensor types. Devices implementations generally
MAY omit these sensors, as provided for in the following subsections. If a device includes a particular
sensor type that has a corresponding API for third-party developers, the device implementation MUST
implement that API as described in the Android SDK documentation and the Android Open Source
documentation on sensors. For example, device implementations:

MUST accurately report the presence or absence of sensors per the
android.content.pm.PackageManager class.
MUST return an accurate list of supported sensors via the SensorManager.getSensorList()
and similar methods.
MUST behave reasonably for all other sensor APIs (for example, by returning true or false
as appropriate when applications attempt to register listeners, not calling sensor listeners
when the corresponding sensors are not present; etc.).
MUST report all sensor measurements using the relevant International System of Units
(metric) values for each sensor type as defined in the Android SDK documentation.
SHOULD report the event time in nanoseconds as defined in the Android SDK
documentation, representing the time the event happened and synchronized with the
SystemClock.elapsedRealtimeNano() clock. Existing and new Android devices are
STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade
to the future platform releases where this might become a REQUIRED component. The
synchronization error SHOULD be below 100 milliseconds.
MUST report sensor data with a maximum latency of 100 milliseconds + 2 * sample_time
for the case of a sensor streamed with a minimum required latency of 5 ms + 2 *
sample_time when the application processor is active. This delay does not include any
filtering delays.
MUST report the first sensor sample within 400 milliseconds + 2 * sample_time of the
sensor being activated. It is acceptable for this sample to have an accuracy of 0.

The list above is not comprehensive; the documented behavior of the Android SDK and the Android
Open Source Documentations on sensors is to be considered authoritative.
Some sensor types are composite, meaning they can be derived from data provided by one or more
other sensors. (Examples include the orientation sensor and the linear acceleration sensor.) Device
implementations SHOULD implement these sensor types, when they include the prerequisite physical
sensors as described in sensor types. If a device implementation includes a composite sensor it
MUST implement the sensor as described in the Android Open Source documentation on composite
sensors.
Some Android sensors support a â€œcontinuousâ€ trigger mode, which returns data continuously.
For any API indicated by the Android SDK documentation to be a continuous sensor, device

Page 53 of 88

http://developer.android.com/reference/android/view/KeyEvent.html
http://source.android.com/devices/sensors/
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html#timestamp
http://source.android.com/devices/sensors/
https://source.android.com/devices/sensors/sensor-types.html
https://source.android.com/devices/sensors/sensor-types.html#composite_sensor_type_summary
https://source.android.com/devices/sensors/report-modes.html#continuous

implementations MUST continuously provide periodic data samples that SHOULD have a jitter below
3%, where jitter is defined as the standard deviation of the difference of the reported timestamp values
between consecutive events.
Note that the device implementations MUST ensure that the sensor event stream MUST NOT prevent
the device CPU from entering a suspend state or waking up from a suspend state.
Finally, when several sensors are activated, the power consumption SHOULD NOT exceed the sum of
the individual sensorâ€™s reported power consumption.

7.3.1. Accelerometer

Device implementations SHOULD include a 3-axis accelerometer. Android Handheld devices, Android
Automotive implementations, and Android Watch devices are STRONGLY RECOMMENDED to
include this sensor. If a device implementation does include a 3-axis accelerometer, it:

MUST implement and report TYPE_ACCELEROMETER sensor.
MUST be able to report events up to a frequency of at least 50 Hz for Android Watch
devices as such devices have a stricter power constraint and 100 Hz for all other device
types.
SHOULD report events up to at least 200 Hz.
MUST comply with the Android sensor coordinate system as detailed in the Android APIs.
Android Automotive implementations MUST comply with the Android car sensor coordinate
system.
MUST be capable of measuring from freefall up to four times the gravity (4g) or more on
any axis.
MUST have a resolution of at least 12-bits and SHOULD have a resolution of at least 16-
bits.
SHOULD be calibrated while in use if the characteristics changes over the life cycle and
compensated, and preserve the compensation parameters between device reboots.
SHOULD be temperature compensated.
MUST have a standard deviation no greater than 0.05 m/s^, where the standard deviation
should be calculated on a per axis basis on samples collected over a period of at least 3
seconds at the fastest sampling rate.
SHOULD implement the TYPE_SIGNIFICANT_MOTION, TYPE_TILT_DETECTOR,
TYPE_STEP_DETECTOR, TYPE_STEP_COUNTER composite sensors as described in
the Android SDK document. Existing and new Android devices are STRONGLY
RECOMMENDED to implement the TYPE_SIGNIFICANT_MOTION composite sensor. If
any of these sensors are implemented, the sum of their power consumption MUST always
be less than 4 mW and SHOULD each be below 2 mW and 0.5 mW for when the device is
in a dynamic or static condition.
If a gyroscope sensor is included, MUST implement the TYPE_GRAVITY and
TYPE_LINEAR_ACCELERATION composite sensors and SHOULD implement the
TYPE_GAME_ROTATION_VECTOR composite sensor. Existing and new Android devices
are STRONGLY RECOMMENDED to implement the TYPE_GAME_ROTATION_VECTOR
sensor.
MUST implement a TYPE_ROTATION_VECTOR composite sensor, if a gyroscope sensor
and a magnetometer sensor is also included.

7.3.2. Magnetometer

Device implementations SHOULD include a 3-axis magnetometer (compass). If a device does include
a 3-axis magnetometer, it:

Page 54 of 88

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://source.android.com/devices/sensors/sensor-types.html#auto_axes

MUST implement the TYPE_MAGNETIC_FIELD sensor and SHOULD also implement
TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor. Existing and new Android devices
are STRONGLY RECOMMENDED to implement the
TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor.
MUST be able to report events up to a frequency of at least 10 Hz and SHOULD report
events up to at least 50 Hz.
MUST comply with the Android sensor coordinate system as detailed in the Android APIs.
MUST be capable of measuring between -900 ÂµT and +900 ÂµT on each axis before
saturating.
MUST have a hard iron offset value less than 700 ÂµT and SHOULD have a value below
200 ÂµT, by placing the magnetometer far from dynamic (current-induced) and static
(magnet-induced) magnetic fields.
MUST have a resolution equal or denser than 0.6 ÂµT and SHOULD have a resolution
equal or denser than 0.2 ÂµT.
SHOULD be temperature compensated.
MUST support online calibration and compensation of the hard iron bias, and preserve the
compensation parameters between device reboots.
MUST have the soft iron compensation appliedâ€”the calibration can be done either while
in use or during the production of the device.
SHOULD have a standard deviation, calculated on a per axis basis on samples collected
over a period of at least 3 seconds at the fastest sampling rate, no greater than 0.5 ÂµT.
MUST implement a TYPE_ROTATION_VECTOR composite sensor, if an accelerometer
sensor and a gyroscope sensor is also included.
MAY implement the TYPE_GEOMAGNETIC_ROTATION_VECTOR sensor if an
accelerometer sensor is also implemented. However if implemented, it MUST consume
less than 10 mW and SHOULD consume less than 3 mW when the sensor is registered for
batch mode at 10 Hz.

7.3.3. GPS

Device implementations SHOULD include a GPS/GNSS receiver. If a device implementation does
include a GPS/GNSS receiver and reports the capability to applications through the
android.hardware.location.gps feature flag:

It is STRONGLY RECOMMENDED that the device continue to deliver normal GPS/GNSS
outputs to applications during an emergency phone call and that location output not be
blocked during an emergency phone call.
It MUST support location outputs at a rate of at least 1 Hz when requested via
LocationManager#requestLocationUpdate.
It MUST be able to determine the location in open-sky conditions (strong signals, negligible
multipath, HDOP < 2) within 10 seconds (fast time to first fix), when connected to a 0.5
Mbps or faster data speed internet connection. This requirement is typically met by the use
of some form of Assisted or Predicted GPS/GNSS technique to minimize GPS/GNSS lock-
on time (Assistance data includes Reference Time, Reference Location and Satellite
Ephemeris/Clock).

After making such a location calculation, it is STRONGLY RECOMMENDED for
the device to be able to determine its location, in open sky, within 10 seconds,
when location requests are restarted, up to an hour after the initial location
calculation, even when the subsequent request is made without a data
connection, and/or after a power cycle.

In open sky conditions after determining the location, while stationary or moving with less
than 1 meter per second squared of acceleration:

Page 55 of 88

http://developer.android.com/reference/android/hardware/SensorEvent.html

It MUST be able to determine location within 20 meters, and speed within 0.5
meters per second, at least 95% of the time.
It MUST simultaneously track and report via GnssStatus.Callback at least 8
satellites from one constellation.
It SHOULD be able to simultaneously track at least 24 satellites, from multiple
constellations (e.g. GPS + at least one of Glonass, Beidou, Galileo).

It MUST report the GNSS technology generation through the test API
â€˜getGnssYearOfHardwareâ€™.
It is STRONGLY RECOMMENDED to meet and MUST meet all requirements below if the
GNSS technology generation is reported as the year "2016" or newer.

It MUST report GPS measurements, as soon as they are found, even if a
location calculated from GPS/GNSS is not yet reported.
It MUST report GPS pseudoranges and pseudorange rates, that, in open-sky
conditions after determining the location, while stationary or moving with less
than 0.2 meter per second squared of acceleration, are sufficient to calculate
position within 20 meters, and speed within 0.2 meters per second, at least
95% of the time.

Note that while some of the GPS requirements above are stated as STRONGLY RECOMMENDED,
the Compatibility Definition for the next major version is expected to change these to a MUST.

7.3.4. Gyroscope

Device implementations SHOULD include a gyroscope (angular change sensor). Devices SHOULD
NOT include a gyroscope sensor unless a 3-axis accelerometer is also included. If a device
implementation includes a gyroscope, it:

MUST implement the TYPE_GYROSCOPE sensor and SHOULD also implement
TYPE_GYROSCOPE_UNCALIBRATED sensor. Existing and new Android devices are
STRONGLY RECOMMENDED to implement the
SENSOR_TYPE_GYROSCOPE_UNCALIBRATED sensor.
MUST be capable of measuring orientation changes up to 1,000 degrees per second.
MUST be able to report events up to a frequency of at least 50 Hz for Android Watch
devices as such devices have a stricter power constraint and 100 Hz for all other device
types.
SHOULD report events up to at least 200 Hz.
MUST have a resolution of 12-bits or more and SHOULD have a resolution of 16-bits or
more.
MUST be temperature compensated.
MUST be calibrated and compensated while in use, and preserve the compensation
parameters between device reboots.
MUST have a variance no greater than 1e-7 rad^2 / s^2 per Hz (variance per Hz, or rad^2 /
s). The variance is allowed to vary with the sampling rate, but must be constrained by this
value. In other words, if you measure the variance of the gyro at 1 Hz sampling rate it
should be no greater than 1e-7 rad^2/s^2.
MUST implement a TYPE_ROTATION_VECTOR composite sensor, if an accelerometer
sensor and a magnetometer sensor is also included.
If an accelerometer sensor is included, MUST implement the TYPE_GRAVITY and
TYPE_LINEAR_ACCELERATION composite sensors and SHOULD implement the
TYPE_GAME_ROTATION_VECTOR composite sensor. Existing and new Android devices
are STRONGLY RECOMMENDED to implement the TYPE_GAME_ROTATION_VECTOR
sensor.

Page 56 of 88

https://developer.android.com/reference/android/location/GnssStatus.Callback.html#GnssStatus.Callback()'

7.3.5. Barometer

Device implementations SHOULD include a barometer (ambient air pressure sensor). If a device
implementation includes a barometer, it:

MUST implement and report TYPE_PRESSURE sensor.
MUST be able to deliver events at 5 Hz or greater.
MUST have adequate precision to enable estimating altitude.
MUST be temperature compensated.

7.3.6. Thermometer

Device implementations MAY include an ambient thermometer (temperature sensor). If present, it
MUST be defined as SENSOR_TYPE_AMBIENT_TEMPERATURE and it MUST measure the
ambient (room) temperature in degrees Celsius.
Device implementations MAY but SHOULD NOT include a CPU temperature sensor. If present, it
MUST be defined as SENSOR_TYPE_TEMPERATURE, it MUST measure the temperature of the
device CPU, and it MUST NOT measure any other temperature. Note the
SENSOR_TYPE_TEMPERATURE sensor type was deprecated in Android 4.0.

For Android Automotive implementations, SENSOR_TYPE_AMBIENT_TEMPERATURE
MUST measure the temperature inside the vehicle cabin.

7.3.7. Photometer

Device implementations MAY include a photometer (ambient light sensor).

