Lines Matching refs:nbSamples
46 MLPTrain * mlp_init(int *topo, int nbLayers, float *inputs, float *outputs, int nbSamples) in mlp_init() argument
70 for (i=0;i<nbSamples;i++) in mlp_init()
75 inMean[j] /= nbSamples; in mlp_init()
76 std /= nbSamples; in mlp_init()
97 for (i=0;i<nbSamples;i++) in mlp_init()
99 mean /= nbSamples; in mlp_init()
111 double compute_gradient(MLPTrain *net, float *inputs, float *outputs, int nbSamples, double *W0_gra… in compute_gradient() argument
138 for (s=0;s<nbSamples;s++) in compute_gradient()
195 int nbSamples; member
218 …arg->rms = compute_gradient(arg->net, arg->inputs, arg->outputs, arg->nbSamples, arg->W0_grad, arg… in gradient_thread_process()
225 float mlp_train_backprop(MLPTrain *net, float *inputs, float *outputs, int nbSamples, int nbEpoch, … in mlp_train_backprop() argument
245 int samplePerPart = nbSamples/NB_THREADS; in mlp_train_backprop()
278 rate /= nbSamples; in mlp_train_backprop()
290 args[i].nbSamples = samplePerPart; in mlp_train_backprop()
320 rms = (rms/(outDim*nbSamples)); in mlp_train_backprop()
321 error_rate[0] = (error_rate[0]/(nbSamples)); in mlp_train_backprop()
322 error_rate[1] = (error_rate[1]/(nbSamples)); in mlp_train_backprop()
429 int nbSamples; in main() local
445 nbSamples = atoi(argv[4]); in main()
448 inputs = malloc(nbInputs*nbSamples*sizeof(*inputs)); in main()
449 outputs = malloc(nbOutputs*nbSamples*sizeof(*outputs)); in main()
459 for (i=0;i<nbSamples;i++) in main()
467 nbSamples = i; in main()
474 fprintf (stderr, "Got %d samples\n", nbSamples); in main()
475 net = mlp_init(topo, 3, inputs, outputs, nbSamples); in main()
476 rms = mlp_train_backprop(net, inputs, outputs, nbSamples, nbEpoch, 1); in main()