Lines Matching refs:varname

42 \varname{[floor0_book_list]} that is greater than the maximum codebook
51 decoding the curve amplitude and \varname{[floor0_order]} LSP
78 …\item An \varname{[amplitude]} value of zero must result in a return code that indicates this chan…
82 \varname{[amplitude]} value had read zero at the beginning of decode.
85 can, in fact, be stored in the bitstream in \link{vorbis:spec:ilog}{ilog}( \varname{[floor0_number_…
89 \item The number of scalars read into the vector \varname{[coefficients]}
90 may be greater than \varname{[floor0_order]}, the number actually
93 \varname{[codebook_dimensions]} value of three and
94 \varname{[floor0_order]} is ten, the only way to fill all the needed
95 scalars in \varname{[coefficients]} is to to read a total of twelve
106 Given an \varname{[amplitude]} integer and \varname{[coefficients]}
110 vector size \varname{[n]} specified by the decode process, we compute a
113 If the value \varname{[amplitude]} is zero, the return value is a
114 length \varname{[n]} vector with all-zero scalars. Otherwise, begin by
147 Similarly, the below calculation synthesizes the output LSP curve \varname{[output]} on a log
151 \item \varname{[i]} = 0
152 \item \varname{[$\omega$]} = $\pi$ * map element \varname{[i]} / \varname{[floor0_bark_map_size]}
153 \item if ( \varname{[floor0_order]} is odd ) {
155 \item calculate \varname{[p]} and \varname{[q]} according to:
162 } else \varname{[floor0_order]} is even {
164 \item calculate \varname{[p]} and \varname{[q]} according to:
173 \item calculate \varname{[linear_floor_value]} according to:
179 \item \varname{[iteration_condition]} = map element \varname{[i]}
180 \item \varname{[output]} element \varname{[i]} = \varname{[linear_floor_value]}
181 \item increment \varname{[i]}
182 …\item if ( map element \varname{[i]} is equal to \varname{[iteration_condition]} ) continue at ste…
183 \item if ( \varname{[i]} is less than \varname{[n]} ) continue at step 2