7.3.8. Proximity Sensor

Device implementations MAY include a proximity sensor. Devices that can make a voice call and
indicate any value other than PHONE_TYPE_NONE in getPhoneType SHOULD include a proximity
sensor. If a device implementation does include a proximity sensor, it:

MUST measure the proximity of an object in the same direction as the screen. That is, the
proximity sensor MUST be oriented to detect objects close to the screen, as the primary
intent of this sensor type is to detect a phone in use by the user. If a device implementation
includes a proximity sensor with any other orientation, it MUST NOT be accessible through
this API.
MUST have 1-bit of accuracy or more.

7.3.9. High Fidelity Sensors

Device implementations supporting a set of higher quality sensors that can meet all the requirements
listed in this section MUST identify the support through the android.hardware.sensor.hifi_sensors feature
flag.
A device declaring android.hardware.sensor.hifi_sensors MUST support all of the following sensor
types meeting the quality requirements as below:

SENSOR_TYPE_ACCELEROMETER
MUST have a measurement range between at least -8g and +8g.
MUST have a measurement resolution of at least 1024 LSB/G.

Page 57 of 88

MUST have a minimum measurement frequency of 12.5 Hz or lower.
MUST have a maximum measurement frequency of 400 Hz or higher.
MUST have a measurement noise not above 400 uG/âˆšHz.
MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 3000 sensor events.
MUST have a batching power consumption not worse than 3 mW.
SHOULD have a stationary noise bias stability of \<15 Î¼g âˆšHz from 24hr
static dataset.
SHOULD have a bias change vs. temperature of â‰¤ +/- 1mg / Â°C.
SHOULD have a best-fit line non-linearity of â‰¤ 0.5%, and sensitivity change
vs. temperature of â‰¤ 0.03%/CÂ°.

SENSOR_TYPE_GYROSCOPE
MUST have a measurement range between at least -1000 and +1000 dps.
MUST have a measurement resolution of at least 16 LSB/dps.
MUST have a minimum measurement frequency of 12.5 Hz or lower.
MUST have a maximum measurement frequency of 400 Hz or higher.
MUST have a measurement noise not above 0.014Â°/s/âˆšHz.
SHOULD have a stationary bias stability of < 0.0002 Â°/s âˆšHz from 24-hour
static dataset.
SHOULD have a bias change vs. temperature of â‰¤ +/- 0.05 Â°/ s / Â°C.
SHOULD have a sensitivity change vs. temperature of â‰¤ 0.02% / Â°C.
SHOULD have a best-fit line non-linearity of â‰¤ 0.2%.
SHOULD have a noise density of â‰¤ 0.007 Â°/s/âˆšHz.

SENSOR_TYPE_GYROSCOPE_UNCALIBRATED with the same quality requirements as
SENSOR_TYPE_GYROSCOPE.
SENSOR_TYPE_GEOMAGNETIC_FIELD

MUST have a measurement range between at least -900 and +900 uT.
MUST have a measurement resolution of at least 5 LSB/uT.
MUST have a minimum measurement frequency of 5 Hz or lower.
MUST have a maximum measurement frequency of 50 Hz or higher.
MUST have a measurement noise not above 0.5 uT.

SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED with the same quality
requirements as SENSOR_TYPE_GEOMAGNETIC_FIELD and in addition:

MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 600 sensor events.

SENSOR_TYPE_PRESSURE
MUST have a measurement range between at least 300 and 1100 hPa.
MUST have a measurement resolution of at least 80 LSB/hPa.
MUST have a minimum measurement frequency of 1 Hz or lower.
MUST have a maximum measurement frequency of 10 Hz or higher.
MUST have a measurement noise not above 2 Pa/âˆšHz.
MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 300 sensor events.
MUST have a batching power consumption not worse than 2 mW.

SENSOR_TYPE_GAME_ROTATION_VECTOR
MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 300 sensor events.
MUST have a batching power consumption not worse than 4 mW.

Page 58 of 88

SENSOR_TYPE_SIGNIFICANT_MOTION
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.

SENSOR_TYPE_STEP_DETECTOR
MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 100 sensor events.
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.
MUST have a batching power consumption not worse than 4 mW.

SENSOR_TYPE_STEP_COUNTER
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.

SENSOR_TILT_DETECTOR
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.

Also such a device MUST meet the following sensor subsystem requirements:

The event timestamp of the same physical event reported by the Accelerometer,
Gyroscope sensor and Magnetometer MUST be within 2.5 milliseconds of each other.
The Gyroscope sensor event timestamps MUST be on the same time base as the camera
subsystem and within 1 milliseconds of error.
High Fidelity sensors MUST deliver samples to applications within 5 milliseconds from the
time when the data is available on the physical sensor to the application.
The power consumption MUST not be higher than 0.5 mW when device is static and 2.0
mW when device is moving when any combination of the following sensors are enabled:

SENSOR_TYPE_SIGNIFICANT_MOTION
SENSOR_TYPE_STEP_DETECTOR
SENSOR_TYPE_STEP_COUNTER
SENSOR_TILT_DETECTORS

Note that all power consumption requirements in this section do not include the power consumption of
the Application Processor. It is inclusive of the power drawn by the entire sensor chainâ€”the sensor,
any supporting circuitry, any dedicated sensor processing system, etc.
The following sensor types MAY also be supported on a device implementation declaring
android.hardware.sensor.hifi_sensors, but if these sensor types are present they MUST meet the
following minimum buffering capability requirement:

SENSOR_TYPE_PROXIMITY: 100 sensor events

7.3.10. Fingerprint Sensor

Device implementations with a secure lock screen SHOULD include a fingerprint sensor. If a device
implementation includes a fingerprint sensor and has a corresponding API for third-party developers,
it:

MUST declare support for the android.hardware.fingerprint feature.
MUST fully implement the corresponding API as described in the Android SDK
documentation.
MUST have a false acceptance rate not higher than 0.002%.
Is STRONGLY RECOMMENDED to have a false rejection rate of less than 10%, as

Page 59 of 88

https://developer.android.com/reference/android/hardware/fingerprint/package-summary.html

measured on the device
Is STRONGLY RECOMMENDED to have a latency below 1 second, measured from when
the fingerprint sensor is touched until the screen is unlocked, for one enrolled finger.
MUST rate limit attempts for at least 30 seconds after five false trials for fingerprint
verification.
MUST have a hardware-backed keystore implementation, and perform the fingerprint
matching in a Trusted Execution Environment (TEE) or on a chip with a secure channel to
the TEE.
MUST have all identifiable fingerprint data encrypted and cryptographically authenticated
such that they cannot be acquired, read or altered outside of the Trusted Execution
Environment (TEE) as documented in the implementation guidelines on the Android Open
Source Project site.
MUST prevent adding a fingerprint without first establishing a chain of trust by having the
user confirm existing or add a new device credential (PIN/pattern/password) that's secured
by TEE; the Android Open Source Project implementation provides the mechanism in the
framework to do so.
MUST NOT enable 3rd-party applications to distinguish between individual fingerprints.
MUST honor the DevicePolicyManager.KEYGUARD_DISABLE_FINGERPRINT flag.
MUST, when upgraded from a version earlier than Android 6.0, have the fingerprint data
securely migrated to meet the above requirements or removed.
SHOULD use the Android Fingerprint icon provided in the Android Open Source Project.

7.3.11. Android Automotive-only sensors

Automotive-specific sensors are defined in the android.car.CarSensorManager API.

7.3.11.1. Current Gear

Android Automotive implementations SHOULD provide current gear as SENSOR_TYPE_GEAR.

7.3.11.2. Day Night Mode

Android Automotive implementations MUST support day/night mode defined as
SENSOR_TYPE_NIGHT. The value of this flag MUST be consistent with dashboard day/night mode
and SHOULD be based on ambient light sensor input. The underlying ambient light sensor MAY be
the same as Photometer.

7.3.11.3. Driving Status

Android Automotive implementations MUST support driving status defined as
SENSOR_TYPE_DRIVING_STATUS, with a default value of DRIVE_STATUS_UNRESTRICTED
when the vehicle is fully stopped and parked. It is the responsibility of device manufacturers to
configure SENSOR_TYPE_DRIVING_STATUS in compliance with all laws and regulations that apply
to markets where the product is shipping.

7.3.11.4. Wheel Speed

Android Automotive implementations MUST provide vehicle speed defined as
SENSOR_TYPE_CAR_SPEED.

Page 60 of 88

https://source.android.com/devices/tech/security/authentication/fingerprint-hal.html

7.3.12. Pose Sensor

Device implementations MAY support pose sensor with 6 degrees of freedom. Android Handheld
devices are RECOMMENDED to support this sensor. If a device implementation does support pose
sensor with 6 degrees of freedom, it:

MUST implement and report TYPE_POSE_6DOF sensor.
MUST be more accurate than the rotation vector alone.

7.4. Data Connectivity

7.4.1. Telephony

â€œTelephonyâ€ as used by the Android APIs and this document refers specifically to hardware
related to placing voice calls and sending SMS messages via a GSM or CDMA network. While these
voice calls may or may not be packet-switched, they are for the purposes of Android considered
independent of any data connectivity that may be implemented using the same network. In other
words, the Android â€œtelephonyâ€ functionality and APIs refer specifically to voice calls and SMS.
For instance, device implementations that cannot place calls or send/receive SMS messages MUST
NOT report the android.hardware.telephony feature or any subfeatures, regardless of whether they
use a cellular network for data connectivity.
Android MAY be used on devices that do not include telephony hardware. That is, Android is
compatible with devices that are not phones. However, if a device implementation does include GSM
or CDMA telephony, it MUST implement full support for the API for that technology. Device
implementations that do not include telephony hardware MUST implement the full APIs as no-ops.

7.4.1.1. Number Blocking Compatibility

Android Telephony device implementations MUST include number blocking support and:

MUST fully implement BlockedNumberContract and the corresponding API as described in
the SDK documentation.
MUST block all calls and messages from a phone number in 'BlockedNumberProvider'
without any interaction with apps. The only exception is when number blocking is
temporarily lifted as described in the SDK documentation.
MUST NOT write to the platform call log provider for a blocked call.
MUST NOT write to the Telephony provider for a blocked message.
MUST implement a blocked numbers management UI, which is opened with the intent
returned by TelecomManager.createManageBlockedNumbersIntent() method.
MUST NOT allow secondary users to view or edit the blocked numbers on the device as
the Android platform assumes the primary user to have full control of the telephony
services, a single instance, on the device. All blocking related UI MUST be hidden for
secondary users and the blocked list MUST still be respected.
SHOULD migrate the blocked numbers into the provider when a device updates to Android
7.0.

7.4.2. IEEE 802.11 (Wi-Fi)

All Android device implementations SHOULD include support for one or more forms of 802.11. If a
device implementation does include support for 802.11 and exposes the functionality to a third-party
application, it MUST implement the corresponding Android API and:

Page 61 of 88

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_POSE_6DOF
http://developer.android.com/reference/android/provider/BlockedNumberContract.html
http://developer.android.com/reference/android/provider/CallLog.html
http://developer.android.com/reference/android/provider/Telephony.html

MUST report the hardware feature flag android.hardware.wifi.
MUST implement the multicast API as described in the SDK documentation.
MUST support multicast DNS (mDNS) and MUST NOT filter mDNS packets (224.0.0.251)
at any time of operation including:

Even when the screen is not in an active state.
For Android Television device implementations, even when in standby power
states.

7.4.2.1. Wi-Fi Direct

Device implementations SHOULD include support for Wi-Fi Direct (Wi-Fi peer-to-peer). If a device
implementation does include support for Wi-Fi Direct, it MUST implement the corresponding Android
API as described in the SDK documentation. If a device implementation includes support for Wi-Fi
Direct, then it:

MUST report the hardware feature android.hardware.wifi.direct.
MUST support regular Wi-Fi operation.
SHOULD support concurrent Wi-Fi and Wi-Fi Direct operation.

7.4.2.2. Wi-Fi Tunneled Direct Link Setup

Device implementations SHOULD include support for Wi-Fi Tunneled Direct Link Setup (TDLS) as
described in the Android SDK Documentation. If a device implementation does include support for
TDLS and TDLS is enabled by the WiFiManager API, the device:

SHOULD use TDLS only when it is possible AND beneficial.
SHOULD have some heuristic and NOT use TDLS when its performance might be worse
than going through the Wi-Fi access point.

7.4.3. Bluetooth

Android Watch implementations MUST support Bluetooth. Android Television implementations
MUST support Bluetooth and Bluetooth LE. Android Automotive implementations MUST
support Bluetooth and SHOULD support Bluetooth LE.

