Lines Matching full:matrix

26   * \tparam _MatrixType the type of the matrix of which we are
28 * instantiation of the Matrix class template.
30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
32 * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on
33 * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
34 * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
78 …typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> …
80 /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
82 * This is a square matrix with entries of type #ComplexScalar.
85 …typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,…
116 /** \brief Constructor; computes eigendecomposition of given matrix.
118 * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
126 explicit ComplexEigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
127 : m_eivec(matrix.rows(),matrix.cols()),
128 m_eivalues(matrix.cols()),
129 m_schur(matrix.rows()),
132 m_matX(matrix.rows(),matrix.cols())
134 compute(matrix.derived(), computeEigenvectors);
137 /** \brief Returns the eigenvectors of given matrix.
139 * \returns A const reference to the matrix whose columns are the eigenvectors.
142 * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
143 * function compute(const MatrixType& matrix, bool) has been called before
144 * to compute the eigendecomposition of a matrix, and
147 * This function returns a matrix whose columns are the eigenvectors. Column
150 * have (Euclidean) norm equal to one. The matrix returned by this
151 * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
164 /** \brief Returns the eigenvalues of given matrix.
169 * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
170 * function compute(const MatrixType& matrix, bool) has been called before
171 * to compute the eigendecomposition of a matrix.
176 * rows in the matrix. The eigenvalues are not sorted in any particular
188 /** \brief Computes eigendecomposition of given matrix.
190 * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
196 * This function computes the eigenvalues of the complex matrix \p matrix.
201 * The matrix is first reduced to Schur form using the
207 * is the size of the matrix.
213 … ComplexEigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
261 ComplexEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvector… in compute() argument
266 eigen_assert(matrix.cols() == matrix.rows()); in compute()
270 m_schur.compute(matrix.derived(), computeEigenvectors); in compute()
294 // The matrix X is unit triangular. in doComputeEigenvectors()