Device implementations that support android.hardware.vr.high_performance feature MUST support
Bluetooth 4.2 and Bluetooth LE Data Length Extension.
Android includes support for Bluetooth and Bluetooth Low Energy. Device implementations that
include support for Bluetooth and Bluetooth Low Energy MUST declare the relevant platform features
(android.hardware.bluetooth and android.hardware.bluetooth_le respectively) and implement the
platform APIs. Device implementations SHOULD implement relevant Bluetooth profiles such as A2DP,
AVCP, OBEX, etc. as appropriate for the device.
Android Automotive implementations SHOULD support Message Access Profile (MAP). Android
Automotive implementations MUST support the following Bluetooth profiles:

Phone calling over Hands-Free Profile (HFP).
Media playback over Audio Distribution Profile (A2DP).
Media playback control over Remote Control Profile (AVRCP).
Contact sharing using the Phone Book Access Profile (PBAP).

Device implementations including support for Bluetooth Low Energy:

Page 62 of 88

http://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock.html
http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html
http://developer.android.com/reference/android/net/wifi/WifiManager.html
http://developer.android.com/reference/android/bluetooth/package-summary.html

MUST declare the hardware feature android.hardware.bluetooth_le.
MUST enable the GATT (generic attribute profile) based Bluetooth APIs as described in
the SDK documentation and android.bluetooth.
are STRONGLY RECOMMENDED to implement a Resolvable Private Address (RPA)
timeout no longer than 15 minutes and rotate the address at timeout to protect user
privacy.
SHOULD support offloading of the filtering logic to the bluetooth chipset when
implementing the ScanFilter API, and MUST report the correct value of where the filtering
logic is implemented whenever queried via the
android.bluetooth.BluetoothAdapter.isOffloadedFilteringSupported() method.
SHOULD support offloading of the batched scanning to the bluetooth chipset, but if not
supported, MUST report â€˜falseâ€™ whenever queried via the
android.bluetooth.BluetoothAdapter.isOffloadedScanBatchingSupported() method.
SHOULD support multi advertisement with at least 4 slots, but if not supported, MUST
report â€˜falseâ€™ whenever queried via the
android.bluetooth.BluetoothAdapter.isMultipleAdvertisementSupported() method.

7.4.4. Near-Field Communications

Device implementations SHOULD include a transceiver and related hardware for Near-Field
Communications (NFC). If a device implementation does include NFC hardware and plans to make it
available to third-party apps, then it:

MUST report the android.hardware.nfc feature from the
android.content.pm.PackageManager.hasSystemFeature() method.
MUST be capable of reading and writing NDEF messages via the following NFC
standards:

MUST be capable of acting as an NFC Forum reader/writer (as defined by the
NFC Forum technical specification NFCForum-TS-DigitalProtocol-1.0) via the
following NFC standards:

NfcA (ISO14443-3A)
NfcB (ISO14443-3B)
NfcF (JIS X 6319-4)
IsoDep (ISO 14443-4)
NFC Forum Tag Types 1, 2, 3, 4 (defined by the NFC Forum)

STRONGLY RECOMMENDED to be capable of reading and writing NDEF
messages as well as raw data via the following NFC standards. Note that while
the NFC standards below are stated as STRONGLY RECOMMENDED, the
Compatibility Definition for a future version is planned to change these to
MUST. These standards are optional in this version but will be required in future
versions. Existing and new devices that run this version of Android are very
strongly encouraged to meet these requirements now so they will be able to
upgrade to the future platform releases.

NfcV (ISO 15693)
SHOULD be capable of reading the barcode and URL (if encoded) of Thinfilm
NFC Barcode products.
MUST be capable of transmitting and receiving data via the following peer-to-
peer standards and protocols:

ISO 18092
LLCP 1.2 (defined by the NFC Forum)
SDP 1.0 (defined by the NFC Forum)

Page 63 of 88

http://developer.android.com/reference/android/bluetooth/package-summary.html
https://developer.android.com/reference/android/bluetooth/le/ScanFilter.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/nfc/tech/NfcBarcode.html

NDEF Push Protocol
SNEP 1.0 (defined by the NFC Forum)

MUST include support for Android Beam.
MUST implement the SNEP default server. Valid NDEF messages received by
the default SNEP server MUST be dispatched to applications using the
android.nfc.ACTION_NDEF_DISCOVERED intent. Disabling Android Beam in
settings MUST NOT disable dispatch of incoming NDEF message.
MUST honor the android.settings.NFCSHARING_SETTINGS intent to show
NFC sharing settings.
MUST implement the NPP server. Messages received by the NPP server
MUST be processed the same way as the SNEP default server.
MUST implement a SNEP client and attempt to send outbound P2P NDEF to
the default SNEP server when Android Beam is enabled. If no default SNEP
server is found then the client MUST attempt to send to an NPP server.
MUST allow foreground activities to set the outbound P2P NDEF message
using android.nfc.NfcAdapter.setNdefPushMessage, and
android.nfc.NfcAdapter.setNdefPushMessageCallback, and
android.nfc.NfcAdapter.enableForegroundNdefPush.
SHOULD use a gesture or on-screen confirmation, such as 'Touch to Beam',
before sending outbound P2P NDEF messages.
SHOULD enable Android Beam by default and MUST be able to send and
receive using Android Beam, even when another proprietary NFC P2p mode is
turned on.
MUST support NFC Connection handover to Bluetooth when the device
supports Bluetooth Object Push Profile. Device implementations MUST support
connection handover to Bluetooth when using
android.nfc.NfcAdapter.setBeamPushUris, by implementing the â€œ
Connection Handover version 1.2 â€ and â€œ Bluetooth Secure Simple Pairing
Using NFC version 1.0 â€ specs from the NFC Forum. Such an implementation
MUST implement the handover LLCP service with service name
â€œurn:nfc:sn:handoverâ€ for exchanging the handover request/select records
over NFC, and it MUST use the Bluetooth Object Push Profile for the actual
Bluetooth data transfer. For legacy reasons (to remain compatible with Android
4.1 devices), the implementation SHOULD still accept SNEP GET requests for
exchanging the handover request/select records over NFC. However an
implementation itself SHOULD NOT send SNEP GET requests for performing
connection handover.
MUST poll for all supported technologies while in NFC discovery mode.
SHOULD be in NFC discovery mode while the device is awake with the screen
active and the lock-screen unlocked.

(Note that publicly available links are not available for the JIS, ISO, and NFC Forum specifications
cited above.)
Android includes support for NFC Host Card Emulation (HCE) mode. If a device implementation does
include an NFC controller chipset capable of HCE (for NfcA and/or NfcB) and it supports Application ID
(AID) routing, then it:

MUST report the android.hardware.nfc.hce feature constant.
MUST support NFC HCE APIs as defined in the Android SDK.

If a device implementation does include an NFC controller chipset capable of HCE for NfcF, and it
implements the feature for third-party applications, then it:

Page 64 of 88

http://static.googleusercontent.com/media/source.android.com/en/us/compatibility/ndef-push-protocol.pdf
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFCSHARING_SETTINGS
http://members.nfc-forum.org/specs/spec_list/#conn_handover
http://members.nfc-forum.org/apps/group_public/download.php/18688/NFCForum-AD-BTSSP_1_1.pdf
http://developer.android.com/guide/topics/connectivity/nfc/hce.html

MUST report the android.hardware.nfc.hcef feature constant.
MUST implement the [NfcF Card Emulation APIs]
(https://developer.android.com/reference/android/nfc/cardemulation/NfcFCardEmulation.html)
as defined in the Android SDK.

Additionally, device implementations MAY include reader/writer support for the following MIFARE
technologies.

MIFARE Classic
MIFARE Ultralight
NDEF on MIFARE Classic

Note that Android includes APIs for these MIFARE types. If a device implementation supports
MIFARE in the reader/writer role, it:

MUST implement the corresponding Android APIs as documented by the Android SDK.
MUST report the feature com.nxp.mifare from the
android.content.pm.PackageManager.hasSystemFeature() method. Note that this is not a
standard Android feature and as such does not appear as a constant in the
android.content.pm.PackageManager class.
MUST NOT implement the corresponding Android APIs nor report the com.nxp.mifare
feature unless it also implements general NFC support as described in this section.

If a device implementation does not include NFC hardware, it MUST NOT declare the
android.hardware.nfc feature from the android.content.pm.PackageManager.hasSystemFeature()
method, and MUST implement the Android NFC API as a no-op.
As the classes android.nfc.NdefMessage and android.nfc.NdefRecord represent a protocol-
independent data representation format, device implementations MUST implement these APIs even if
they do not include support for NFC or declare the android.hardware.nfc feature.

7.4.5. Minimum Network Capability

Device implementations MUST include support for one or more forms of data networking. Specifically,
device implementations MUST include support for at least one data standard capable of 200Kbit/sec
or greater. Examples of technologies that satisfy this requirement include EDGE, HSPA, EV-DO,
802.11g, Ethernet, Bluetooth PAN, etc.
Device implementations where a physical networking standard (such as Ethernet) is the primary data
connection SHOULD also include support for at least one common wireless data standard, such as
802.11 (Wi-Fi).
Devices MAY implement more than one form of data connectivity.
Devices MUST include an IPv6 networking stack and support IPv6 communication using the managed
APIs, such as java.net.Socket and java.net.URLConnection, as well as the native APIs, such as
AF_INET6 sockets. The required level of IPv6 support depends on the network type, as follows:

Devices that support Wi-Fi networks MUST support dual-stack and IPv6-only operation on
Wi-Fi.
Devices that support Ethernet networks MUST support dual-stack operation on Ethernet.
Devices that support cellular data SHOULD support IPv6 operation (IPv6-only and
possibly dual-stack) on cellular data.
When a device is simultaneously connected to more than one network (e.g., Wi-Fi and
cellular data), it MUST simultaneously meet these requirements on each network to which
it is connected.

Page 65 of 88

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html

IPv6 MUST be enabled by default.
In order to ensure that IPv6 communication is as reliable as IPv4, unicast IPv6 packets sent to the
device MUST NOT be dropped, even when the screen is not in an active state. Redundant multicast
IPv6 packets, such as repeated identical Router Advertisements, MAY be rate-limited in hardware or
firmware if doing so is necessary to save power. In such cases, rate-limiting MUST NOT cause the
device to lose IPv6 connectivity on any IPv6-compliant network that uses RA lifetimes of at least 180
seconds.
IPv6 connectivity MUST be maintained in doze mode.

7.4.6. Sync Settings

Device implementations MUST have the master auto-sync setting on by default so that the method
getMasterSyncAutomatically() returns â€œtrueâ€ .

7.4.7. Data Saver

Device implementations with a metered connection are STRONGLY RECOMMENDED to provide the
data saver mode.
If a device implementation provides the data saver mode, it:

MUST support all the APIs in the ConnectivityManager class as described in the SDK
documentation

MUST provide a user interface in the settings, allowing users to add applications to or
remove applications from the whitelist.

Conversely if a device implementation does not provide the data saver mode, it:

MUST return the value RESTRICT_BACKGROUND_STATUS_DISABLED for
ConnectivityManager.getRestrictBackgroundStatus()

MUST not broadcast
ConnectivityManager.ACTION_RESTRICT_BACKGROUND_CHANGED

MUST have an activity that handles the
Settings.ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS intent but
MAY implement it as a no-op.

7.5. Cameras

Device implementations SHOULD include a rear-facing camera and MAY include a front-facing
camera. A rear-facing camera is a camera located on the side of the device opposite the display; that
is, it images scenes on the far side of the device, like a traditional camera. A front-facing camera is a
camera located on the same side of the device as the display; that is, a camera typically used to
image the user, such as for video conferencing and similar applications.
If a device implementation includes at least one camera, it MUST be possible for an application to
simultaneously allocate 3 RGBA_8888 bitmaps equal to the size of the images produced by the
largest-resolution camera sensor on the device, while camera is open for the purpose of basic preview
and still capture.

7.5.1. Rear-Facing Camera

Page 66 of 88

http://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/training/basics/network-ops/data-saver.html
https://developer.android.com/reference/android/net/ConnectivityManager.html#getRestrictBackgroundStatus%28%29

Device implementations SHOULD include a rear-facing camera. If a device implementation includes at
least one rear-facing camera, it:

MUST report the feature flag android.hardware.camera and android.hardware.camera.any.
MUST have a resolution of at least 2 megapixels.
SHOULD have either hardware auto-focus or software auto-focus implemented in the
camera driver (transparent to application software).
MAY have fixed-focus or EDOF (extended depth of field) hardware.
MAY include a flash. If the Camera includes a flash, the flash lamp MUST NOT be lit while
an android.hardware.Camera.PreviewCallback instance has been registered on a Camera
preview surface, unless the application has explicitly enabled the flash by enabling the
FLASH_MODE_AUTO or FLASH_MODE_ON attributes of a Camera.Parameters object.
Note that this constraint does not apply to the deviceâ€™s built-in system camera
application, but only to third-party applications using Camera.PreviewCallback.

7.5.2. Front-Facing Camera

Device implementations MAY include a front-facing camera. If a device implementation includes at
least one front-facing camera, it:

MUST report the feature flag android.hardware.camera.any and
android.hardware.camera.front.
MUST have a resolution of at least VGA (640x480 pixels).
MUST NOT use a front-facing camera as the default for the Camera API. The camera API
in Android has specific support for front-facing cameras and device implementations
MUST NOT configure the API to to treat a front-facing camera as the default rear-facing
camera, even if it is the only camera on the device.
MAY include features (such as auto-focus, flash, etc.) available to rear-facing cameras as
described in section 7.5.1.
MUST horizontally reflect (i.e. mirror) the stream displayed by an app in a CameraPreview,
as follows:

If the device implementation is capable of being rotated by user (such as
automatically via an accelerometer or manually via user input), the camera
preview MUST be mirrored horizontally relative to the deviceâ€™s current
orientation.
If the current application has explicitly requested that the Camera display be
rotated via a call to the android.hardware.Camera.setDisplayOrientation()
method, the camera preview MUST be mirrored horizontally relative to the
orientation specified by the application.
Otherwise, the preview MUST be mirrored along the deviceâ€™s default
horizontal axis.

MUST mirror the image displayed by the postview in the same manner as the camera
preview image stream. If the device implementation does not support postview, this
requirement obviously does not apply.
MUST NOT mirror the final captured still image or video streams returned to application
callbacks or committed to media storage.

7.5.3. External Camera

Device implementations MAY include support for an external camera that is not necessarily always
connected. If a device includes support for an external camera, it:

Page 67 of 88

http://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)

MUST declare the platform feature flag android.hardware.camera.external and
android.hardware camera.any.
MAY support multiple cameras.
MUST support USB Video Class (UVC 1.0 or higher) if the external camera connects
through the USB port.
SHOULD support video compressions such as MJPEG to enable transfer of high-quality
unencoded streams (i.e. raw or independently compressed picture streams).
MAY support camera-based video encoding. If supported, a simultaneous unencoded /
MJPEG stream (QVGA or greater resolution) MUST be accessible to the device
implementation.

7.5.4. Camera API Behavior

Android includes two API packages to access the camera, the newer android.hardware.camera2 API
expose lower-level camera control to the app, including efficient zero-copy burst/streaming flows and
per-frame controls of exposure, gain, white balance gains, color conversion, denoising, sharpening,
and more.
The older API package, android.hardware.Camera, is marked as deprecated in Android 5.0 but as it
should still be available for apps to use Android device implementations MUST ensure the continued
support of the API as described in this section and in the Android SDK.
Device implementations MUST implement the following behaviors for the camera-related APIs, for all
available cameras:

If an application has never called
android.hardware.Camera.Parameters.setPreviewFormat(int), then the device MUST use
android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to application
callbacks.
If an application registers an android.hardware.Camera.PreviewCallback instance and the
system calls the onPreviewFrame() method when the preview format is YCbCr_420_SP,
the data in the byte[] passed into onPreviewFrame() must further be in the NV21 encoding
format. That is, NV21 MUST be the default.
For android.hardware.Camera, device implementations MUST support the YV12 format
(as denoted by the android.graphics.ImageFormat.YV12 constant) for camera previews for
both front- and rear-facing cameras. (The hardware video encoder and camera may use
any native pixel format, but the device implementation MUST support conversion to YV12.)
For android.hardware.camera2, device implementations must support the
android.hardware.ImageFormat.YUV_420_888 and android.hardware.ImageFormat.JPEG
formats as outputs through the android.media.ImageReader API.

Device implementations MUST still implement the full Camera API included in the Android SDK
documentation, regardless of whether the device includes hardware autofocus or other capabilities.
For instance, cameras that lack autofocus MUST still call any registered
android.hardware.Camera.AutoFocusCallback instances (even though this has no relevance to a non-
autofocus camera.) Note that this does apply to front-facing cameras; for instance, even though most
front-facing cameras do not support autofocus, the API callbacks must still be â€œfakedâ€ as
described.
Device implementations MUST recognize and honor each parameter name defined as a constant on
the android.hardware.Camera.Parameters class, if the underlying hardware supports the feature. If the
device hardware does not support a feature, the API must behave as documented. Conversely,
device implementations MUST NOT honor or recognize string constants passed to the
android.hardware.Camera.setParameters() method other than those documented as constants on the
android.hardware.Camera.Parameters. That is, device implementations MUST support all standard

Page 68 of 88

http://developer.android.com/reference/android/hardware/Camera.html
http://developer.android.com/reference/android/hardware/Camera.Parameters.html

Camera parameters if the hardware allows, and MUST NOT support custom Camera parameter types.
For instance, device implementations that support image capture using high dynamic range (HDR)
imaging techniques MUST support camera parameter Camera.SCENE_MODE_HDR.
Because not all device implementations can fully support all the features of the
android.hardware.camera2 API, device implementations MUST report the proper level of support with
the android.info.supportedHardwareLevel property as described in the Android SDK and report the
appropriate framework feature flags.
Device implementations MUST also declare its Individual camera capabilities of
android.hardware.camera2 via the android.request.availableCapabilities property and declare the
appropriate feature flags ; a device must define the feature flag if any of its attached camera devices
supports the feature.
Device implementations MUST broadcast the Camera.ACTION_NEW_PICTURE intent whenever a
new picture is taken by the camera and the entry of the picture has been added to the media store.
Device implementations MUST broadcast the Camera.ACTION_NEW_VIDEO intent whenever a new
video is recorded by the camera and the entry of the picture has been added to the media store.

7.5.5. Camera Orientation

Both front- and rear-facing cameras, if present, MUST be oriented so that the long dimension of the
camera aligns with the screenâ€™s long dimension. That is, when the device is held in the landscape
orientation, cameras MUST capture images in the landscape orientation. This applies regardless of
the deviceâ€™s natural orientation; that is, it applies to landscape-primary devices as well as portrait-
primary devices.

7.6. Memory and Storage

7.6.1. Minimum Memory and Storage

Android Television devices MUST have at least 4GB of non-volatile storage available for
application private data.

The memory available to the kernel and userspace on device implementations MUST be at least
equal or larger than the minimum values specified by the following table. (See section 7.1.1 for screen
size and density definitions.)

Density and screen size 32-bit device 64-bit device

Android Watch devices (due to smaller screens) 416MB Not applicable

280dpi or lower on small/normal screens
mdpi or lower on large screens
ldpi or lower on extra large screens

512MB 816MB

xhdpi or higher on small/normal screens
hdpi or higher on large screens
mdpi or higher on extra large screens

608MB 944MB

400dpi or higher on small/normal screens
xhdpi or higher on large screens
tvdpi or higher on extra large screens

896MB 1280MB

Page 69 of 88

https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#INFO_SUPPORTED_HARDWARE_LEVEL
http://source.android.com/devices/camera/versioning.html
http://source.android.com/devices/camera/versioning.html

560dpi or higher on small/normal screens
400dpi or higher on large screens
xhdpi or higher on extra large screens

1344MB 1824MB

The minimum memory values MUST be in addition to any memory space already dedicated to
hardware components such as radio, video, and so on that is not under the kernelâ€™s control.
Device implementations with less than 512MB of memory available to the kernel and userspace,
unless an Android Watch, MUST return the value "true" for ActivityManager.isLowRamDevice().
Android Television devices MUST have at least 4GB and other device implementations MUST have at
least 3GB of non-volatile storage available for application private data. That is, the /data partition
MUST be at least 4GB for Android Television devices and at least 3GB for other device
implementations. Device implementations that run Android are STRONGLY RECOMMENDED to
have at least 4GB of non-volatile storage for application private data so they will be able to upgrade to
the future platform releases.
The Android APIs include a Download Manager that applications MAY use to download data files. The
device implementation of the Download Manager MUST be capable of downloading individual files of
at least 100MB in size to the default â€œcacheâ€ location.

7.6.2. Application Shared Storage

Device implementations MUST offer shared storage for applications also often referred as â€œshared
external storageâ€ .
Device implementations MUST be configured with shared storage mounted by default, â€œout of the
boxâ€ . If the shared storage is not mounted on the Linuxpath /sdcard, then the device MUST include a
Linux symbolic link from /sdcard to the actual mount point.
Device implementations MAY have hardware for user-accessible removable storage, such as a
Secure Digital (SD) card slot. If this slot is used to satisfy the shared storage requirement, the device
implementation:

MUST implement a toast or pop-up user interface warning the user when there is no SD
card.
MUST include a FAT-formatted SD card 1GB in size or larger OR show on the box and
other material available at time of purchase that the SD card has to be separately
purchased.
MUST mount the SD card by default.

Alternatively, device implementations MAY allocate internal (non-removable) storage as shared
storage for apps as included in the upstream Android Open Source Project; device implementations
SHOULD use this configuration and software implementation. If a device implementation uses internal
(non-removable) storage to satisfy the shared storage requirement, while that storage MAY share
space with the application private data, it MUST be at least 1GB in size and mounted on /sdcard (or
/sdcard MUST be a symbolic link to the physical location if it is mounted elsewhere).
Device implementations MUST enforce as documented the
android.permission.WRITE_EXTERNAL_STORAGE permission on this shared storage. Shared
storage MUST otherwise be writable by any application that obtains that permission.
Device implementations that include multiple shared storage paths (such as both an SD card slot and
shared internal storage) MUST allow only pre-installed & privileged Android applications with the
WRITE_EXTERNAL_STORAGE permission to write to the secondary external storage, except when
writing to their package-specific directories or within the URI returned by firing the

Page 70 of 88

http://developer.android.com/reference/android/app/DownloadManager.html

ACTION_OPEN_DOCUMENT_TREE intent.
However, device implementations SHOULD expose content from both storage paths transparently
through Androidâ€™s media scanner service and android.provider.MediaStore.
Regardless of the form of shared storage used, if the device implementation has a USB port with USB
peripheral mode support, it MUST provide some mechanism to access the contents of shared storage
from a host computer. Device implementations MAY use USB mass storage, but SHOULD use Media
Transfer Protocol to satisfy this requirement. If the device implementation supports Media Transfer
Protocol, it:

SHOULD be compatible with the reference Android MTP host, Android File Transfer.
SHOULD report a USB device class of 0x00.
SHOULD report a USB interface name of 'MTP'.

7.6.3. Adoptable Storage

Device implementations are STRONGLY RECOMMENDED to implement adoptable storage if the
removable storage device port is in a long-term stable location, such as within the battery
compartment or other protective cover.
Device implementations such as a television, MAY enable adoption through USB ports as the device
is expected to be static and not mobile. But for other device implementations that are mobile in nature,
it is STRONGLY RECOMMENDED to implement the adoptable storage in a long-term stable location,
since accidentally disconnecting them can cause data loss/corruption.

7.7. USB

Device implementations SHOULD support USB peripheral mode and SHOULD support USB host
mode.

7.7.1. USB peripheral mode

If a device implementation includes a USB port supporting peripheral mode:

The port MUST be connectable to a USB host that has a standard type-A or type-C USB
port.
The port SHOULD use micro-B, micro-AB or Type-C USB form factor. Existing and new
Android devices are STRONGLY RECOMMENDED to meet these requirements so they
will be able to upgrade to the future platform releases.
The port SHOULD be located on the bottom of the device (according to natural orientation)
or enable software screen rotation for all apps (including home screen), so that the display
draws correctly when the device is oriented with the port at bottom. Existing and new
Android devices are STRONGLY RECOMMENDED to meet these requirements so they
will be able to upgrade to future platform releases.
It MUST allow a USB host connected with the Android device to access the contents of the
shared storage volume using either USB mass storage or Media Transfer Protocol.
It SHOULD implement the Android Open Accessory (AOA) API and specification as
documented in the Android SDK documentation, and if it is an Android Handheld device it
MUST implement the AOA API. Device implementations implementing the AOA
specification:

MUST declare support for the hardware feature
android.hardware.usb.accessory.
MUST implement the USB audio class as documented in the Android SDK

Page 71 of 88

http://www.android.com/filetransfer
http://source.android.com/devices/storage/adoptable.html
http://developer.android.com/guide/topics/connectivity/usb/accessory.html
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO

documentation.
The USB mass storage class MUST include the string "android" at the end of
the interface description iInterface string of the USB mass storage

It SHOULD implement support to draw 1.5 A current during HS chirp and traffic as
specified in the USB Battery Charging specification, revision 1.2. Existing and new Android
devices are STRONGLY RECOMMENDED to meet these requirements so they will be
able to upgrade to the future platform releases.
Type-C devices MUST detect 1.5A and 3.0A chargers per the Type-C resistor standard
and it must detect changes in the advertisement.
Type-C devices also supporting USB host mode are STRONGLY RECOMMENDED to
support Power Delivery for data and power role swapping.
Type-C devices SHOULD support Power Delivery for high-voltage charging and support
for Alternate Modes such as display out.
The value of iSerialNumber in USB standard device descriptor MUST be equal to the value
of android.os.Build.SERIAL.
Type-C devices are STRONGLY RECOMMENDED to not support proprietary charging
methods that modify Vbus voltage beyond default levels, or alter sink/source roles as such
may result in interoperability issues with the chargers or devices that support the standard
USB Power Delivery methods. While this is called out as "STRONGLY RECOMMENDED",
in future Android versions we might REQUIRE all type-C devices to support full
interoperability with standard type-C chargers.

7.7.2. USB host mode

If a device implementation includes a USB port supporting host mode, it:

SHOULD use a type-C USB port, if the device implementation supports USB 3.1.
MAY use a non-standard port form factor, but if so MUST ship with a cable or cables
adapting the port to a standard type-A or type-C USB port.
MAY use a micro-AB USB port, but if so SHOULD ship with a cable or cables adapting the
port to a standard type-A or type-C USB port.
is STRONGLY RECOMMENDED to implement the USB audio class as documented in the
Android SDK documentation.
MUST implement the Android USB host API as documented in the Android SDK, and
MUST declare support for the hardware feature android.hardware.usb.host.
SHOULD support the Charging Downstream Port output current range of 1.5 A ~ 5 A as
specified in the USB Battery Charging specifications, revision 1.2.
USB Type-C devices are STRONGLY RECOMMENDED to support DisplayPort, SHOULD
support USB SuperSpeed Data Rates, and are STRONGLY RECOMMENDED to support
Power Delivery for data and power role swapping.
Devices with any type-A or type-AB ports MUST NOT ship with an adapter converting from
this port to a type-C receptacle.
MUST recognize any remotely connected MTP (Media Transfer Protocol) devices and
make their contents accessible through the ACTION_GET_CONTENT,
ACTION_OPEN_DOCUMENT, and ACTION_CREATE_DOCUMENT intents, if the Storage
Access Framework (SAF) is supported.
MUST, if using a Type-C USB port and including support for peripheral mode, implement
Dual Role Port functionality as defined by the USB Type-C specification (section 4.5.1.3.3).
SHOULD, if the Dual Role Port functionality is supported, implement the Try.* model that is
most appropriate for the device form factor. For example a handheld device SHOULD
implement the Try.SNK model.

Page 72 of 88

http://www.usb.org/developers/docs/devclass_docs/BCv1.2_070312.zip
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://developer.android.com/guide/topics/connectivity/usb/host.html
http://www.usb.org/developers/docs/devclass_docs/BCv1.2_070312.zip

7.8. Audio

7.8.1. Microphone

Android Handheld, Watch, and Automotive implementations MUST include a microphone.

Device implementations MAY omit a microphone. However, if a device implementation omits a
microphone, it MUST NOT report the android.hardware.microphone feature constant, and MUST
implement the audio recording API at least as no-ops, per section 7. Conversely, device
implementations that do possess a microphone:

MUST report the android.hardware.microphone feature constant.
MUST meet the audio recording requirements in section 5.4.
MUST meet the audio latency requirements in section 5.6.
STRONGLY RECOMMENDED to support near-ultrasound recording as described in
section 7.8.3.

7.8.2. Audio Output

Android Watch devices MAY include an audio output.

Device implementations including a speaker or with an audio/multimedia output port for an audio
output peripheral as a headset or an external speaker:

MUST report the android.hardware.audio.output feature constant.
MUST meet the audio playback requirements in section 5.5.
MUST meet the audio latency requirements in section 5.6.
STRONGLY RECOMMENDED to support near-ultrasound playback as described in
section 7.8.3.

Conversely, if a device implementation does not include a speaker or audio output port, it MUST NOT
report the android.hardware.audio output feature, and MUST implement the Audio Output related APIs
as no-ops at least.
Android Watch device implementation MAY but SHOULD NOT have audio output, but other types of
Android device implementations MUST have an audio output and declare
android.hardware.audio.output.

7.8.2.1. Analog Audio Ports

In order to be compatible with the headsets and other audio accessories using the 3.5mm audio plug
across the Android ecosystem, if a device implementation includes one or more analog audio ports, at
least one of the audio port(s) SHOULD be a 4 conductor 3.5mm audio jack. If a device implementation
has a 4 conductor 3.5mm audio jack, it:

MUST support audio playback to stereo headphones and stereo headsets with a
microphone, and SHOULD support audio recording from stereo headsets with a
microphone.
MUST support TRRS audio plugs with the CTIA pin-out order, and SHOULD support audio
plugs with the OMTP pin-out order.
MUST support the detection of microphone on the plugged in audio accessory, if the
device implementation supports a microphone, and broadcast the
android.intent.action.HEADSET_PLUG with the extra value microphone set as 1.
MUST support the detection and mapping to the keycodes for the following 3 ranges of

Page 73 of 88

http://source.android.com/accessories/headset-spec.html

equivalent impedance between the microphone and ground conductors on the audio plug:
70 ohm or less: KEYCODE_HEADSETHOOK
210-290 Ohm: KEYCODE_VOLUME_UP
360-680 Ohm: KEYCODE_VOLUME_DOWN

STRONGLY RECOMMENDED to detect and map to the keycode for the following range of
equivalent impedance between the microphone and ground conductors on the audio plug:

110-180 Ohm: KEYCODE_VOICE_ASSIST
MUST trigger ACTION_HEADSET_PLUG upon a plug insert, but only after all contacts on
plug are touching their relevant segments on the jack.
MUST be capable of driving at least 150mV Â± 10% of output voltage on a 32 Ohm
speaker impedance.
MUST have a microphone bias voltage between 1.8V ~ 2.9V.

7.8.3. Near-Ultrasound

Near-Ultrasound audio is the 18.5 kHz to 20 kHz band. Device implementations MUST correctly report
the support of near-ultrasound audio capability via the AudioManager.getProperty API as follows:

If PROPERTY_SUPPORT_MIC_NEAR_ULTRASOUND is "true", then the following
requirements must be met by the VOICE_RECOGNITION and UNPROCESSED audio
sources:

The microphone's mean power response in the 18.5 kHz to 20 kHz band MUST
be no more than 15 dB below the response at 2 kHz.
The microphone's unweighted signal to noise ratio over 18.5 kHz to 20 kHz for
a 19 kHz tone at -26 dBFS MUST be no lower than 50 dB.

If PROPERTY_SUPPORT_SPEAKER_NEAR_ULTRASOUND is "true", then the
speaker's mean response in 18.5 kHz - 20 kHz MUST be no lower than 40 dB below the
response at 2 kHz.

7.9. Virtual Reality

Android includes APIs and facilities to build "Virtual Reality" (VR) applications including high quality
mobile VR experiences. Device implementations MUST properly implement these APIs and
behaviors, as detailed in this section.

7.9.1. Virtual Reality Mode

Android handheld device implementations that support a mode for VR applications that handles
stereoscopic rendering of notifications and disable monocular system UI components while a VR
application has user focus MUST declare android.software.vr.mode feature. Devices declaring this
feature MUST include an application implementing android.service.vr.VrListenerService that can be
enabled by VR applications via android.app.Activity#setVrModeEnabled.

7.9.2. Virtual Reality High Performance

Android handheld device implementations MUST identify the support of high performance virtual
reality for longer user periods through the android.hardware.vr.high_performance feature flag and meet
the following requirements.

Device implementations MUST have at least 2 physical cores.
Device implementations MUST declare android.software.vr.mode feature.

Page 74 of 88

http://developer.android.com/reference/android/media/AudioManager.html#getProperty%28java.lang.String%29
http://developer.android.com/reference/android/media/AudioManager.html#PROPERTY_SUPPORT_MIC_NEAR_ULTRASOUND
http://developer.android.com/reference/android/media/AudioManager.html#PROPERTY_SUPPORT_SPEAKER_NEAR_ULTRASOUND

Device implementations MAY provide an exclusive core to the foreground application and
MAY support the Process.getExclusiveCores API to return the numbers of the CPU cores that
are exclusive to the top foreground application. If exclusive core is supported, then the
core MUST not allow any other userspace processes to run on it (except device drivers
used by the application), but MAY allow some kernel processes to run as necessary.
Device implementations MUST support sustained performance mode.
Device implementations MUST support OpenGL ES 3.2.
Device implementations MUST support Vulkan Hardware Level 0 and SHOULD support
Vulkan Hardware Level 1.
Device implementations MUST implement EGL_KHR_mutable_render_buffer and
EGL_ANDROID_front_buffer_auto_refresh, EGL_ANDROID_create_native_client_buffer,
EGL_KHR_fence_sync and EGL_KHR_wait_sync so that they may be used for Shared
Buffer Mode, and expose the extensions in the list of available EGL extensions.
The GPU and display MUST be able to synchronize access to the shared front buffer such
that alternating-eye rendering of VR content at 60fps with two render contexts will be
displayed with no visible tearing artifacts.
Device implementations MUST implement EGL_IMG_context_priority, and expose the
extension in the list of available EGL extensions.
Device implementations MUST implement GL_EXT_multisampled_render_to_texture,
GL_OVR_multiview, GL_OVR_multiview2 and
GL_OVR_multiview_multisampled_render_to_texture, and expose the extensions in the
list of available GL extensions.
Device implementations MUST implement EGL_EXT_protected_content and
GL_EXT_protected_textures so that it may be used for Secure Texture Video Playback,
and expose the extensions in the list of available EGL and GL extensions.
Device implementations MUST support H.264 decoding at least 3840x2160@30fps-
40Mbps (equivalent to 4 instances of 1920x1080@30fps-10Mbps or 2 instances of
1920x1080@60fps-20Mbps).
Device implementations MUST support HEVC and VP9, MUST be capable to decode at
least 1920x1080@30fps-10Mbps and SHOULD be capable to decode 3840x2160@30fps-
20Mbps (equivalent to 4 instances of 1920x1080@30fps-5Mbps).
The device implementations are STRONGLY RECOMMENDED to support
android.hardware.sensor.hifi_sensors feature and MUST meet the gyroscope,
accelerometer, and magnetometer related requirements for android.hardware.hifi_sensors.
Device implementations MUST support
HardwarePropertiesManager.getDeviceTemperatures API and return accurate values for
skin temperature.
The device implementation MUST have an embedded screen, and its resolution MUST be
at least be FullHD(1080p) and STRONGLY RECOMMENDED TO BE be QuadHD (1440p)
or higher.
The display MUST measure between 4.7" and 6" diagonal.
The display MUST update at least 60 Hz while in VR Mode.
The display latency on Gray-to-Gray, White-to-Black, and Black-to-White switching time
MUST be â‰¤ 3 ms.
The display MUST support a low-persistence mode with â‰¤5 ms persistence,persistence
being defined as the amount of time for which a pixel is emitting light.
Device implementations MUST support Bluetooth 4.2 and Bluetooth LE Data Length
Extension section 7.4.3.

8. Performance and Power

Page 75 of 88

Some minimum performance and power criteria are critical to the user experience and impact the
baseline assumptions developers would have when developing an app. Android Watch devices
SHOULD and other type of device implementations MUST meet the following criteria.

8.1. User Experience Consistency

Device implementations MUST provide a smooth user interface by ensuring a consistent frame rate
and response times for applications and games. Device implementations MUST meet the following
requirements:

Consistent frame latency. Inconsistent frame latency or a delay to render frames MUST
NOT happen more often than 5 frames in a second, and SHOULD be below 1 frames in a
second.
User interface latency. Device implementations MUST ensure low latency user
experience by scrolling a list of 10K list entries as defined by the Android Compatibility
Test Suite (CTS) in less than 36 secs.
Task switching. When multiple applications have been launched, re-launching an
already-running application after it has been launched MUST take less than 1 second.

8.2. File I/O Access Performance

Device implementations MUST ensure internal storage file access performance consistency for read
and write operations.

Sequential write. Device implementations MUST ensure a sequential write performance
of at least 5MB/s for a 256MB file using 10MB write buffer.
Random write. Device implementations MUST ensure a random write performance of at
least 0.5MB/s for a 256MB file using 4KB write buffer.
Sequential read. Device implementations MUST ensure a sequential read performance of
at least 15MB/s for a 256MB file using 10MB write buffer.
Random read. Device implementations MUST ensure a random read performance of at
least 3.5MB/s for a 256MB file using 4KB write buffer.

8.3. Power-Saving Modes

Android 6.0 introduced App Standby and Doze power-saving modes to optimize battery usage. All
Apps exempted from these modes MUST be made visible to the end user. Further, the triggering,
maintenance, wakeup algorithms and the use of global system settings of these power-saving modes
MUST not deviate from the Android Open Source Project.
In addition to the power-saving modes, Android device implementations MAY implement any or all of
the 4 sleeping power states as defined by the Advanced Configuration and Power Interface (ACPI),
but if it implements S3 and S4 power states, it can only enter these states when closing a lid that is
physically part of the device.

8.4. Power Consumption Accounting

A more accurate accounting and reporting of the power consumption provides the app developer both
the incentives and the tools to optimize the power usage pattern of the application. Therefore, device
implementations:

MUST be able to track hardware component power usage and attribute that power usage

Page 76 of 88

to specific applications. Specifically, implementations:
MUST provide a per-component power profile that defines the current
consumption value for each hardware component and the approximate battery
drain caused by the components over time as documented in the Android Open
Source Project site.
MUST report all power consumption values in milliampere hours (mAh).
SHOULD be attributed to the hardware component itself if unable to attribute
hardware component power usage to an application.
MUST report CPU power consumption per each process's UID. The Android
Open Source Project meets the requirement through the uid_cputime kernel
module implementation.

MUST make this power usage available via the adb shell dumpsys batterystats shell
command to the app developer.
MUST honor the android.intent.action.POWER_USAGE_SUMMARY intent and display a
settings menu that shows this power usage.

8.5. Consistent Performance

Performance can fluctuate dramatically for high-performance long-running apps, either because of the
other apps running in the background or the CPU throttling due to temperature limits. Android includes
programmatic interfaces so that when the device is capable, the top foreground application can
request that the system optimize the allocation of the resources to address such fluctuations.
Device implementations SHOULD support Sustained Performance Mode which can provide the top
foreground application a consistent level of performance for a prolonged amount of time when
requested through the Window.setSustainedPerformanceMode() API method. A Device implementation
MUST report the support of Sustained Performance Mode accurately through the
PowerManager.isSustainedPerformanceModeSupported() API method.
Device implementations with two or more CPU cores SHOULD provide at least one exclusive core
that can be reserved by the top foreground application. If provided, implementations MUST meet the
following requirements:

Implementations MUST report through the Process.getExclusiveCores() API method the id
numbers of the exclusive cores that can be reserved by the top foreground application.
Device implementations MUST not allow any user space processes except the device
drivers used by the application to run on the exclusive cores, but MAY allow some kernel
processes to run as necessary.

If a device implementation does not support an exclusive core, it MUST return an empty list through
the Process.getExclusiveCores() API method.

9. Security Model Compatibility

Device implementations MUST implement a security model consistent with the Android platform
security model as defined in Security and Permissions reference document in the APIs in the Android
developer documentation. Device implementations MUST support installation of self-signed
applications without requiring any additional permissions/certificates from any third parties/authorities.
Specifically, compatible devices MUST support the security mechanisms described in the follow
subsections.

9.1. Permissions

Page 77 of 88

http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_USAGE_SUMMARY
https://developer.android.com/reference/android/view/Window.html#setSustainedPerformanceMode%28boolean%29
https://developer.android.com/reference/android/os/PowerManager.html#isSustainedPerformanceModeSupported%28%29
https://developer.android.com/reference/android/os/Process.html#getExclusiveCores%28%29
https://developer.android.com/reference/android/os/Process.html#getExclusiveCores%28%29
http://developer.android.com/guide/topics/security/permissions.html

Device implementations MUST support the Android permissions model as defined in the Android
developer documentation. Specifically, implementations MUST enforce each permission defined as
described in the SDK documentation; no permissions may be omitted, altered, or ignored.
Implementations MAY add additional permissions, provided the new permission ID strings are not in
the android.* namespace.
Permissions with a protectionLevel of 'PROTECTION_FLAG_PRIVILEGED' MUST only be granted to
apps preloaded in the whitelisted privileged path(s) of the system image, such as the system/priv-app
path in the AOSP implementation.
Permissions with a protection level of dangerous are runtime permissions. Applications with
targetSdkVersion > 22 request them at runtime. Device implementations:

MUST show a dedicated interface for the user to decide whether to grant the requested
runtime permissions and also provide an interface for the user to manage runtime
permissions.
MUST have one and only one implementation of both user interfaces.
MUST NOT grant any runtime permissions to preinstalled apps unless:

the user's consent can be obtained before the application uses it
the runtime permissions are associated with an intent pattern for which the
preinstalled application is set as the default handler

9.2. UID and Process Isolation

Device implementations MUST support the Android application sandbox model, in which each
application runs as a unique Unixstyle UID and in a separate process. Device implementations MUST
support running multiple applications as the same Linux user ID, provided that the applications are
properly signed and constructed, as defined in the Security and Permissions reference.

9.3. Filesystem Permissions

Device implementations MUST support the Android file access permissions model as defined in the
Security and Permissions reference.

9.4. Alternate Execution Environments

Device implementations MAY include runtime environments that execute applications using some
other software or technology than the Dalvik Executable Format or native code. However, such
alternate execution environments MUST NOT compromise the Android security model or the security
of installed Android applications, as described in this section.
Alternate runtimes MUST themselves be Android applications, and abide by the standard Android
security model, as described elsewhere in section 9.
Alternate runtimes MUST NOT be granted access to resources protected by permissions not
requested in the runtimeâ€™s AndroidManifest.xml file via the <uses-permission> mechanism.
Alternate runtimes MUST NOT permit applications to make use of features protected by Android
permissions restricted to system applications.
Alternate runtimes MUST abide by the Android sandbox model. Specifically, alternate runtimes:

SHOULD install apps via the PackageManager into separate Android sandboxes (Linux
user IDs, etc.).
MAY provide a single Android sandbox shared by all applications using the alternate
runtime.

Page 78 of 88

http://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/reference/android/content/pm/PermissionInfo.html#PROTECTION_FLAG_PRIVILEGED
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

Installed applications using an alternate runtime MUST NOT reuse the sandbox of any
other app installed on the device, except through the standard Android mechanisms of
shared user ID and signing certificate.
MUST NOT launch with, grant, or be granted access to the sandboxes corresponding to
other Android applications.
MUST NOT be launched with, be granted, or grant to other applications any privileges of
the superuser (root), or of any other user ID.

The.apk files of alternate runtimes MAY be included in the system image of a device implementation,
but MUST be signed with a key distinct from the key used to sign other applications included with the
device implementation.
When installing applications, alternate runtimes MUST obtain user consent for the Android
permissions used by the application. If an application needs to make use of a device resource for
which there is a corresponding Android permission (such as Camera, GPS, etc.), the alternate runtime
MUST inform the user that the application will be able to access that resource. If the runtime
environment does not record application capabilities in this manner, the runtime environment MUST
list all permissions held by the runtime itself when installing any application using that runtime.

9.5. Multi-User Support

This feature is optional for all device types.

Android includes support for multiple users and provides support for full user isolation. Device
implementations MAY enable multiple users, but when enabled MUST meet the following
requirements related to multi-user support:

Android Automotive device implementations with multi-user support enabled MUST include
a guest account that allows all functions provided by the vehicle system without requiring a
user to log in.
Device implementations that do not declare the android.hardware.telephony feature flag
MUST support restricted profiles, a feature that allows device owners to manage additional
users and their capabilities on the device. With restricted profiles, device owners can
quickly set up separate environments for additional users to work in, with the ability to
manage finer-grained restrictions in the apps that are available in those environments.
Conversely device implementations that declare the android.hardware.telephony feature
flag MUST NOT support restricted profiles but MUST align with the AOSP implementation
of controls to enable /disable other users from accessing the voice calls and SMS.
Device implementations MUST, for each user, implement a security model consistent with
the Android platform security model as defined in Security and Permissions reference
document in the APIs.
Each user instance on an Android device MUST have separate and isolated external
storage directories. Device implementations MAY store multiple users' data on the same
volume or filesystem. However, the device implementation MUST ensure that applications
owned by and running on behalf a given user cannot list, read, or write to data owned by
any other user. Note that removable media, such as SD card slots, can allow one user to
access anotherâ€™s data by means of a host PC. For this reason, device
implementations that use removable media for the external storage APIs MUST encrypt
the contents of the SD card if multiuser is enabled using a key stored only on non-
removable media accessible only to the system. As this will make the media unreadable by
a host PC, device implementations will be required to switch to MTP or a similar system to
provide host PCs with access to the current userâ€™s data. Accordingly, device
implementations MAY but SHOULD NOT enable multi-user if they use removable media
for primary external storage.

Page 79 of 88

http://developer.android.com/reference/android/os/UserManager.html
http://source.android.com/devices/storage/traditional.html
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/reference/android/os/Environment.html

9.6. Premium SMS Warning

Android includes support for warning users of any outgoing premium SMS message. Premium SMS
messages are text messages sent to a service registered with a carrier that may incur a charge to the
user. Device implementations that declare support for android.hardware.telephony MUST warn users
before sending a SMS message to numbers identified by regular expressions defined in
/data/misc/sms/codes.xml file in the device. The upstream Android Open Source Project provides an
implementation that satisfies this requirement.

9.7. Kernel Security Features

The Android Sandbox includes features that use the Security-Enhanced Linux (SELinux) mandatory
access control (MAC) system, seccomp sandboxing, and other security features in the Linux kernel.
SELinux or any other security features implemented below the Android framework:

MUST maintain compatibility with existing applications.
MUST NOT have a visible user interface when a security violation is detected and
successfully blocked, but MAY have a visible user interface when an unblocked security
violation occurs resulting in a successful exploit.
SHOULD NOT be user or developer configurable.

If any API for configuration of policy is exposed to an application that can affect another application
(such as a Device Administration API), the API MUST NOT allow configurations that break
compatibility.
Devices MUST implement SELinux or, if using a kernel other than Linux, an equivalent mandatory
access control system. Devices MUST also meet the following requirements, which are satisfied by the
reference implementation in the upstream Android Open Source Project.
Device implementations:

MUST set SELinux to global enforcing mode.
MUST configure all domains in enforcing mode. No permissive mode domains are allowed,
including domains specific to a device/vendor.
MUST NOT modify, omit, or replace the neverallow rules present within the
system/sepolicy folder provided in the upstream Android Open Source Project (AOSP) and
the policy MUST compile with all neverallow rules present, for both AOSP SELinux
domains as well as device/vendor specific domains.
MUST split the media framework into multiple processes so that it is possible to more
narrowly grant access for each process as described in the Android Open Source Project
site.

Device implementations SHOULD retain the default SELinux policy provided in the system/sepolicy
folder of the upstream Android Open Source Project and only further add to this policy for their own
device-specific configuration. Device implementations MUST be compatible with the upstream Android
Open Source Project.
Devices MUST implement a kernel application sandboxing mechanism which allows filtering of system
calls using a configurable policy from multithreaded programs. The upstream Android Open Source
Project meets this requirement through enabling the seccomp-BPF with threadgroup synchronization
(TSYNC) as described in the Kernel Configuration section of source.android.com.

9.8. Privacy

Page 80 of 88

http://en.wikipedia.org/wiki/Short_code
https://source.android.com/devices/media/framework-hardening.html#arch_changes
http://source.android.com/devices/tech/config/kernel.html#Seccomp-BPF-TSYNC

If the device implements functionality in the system that captures the contents displayed on the screen
and/or records the audio stream played on the device, it MUST continuously notify the user whenever
this functionality is enabled and actively capturing/recording.
If a device implementation has a mechanism that routes network data traffic through a proxy server or
VPN gateway by default (for example, preloading a VPN service with
android.permission.CONTROL_VPN granted), the device implementation MUST ask for the user's
consent before enabling that mechanism, unless that VPN is enabled by the Device Policy Controller
via the DevicePolicyManager.setAlwaysOnVpnPackage(), in which case the user does not need to provide
a separate consent, but MUST only be notified.
Device implementations MUST ship with an empty user-added Certificate Authority (CA) store, and
MUST preinstall the same root certificates for the system-trusted CA store as provided in the upstream
Android Open Source Project.
When devices are routed through a VPN, or a user root CA is installed, the implementation MUST
display a warning indicating the network traffic may be monitored to the user.
If a device implementation has a USB port with USB peripheral mode support, it MUST present a user
interface asking for the user's consent before allowing access to the contents of the shared storage
over the USB port.

9.9. Data Storage Encryption

Optional for Android device implementations without a secure lock screen.

If the device implementation supports a secure lock screen as described in section 9.11.1, then the
device MUST support data storage encryption of the application private data (/data partition), as well
as the application shared storage partition (/sdcard partition) if it is a permanent, non-removable part
of the device.
For device implementations supporting data storage encryption and with Advanced Encryption
Standard (AES) crypto performance above 50MiB/sec, the data storage encryption MUST be enabled
by default at the time the user has completed the out-of-box setup experience. If a device
implementation is already launched on an earlier Android version with encryption disabled by default,
such a device cannot meet the requirement through a system software update and thus MAY be
exempted.
Device implementations SHOULD meet the above data storage encryption requirement via
implementing File Based Encryption (FBE).

9.9.1. Direct Boot

All devices MUST implement the Direct Boot mode APIs even if they do not support Storage
Encryption. In particular, the LOCKED_BOOT_COMPLETED and ACTION_USER_UNLOCKED
Intents must still be broadcast to signal Direct Boot aware applications that Device Encrypted (DE)
and Credential Encrypted (CE) storage locations are available for user.

9.9.2. File Based Encryption

Device implementations supporting FBE:

MUST boot up without challenging the user for credentials and allow Direct Boot aware
apps to access to the Device Encrypted (DE) storage after the
LOCKED_BOOT_COMPLETED message is broadcasted.
MUST only allow access to Credential Encrypted (CE) storage after the user has unlocked
the device by supplying their credentials (eg. passcode, pin, pattern or fingerprint) and the
ACTION_USER_UNLOCKED message is broadcasted. Device implementations MUST

Page 81 of 88

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName, java.lang.String, boolean)
https://source.android.com/security/overview/app-security.html#certificate-authorities
https://source.android.com/security/encryption/file-based.html
http://developer.android.com/preview/features/direct-boot.html
https://developer.android.com/reference/android/content/Intent.html#LOCKED_BOOT_COMPLETED
https://developer.android.com/reference/android/content/Intent.html#ACTION_USER_UNLOCKED

NOT offer any method to unlock the CE protected storage without the user supplied
credentials.
MUST support Verified Boot and ensure that DE keys are cryptographically bound to the
device's hardware root of trust.
MUST support encrypting file contents using AES with a key length of 256-bits in XTS
mode.
MUST support encrypting file name using AES with a key length of 256-bits in CBC-CTS
mode.
MAY support alternative ciphers, key lengths and modes for file content and file name
encryption, but MUST use the mandatorily supported ciphers, key lengths and modes by
default.
SHOULD make preloaded essential apps (e.g. Alarm, Phone, Messenger) Direct Boot
aware.

The keys protecting CE and DE storage areas:

MUST be cryptographically bound to a hardware-backed Keystore. CE keys must be
bound to a user's lock screen credentials. If the user has specified no lock screen
credentials then the CE keys MUST be bound to a default passcode.
MUST be unique and distinct, in other words no user's CE or DE key may match any other
user's CE or DE keys.

The upstream Android Open Source project provides a preferred implementation of this feature based
on the Linux kernel ext4 encryption feature.

9.9.3. Full Disk Encryption

Device implementations supporting full disk encryption (FDE). MUST use AES with a key of 128-bits
(or greater) and a mode designed for storage (for example, AES-XTS, AES-CBC-ESSIV). The
encryption key MUST NOT be written to storage at any time without being encrypted. The user MUST
be provided with the possibility to AES encrypt the encryption key, except when it is in active use, with
the lock screen credentials stretched using a slow stretching algorithm (e.g. PBKDF2 or scrypt). If the
user has not specified a lock screen credentials or has disabled use of the passcode for encryption,
the system SHOULD use a default passcode to wrap the encryption key. If the device provides a
hardware-backed keystore, the password stretching algorithm MUST be cryptographically bound to
that keystore. The encryption key MUST NOT be sent off the device (even when wrapped with the
user passcode and/or hardware bound key). The upstream Android Open Source project provides a
preferred implementation of this feature based on the Linux kernel feature dm-crypt.

9.10. Device Integrity

The following requirements ensures there is transparancy to the status of the device integrity.
Device implementations MUST correctly report through the System API method
PersistentDataBlockManager.getFlashLockState() whether their bootloader state permits flashing of
the system image. The FLASH_LOCK_UNKNOWN state is reserved for device implementations
upgrading from an earlier version of Android where this new system API method did not exist.
Verified boot is a feature that guarantees the integrity of the device software. If a device
implementation supports the feature, it MUST:

Declare the platform feature flag android.software.verified_boot.
Perform verification on every boot sequence.
Start verification from an immutable hardware key that is the root of trust and go all the

Page 82 of 88

http://source.android.com/devices/tech/security/encryption/index.html

way up to the system partition.
Implement each stage of verification to check the integrity and authenticity of all the bytes
in the next stage before executing the code in the next stage.
Use verification algorithms as strong as current recommendations from NIST for hashing
algorithms (SHA-256) and public key sizes (RSA-2048).
MUST NOT allow boot to complete when system verification fails, unless the user
consents to attempt booting anyway, in which case the data from any non-verified storage
blocks MUST not be used.
MUST NOT allow verified partitions on the device to be modified unless the user has
explicitly unlocked the boot loader.

The upstream Android Open Source Project provides a preferred implementation of this feature based
on the Linux kernel feature dm-verity.
Starting from Android 6.0, device implementations with Advanced Encryption Standard (AES) crypto
performance above 50 MiB/seconds MUST support verified boot for device integrity.
If a device implementation is already launched without supporting verified boot on an earlier version of
Android, such a device can not add support for this feature with a system software update and thus
are exempted from the requirement.

9.11. Keys and Credentials

The Android Keystore System allows app developers to store cryptographic keys in a container and
use them in cryptographic operations through the KeyChain API or the Keystore API.
All Android device implementations MUST meet the following requirements:

SHOULD not limit the number of keys that can be generated, and MUST at least allow
more than 8,192 keys to be imported.
The lock screen authentication MUST rate limit attempts and MUST have an exponential
backoff algorithm. Beyond 150 failed attempts, the delay MUST be at least 24 hours per
attempt.
When the device implementation supports a secure lock screen it MUST back up the
keystore implementation with secure hardware and meet following requirements:

MUST have hardware backed implementations of RSA, AES, ECDSA and
HMAC cryptographic algorithms and MD5, SHA1, SHA-2 Family hash functions
to properly support the Android Keystore system's supported algorithms.
MUST perform the lock screen authentication in the secure hardware and only
when successful allow the authentication-bound keys to be used. The upstream
Android Open Source Project provides the Gatekeeper Hardware Abstraction
Layer (HAL) that can be used to satisfy this requirement.

Note that if a device implementation is already launched on an earlier Android version, and does not
have a fingerprint scanner, such a device is exempted from the requirement to have a hardware-
backed keystore.

9.11.1. Secure Lock Screen

Device implementations MAY add or modify the authentication methods to unlock the lock screen, but
MUST still meet the following requirements:

The authentication method, if based on a known secret, MUST NOT be treated as a
secure lock screen unless it meets all following requirements:

Page 83 of 88

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/reference/android/security/KeyChain.html
https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/training/articles/keystore.html#SupportedAlgorithms
http://source.android.com/devices/tech/security/authentication/gatekeeper.html

The entropy of the shortest allowed length of inputs MUST be greater than 10
bits.
The maximum entropy of all possible inputs MUST be greater than 18 bits.
MUST not replace any of the existing authentication methods (PIN, pattern,
password) implemented and provided in AOSP.
MUST be disabled when the Device Policy Controller (DPC) application has set
the password quality policy via the DevicePolicyManager.setPasswordQuality()
method with a more restrictive quality constant than
PASSWORD_QUALITY_SOMETHING.

The authenticaion method, if based on a physical token or the location, MUST NOT be
treated as a secure lock screen unless it meets all following requirements:

It MUST have a fall-back mechanism to use one of the primary authentication
methods which is based on a known secret and meets the requirements to be
treated as a secure lock screen.
It MUST be disabled and only allow the primary authentication to unlock the
screen when the Device Policy Controller (DPC) application has set the policy
with either the
DevicePolicyManager.setKeyguardDisabledFeatures(KEYGUARD_DISABLE_TRUST_AGENTS)
method or the DevicePolicyManager.setPasswordQuality() method with a more
restrictive quality constant than PASSWORD_QUALITY_UNSPECIFIED.

The authentication method, if based on biometrics, MUST NOT be treated as a secure lock
screen unless it meets all following requirements:

It MUST have a fall-back mechanism to use one of the primary authentication
methods which is based on a known secret and meets the requirements to be
treated as a secure lock screen.
It MUST be disabled and only allow the primary authentication to unlock the
screen when the Device Policy Controller (DPC) application has set the
keguard feature policy by calling the method
DevicePolicyManager.setKeyguardDisabledFeatures(KEYGUARD_DISABLE_FINGERPRINT).
It MUST have a false acceptance rate that is equal or stronger than what is
required for a fingerprint sensor as described in section 7.3.10, or otherwise
MUST be disabled and only allow the primary authentication to unlock the
screen when the Device Policy Controller (DPC) application has set the
password quality policy via the DevicePolicyManager.setPasswordQuality()
method with a more restrictive quality constant than
PASSWORD_QUALITY_BIOMETRIC_WEAK.

If the authentication method can not be treated as a secure lock screen, it:
MUST return false for both the KeyguardManager.isKeyguardSecure() and the
KeyguardManager.isDeviceSecure() methods.
MUST be disabled when the Device Policy Controller (DPC) application has set
the password quality policy via the DevicePolicyManager.setPasswordQuality()
method with a more restrictive quality constant than
PASSWORD_QUALITY_UNSPECIFIED.
MUST NOT reset the password expiration timers set by
DevicePolicyManager.setPasswordExpirationTimeout().
MUST NOT authenticate access to keystores if the application has called
KeyGenParameterSpec.Builder.setUserAuthenticationRequired(true)).

If the authentication method is based on a physical token, the location, or biometrics that
has higher false acceptance rate than what is required for fingerprint sensors as described
in section 7.3.10, then it:

MUST NOT reset the password expiration timers set by
DevicePolicyManager.setPasswordExpirationTimeout().

Page 84 of 88

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setKeyguardDisabledFeatures%28android.content.ComponentName, int%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setKeyguardDisabledFeatures%28android.content.ComponentName, int%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
http://developer.android.com/reference/android/app/KeyguardManager.html#isKeyguardSecure%28%29
https://developer.android.com/reference/android/app/KeyguardManager.html#isDeviceSecure%28%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout%28android.content.ComponentName, long%29
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder.html#setUserAuthenticationRequired%28boolean%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout%28android.content.ComponentName, long%29

MUST NOT authenticate access to keystores if the application has called
KeyGenParameterSpec.Builder.setUserAuthenticationRequired(true).

9.12. Data Deletion

Devices MUST provide users with a mechanism to perform a "Factory Data Reset" that allows logical
and physical deletion of all data except for the following:

The system image
Any operating system files required by the system image

All user-generated data MUST be deleted. This MUST satisfy relevant industry standards for data
deletion such as NIST SP800-88. This MUST be used for the implementation of the wipeData() API
(part of the Android Device Administration API) described in section 3.9 Device Administration.
Devices MAY provide a fast data wipe that conducts a logical data erase.

9.13. Safe Boot Mode

Android provides a mode enabling users to boot up into a mode where only preinstalled system apps
are allowed to run and all third-party apps are disabled. This mode, known as "Safe Boot Mode",
provides the user the capability to uninstall potentially harmful third-party apps.
Android device implementations are STRONGLY RECOMENDED to implement Safe Boot Mode and
meet following requirements:

Device implementations SHOULD provide the user an option to enter Safe Boot Mode
from the boot menu which is reachable through a workflow that is different from that of
normal boot.

Device implementations MUST provide the user an option to enter Safe Boot Mode in such
a way that is uninterruptible from third-party apps installed on the device, except for when
the third party app is a Device Policy Controller and has set the
UserManager.DISALLOW_SAFE_BOOT flag as true.

Device implementations MUST provide the user the capability to uninstall any third-party
apps within Safe Mode.

9.14. Automotive Vehicle System Isolation

Android Automotive devices are expected to exchange data with critical vehicle subsystems, e.g., by
using the vehicle HAL to send and receive messages over vehicle networks such as CAN bus.
Android Automotive device implementations MUST implement security features below the Android
framework layers to prevent malicious or unintentional interaction between the Android framework or
third-party apps and vehicle subsystems. These security features are as follows:

Gatekeeping messages from Android framework vehicle subsystems, e.g., whitelisting
permitted message types and message sources.
Watchdog against denial of service attacks from the Android framework or third-party
apps. This guards against malicious software flooding the vehicle network with traffic,
which may lead to malfunctioning vehicle subsystems.

10. Software Compatibility Testing

Page 85 of 88

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder.html#setUserAuthenticationRequired%28boolean%29
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SAFE_BOOT
http://source.android.com/devices/automotive.html

Device implementations MUST pass all tests described in this section.
However, note that no software test package is fully comprehensive. For this reason, device
implementers are STRONGLY RECOMMENDED to make the minimum number of changes as
possible to the reference and preferred implementation of Android available from the Android Open
Source Project. This will minimize the risk of introducing bugs that create incompatibilities requiring
rework and potential device updates.

10.1. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS) available from the
Android Open Source Project, using the final shipping software on the device. Additionally, device
implementers SHOULD use the reference implementation in the Android Open Source tree as much
as possible, and MUST ensure compatibility in cases of ambiguity in CTS and for any
reimplementations of parts of the reference source code.
The CTS is designed to be run on an actual device. Like any software, the CTS may itself contain
bugs. The CTS will be versioned independently of this Compatibility Definition, and multiple revisions
of the CTS may be released for Android 7.1. Device implementations MUST pass the latest CTS
version available at the time the device software is completed.

10.2. CTS Verifier

Device implementations MUST correctly execute all applicable cases in the CTS Verifier. The CTS
Verifier is included with the Compatibility Test Suite, and is intended to be run by a human operator to
test functionality that cannot be tested by an automated system, such as correct functioning of a
camera and sensors.
The CTS Verifier has tests for many kinds of hardware, including some hardware that is optional.
Device implementations MUST pass all tests for hardware that they possess; for instance, if a device
possesses an accelerometer, it MUST correctly execute the Accelerometer test case in the CTS
Verifier. Test cases for features noted as optional by this Compatibility Definition Document MAY be
skipped or omitted.
Every device and every build MUST correctly run the CTS Verifier, as noted above. However, since
many builds are very similar, device implementers are not expected to explicitly run the CTS Verifier
on builds that differ only in trivial ways. Specifically, device implementations that differ from an
implementation that has passed the CTS Verifier only by the set of included locales, branding, etc.
MAY omit the CTS Verifier test.

11. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the system software.
The mechanism need not perform â€œliveâ€ upgradesâ€”that is, a device restart MAY be required.
Any method can be used, provided that it can replace the entirety of the software preinstalled on the
device. For instance, any of the following approaches will satisfy this requirement:

â€œOver-the-air (OTA)â€ downloads with offline update via reboot.
â€œTetheredâ€ updates over USB from a host PC.
â€œOfflineâ€ updates via a reboot and update from a file on removable storage.

However, if the device implementation includes support for an unmetered data connection such as
802.11 or Bluetooth PAN (Personal Area Network) profile, it MUST support OTA downloads with
offline update via reboot.
The update mechanism used MUST support updates without wiping user data. That is, the update

Page 86 of 88

http://source.android.com/compatibility/index.html

mechanism MUST preserve application private data and application shared data. Note that the
upstream Android software includes an update mechanism that satisfies this requirement.
For device implementations that are launching with Android 6.0 and later, the update mechanism
SHOULD support verifying that the system image is binary identical to expected result following an
OTA. The block-based OTA implementation in the upstream Android Open Source Project, added
since Android 5.1, satisfies this requirement.
Also, device implementations SHOULD support A/B system updates. The AOSP implements this
feature using the boot control HAL.
If an error is found in a device implementation after it has been released but within its reasonable
product lifetime that is determined in consultation with the Android Compatibility Team to affect the
compatibility of third-party applications, the device implementer MUST correct the error via a software
update available that can be applied per the mechanism just described.
Android includes features that allow the Device Owner app (if present) to control the installation of
system updates. To facilitate this, the system update subsystem for devices that report
android.software.device_admin MUST implement the behavior described in the SystemUpdatePolicy
class.

12. Document Changelog

For a summary of changes to the Compatibility Definition in this release:

Document changelog

For a summary of changes to individuals sections:

1. Introduction
2. Device Types
3. Software
4. Application Packaging
5. Multimedia
6. Developer Tools and Options
7. Hardware Compatibility
8. Performance and Power
9. Security Model

10. Software Compatibility Testing
11. Updatable Software
12. Document Changelog
13. Contact Us

12.1. Changelog Viewing Tips

Changes are marked as follows:

CDD
Substantive changes to the compatibility requirements.

Docs
Cosmetic or build related changes.

For best viewing, append the pretty=full and no-merges URL parameters to your changelog URLs.

Page 87 of 88

https://source.android.com/devices/tech/ota/ab_updates.html
http://developer.android.com/reference/android/app/admin/SystemUpdatePolicy.html
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/1_introduction?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/2_device_types?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/3_software?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/4_application-packaging?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/5_multimedia?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/6_dev-tools-and-options?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/7_hardware-compatibility?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/8_performance-and-power?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/9_security-model?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/10_software-compatibility-testing?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/11_updatable-software?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/12_document-changelog?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/nougat-mr1-dev/13_contact-us?pretty=full&no-merges

13. Contact Us

You can join the android-compatibility forum and ask for clarifications or bring up any issues that you
think the document does not cover.

Page 88 of 88

https://groups.google.com/forum/#!forum/android-compatibility

	Table of Contents
	1. Introduction
	2. Device Types
	2.1 Device Configurations

	3. Software
	3.1. Managed API Compatibility
	3.1.1. Android Extensions
	3.2. Soft API Compatibility
	3.2.1. Permissions
	3.2.2. Build Parameters
	3.2.3. Intent Compatibility
	3.2.3.1. Core Application Intents
	3.2.3.2. Intent Resolution
	3.2.3.3. Intent Namespaces
	3.2.3.4. Broadcast Intents
	3.2.3.5. Default App Settings

	3.3. Native API Compatibility
	3.3.1. Application Binary Interfaces
	3.3.1.1. Graphic Libraries

	3.3.2. 32-bit ARM Native Code Compatibility

	3.4. Web Compatibility
	3.4.1. WebView Compatibility
	3.4.2. Browser Compatibility

	3.5. API Behavioral Compatibility
	3.6. API Namespaces
	3.7. Runtime Compatibility
	3.8. User Interface Compatibility
	3.8.1. Launcher (Home Screen)
	3.8.2. Widgets
	3.8.3. Notifications
	3.8.4. Search
	3.8.5. Toasts
	3.8.6. Themes
	3.8.7. Live Wallpapers
	3.8.8. Activity Switching
	3.8.9. Input Management
	3.8.10. Lock Screen Media Control
	3.8.11. Screen savers (previously Dreams)
	3.8.12. Location
	3.8.13. Unicode and Font
	3.8.14. Multi-windows

	3.9. Device Administration
	3.9.1 Device Provisioning
	3.9.1.1 Device owner provisioning
	3.9.1.2 Managed profile provisioning

	3.9.2 Managed Profile Support
	3.10. Accessibility
	3.11. Text-to-Speech
	3.12. TV Input Framework
	3.12.1. TV App
	3.12.1.1. Electronic Program Guide
	3.12.1.2. Navigation
	3.12.1.3. TV input app linking
	3.12.1.4. Time shifting
	3.12.1.5. TV recording

	3.13. Quick Settings
	3.14. Vehicle UI APIs
	3.14.1. Vehicle Media UI

	4. Application Packaging Compatibility
	5. Multimedia Compatibility
	5.1. Media Codecs
	5.1.1. Audio Codecs
	5.1.2. Image Codecs
	5.1.3. Video Codecs

	5.2. Video Encoding
	5.2.1. H.263
	5.2.2. H-264
	5.2.3. VP8

	5.3. Video Decoding
	5.3.1. MPEG-2
	5.3.2. H.263
	5.3.3. MPEG-4
	5.3.4. H.264
	5.3.5. H.265 (HEVC)
	5.3.6. VP8
	5.3.7. VP9

	5.4. Audio Recording
	5.4.1. Raw Audio Capture
	5.4.2. Capture for Voice Recognition
	5.4.3. Capture for Rerouting of Playback

	5.5. Audio Playback
	5.5.1. Raw Audio Playback
	5.5.2. Audio Effects
	5.5.3. Audio Output Volume

	5.6. Audio Latency
	5.7. Network Protocols
	5.8. Secure Media
	5.9. Musical Instrument Digital Interface (MIDI)
	5.10. Professional Audio
	5.11. Capture for Unprocessed

	6. Developer Tools and Options Compatibility
	6.1. Developer Tools
	6.2. Developer Options

	7. Hardware Compatibility
	7.1. Display and Graphics
	7.1.1. Screen Configuration
	7.1.1.1. Screen Size
	7.1.1.2. Screen Aspect Ratio
	7.1.1.3. Screen Density

	7.1.2. Display Metrics
	7.1.3. Screen Orientation
	7.1.4. 2D and 3D Graphics Acceleration
	7.1.5. Legacy Application Compatibility Mode
	7.1.6. Screen Technology
	7.1.7. Secondary Displays

	7.2. Input Devices
	7.2.1. Keyboard
	7.2.2. Non-touch Navigation
	7.2.3. Navigation Keys
	7.2.4. Touchscreen Input
	7.2.5. Fake Touch Input
	7.2.6. Game Controller Support
	7.2.6.1. Button Mappings

	7.2.7. Remote Control

	7.3. Sensors
	7.3.1. Accelerometer
	7.3.2. Magnetometer
	7.3.3. GPS
	7.3.4. Gyroscope
	7.3.5. Barometer
	7.3.6. Thermometer
	7.3.7. Photometer
	7.3.8. Proximity Sensor
	7.3.9. High Fidelity Sensors
	7.3.10. Fingerprint Sensor
	7.3.11. Android Automotive-only sensors
	7.3.11.1. Current Gear
	7.3.11.2. Day Night Mode
	7.3.11.3. Driving Status
	7.3.11.4. Wheel Speed

	7.3.12. Pose Sensor
	7.4. Data Connectivity
	7.4.1. Telephony
	7.4.1.1. Number Blocking Compatibility

	7.4.2. IEEE 802.11 (Wi-Fi)
	7.4.2.1. Wi-Fi Direct
	7.4.2.2. Wi-Fi Tunneled Direct Link Setup

	7.4.3. Bluetooth
	7.4.4. Near-Field Communications
	7.4.5. Minimum Network Capability
	7.4.6. Sync Settings
	7.4.7. Data Saver

	7.5. Cameras
	7.5.1. Rear-Facing Camera
	7.5.2. Front-Facing Camera
	7.5.3. External Camera
	7.5.4. Camera API Behavior
	7.5.5. Camera Orientation

	7.6. Memory and Storage
	7.6.1. Minimum Memory and Storage
	7.6.2. Application Shared Storage
	7.6.3. Adoptable Storage

	7.7. USB
	7.7.1. USB peripheral mode
	7.7.2. USB host mode

	7.8. Audio
	7.8.1. Microphone
	7.8.2. Audio Output
	7.8.2.1. Analog Audio Ports

	7.8.3. Near-Ultrasound

	7.9. Virtual Reality
	7.9.1. Virtual Reality Mode
	7.9.2. Virtual Reality High Performance

	8. Performance and Power
	8.1. User Experience Consistency
	8.2. File I/O Access Performance
	8.3. Power-Saving Modes
	8.4. Power Consumption Accounting
	8.5. Consistent Performance

	9. Security Model Compatibility
	9.1. Permissions
	9.2. UID and Process Isolation
	9.3. Filesystem Permissions
	9.4. Alternate Execution Environments
	9.5. Multi-User Support
	9.6. Premium SMS Warning
	9.7. Kernel Security Features
	9.8. Privacy
	9.9. Data Storage Encryption
	9.9.1. Direct Boot
	9.9.2. File Based Encryption
	9.9.3. Full Disk Encryption

	9.10. Device Integrity
	9.11. Keys and Credentials
	9.11.1. Secure Lock Screen

	9.12. Data Deletion
	9.13. Safe Boot Mode
	9.14. Automotive Vehicle System Isolation

	10. Software Compatibility Testing
	10.1. Compatibility Test Suite
	10.2. CTS Verifier

	11. Updatable Software
	12. Document Changelog
	12.1. Changelog Viewing Tips

	13. Contact Us

