/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_to_dex_compiler.h" #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "base/logging.h" #include "base/mutex.h" #include "compiled_method.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "driver/compiler_driver.h" #include "driver/dex_compilation_unit.h" #include "mirror/dex_cache.h" #include "thread-inl.h" namespace art { namespace optimizer { using android::base::StringPrintf; // Controls quickening activation. const bool kEnableQuickening = true; // Control check-cast elision. const bool kEnableCheckCastEllision = true; struct QuickenedInfo { QuickenedInfo(uint32_t pc, uint16_t index) : dex_pc(pc), dex_member_index(index) {} uint32_t dex_pc; uint16_t dex_member_index; }; class DexCompiler { public: DexCompiler(art::CompilerDriver& compiler, const DexCompilationUnit& unit, DexToDexCompilationLevel dex_to_dex_compilation_level) : driver_(compiler), unit_(unit), dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {} ~DexCompiler() {} void Compile(); const std::vector& GetQuickenedInfo() const { return quickened_info_; } private: const DexFile& GetDexFile() const { return *unit_.GetDexFile(); } // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where // a barrier is required. void CompileReturnVoid(Instruction* inst, uint32_t dex_pc); // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In // this case, returns the second NOP instruction pointer. Otherwise, returns // the given "inst". Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc); // Compiles a field access into a quick field access. // The field index is replaced by an offset within an Object where we can read // from / write to this field. Therefore, this does not involve any resolution // at runtime. // Since the field index is encoded with 16 bits, we can replace it only if the // field offset can be encoded with 16 bits too. void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_put); // Compiles a virtual method invocation into a quick virtual method invocation. // The method index is replaced by the vtable index where the corresponding // Executable can be found. Therefore, this does not involve any resolution // at runtime. // Since the method index is encoded with 16 bits, we can replace it only if the // vtable index can be encoded with 16 bits too. void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_range); CompilerDriver& driver_; const DexCompilationUnit& unit_; const DexToDexCompilationLevel dex_to_dex_compilation_level_; // Filled by the compiler when quickening, in order to encode that information // in the .oat file. The runtime will use that information to get to the original // opcodes. std::vector quickened_info_; DISALLOW_COPY_AND_ASSIGN(DexCompiler); }; void DexCompiler::Compile() { DCHECK_EQ(dex_to_dex_compilation_level_, DexToDexCompilationLevel::kOptimize); const DexFile::CodeItem* code_item = unit_.GetCodeItem(); const uint16_t* insns = code_item->insns_; const uint32_t insns_size = code_item->insns_size_in_code_units_; Instruction* inst = const_cast(Instruction::At(insns)); for (uint32_t dex_pc = 0; dex_pc < insns_size; inst = const_cast(inst->Next()), dex_pc = inst->GetDexPc(insns)) { switch (inst->Opcode()) { case Instruction::RETURN_VOID: CompileReturnVoid(inst, dex_pc); break; case Instruction::CHECK_CAST: inst = CompileCheckCast(inst, dex_pc); break; case Instruction::IGET: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false); break; case Instruction::IGET_WIDE: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false); break; case Instruction::IGET_OBJECT: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false); break; case Instruction::IGET_BOOLEAN: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BOOLEAN_QUICK, false); break; case Instruction::IGET_BYTE: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BYTE_QUICK, false); break; case Instruction::IGET_CHAR: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_CHAR_QUICK, false); break; case Instruction::IGET_SHORT: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_SHORT_QUICK, false); break; case Instruction::IPUT: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true); break; case Instruction::IPUT_BOOLEAN: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BOOLEAN_QUICK, true); break; case Instruction::IPUT_BYTE: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BYTE_QUICK, true); break; case Instruction::IPUT_CHAR: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_CHAR_QUICK, true); break; case Instruction::IPUT_SHORT: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_SHORT_QUICK, true); break; case Instruction::IPUT_WIDE: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true); break; case Instruction::IPUT_OBJECT: CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true); break; case Instruction::INVOKE_VIRTUAL: CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false); break; case Instruction::INVOKE_VIRTUAL_RANGE: CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true); break; default: // Nothing to do. break; } } } void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) { DCHECK_EQ(inst->Opcode(), Instruction::RETURN_VOID); if (unit_.IsConstructor()) { // Are we compiling a non clinit constructor which needs a barrier ? if (!unit_.IsStatic() && driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(), unit_.GetClassDefIndex())) { return; } } // Replace RETURN_VOID by RETURN_VOID_NO_BARRIER. VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode()) << " by " << Instruction::Name(Instruction::RETURN_VOID_NO_BARRIER) << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); inst->SetOpcode(Instruction::RETURN_VOID_NO_BARRIER); } Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) { if (!kEnableCheckCastEllision) { return inst; } if (!driver_.IsSafeCast(&unit_, dex_pc)) { return inst; } // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code // units and a "nop" instruction size is 1 code unit, we need to replace it by // 2 consecutive NOP instructions. // Because the caller loops over instructions by calling Instruction::Next onto // the current instruction, we need to return the 2nd NOP instruction. Indeed, // its next instruction is the former check-cast's next instruction. VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode()) << " by replacing it with 2 NOPs at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegA_21c())); quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegB_21c())); // We are modifying 4 consecutive bytes. inst->SetOpcode(Instruction::NOP); inst->SetVRegA_10x(0u); // keep compliant with verifier. // Get to next instruction which is the second half of check-cast and replace // it by a NOP. inst = const_cast(inst->Next()); inst->SetOpcode(Instruction::NOP); inst->SetVRegA_10x(0u); // keep compliant with verifier. return inst; } void DexCompiler::CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_put) { if (!kEnableQuickening) { return; } uint32_t field_idx = inst->VRegC_22c(); MemberOffset field_offset(0u); bool is_volatile; bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, is_put, &field_offset, &is_volatile); if (fast_path && !is_volatile && IsUint<16>(field_offset.Int32Value())) { VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) << " to " << Instruction::Name(new_opcode) << " by replacing field index " << field_idx << " by field offset " << field_offset.Int32Value() << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); // We are modifying 4 consecutive bytes. inst->SetOpcode(new_opcode); // Replace field index by field offset. inst->SetVRegC_22c(static_cast(field_offset.Int32Value())); quickened_info_.push_back(QuickenedInfo(dex_pc, field_idx)); } } void DexCompiler::CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, Instruction::Code new_opcode, bool is_range) { if (!kEnableQuickening) { return; } uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); ScopedObjectAccess soa(Thread::Current()); ClassLinker* class_linker = unit_.GetClassLinker(); ArtMethod* resolved_method = class_linker->ResolveMethod( GetDexFile(), method_idx, unit_.GetDexCache(), unit_.GetClassLoader(), /* referrer */ nullptr, kVirtual); if (UNLIKELY(resolved_method == nullptr)) { // Clean up any exception left by type resolution. soa.Self()->ClearException(); return; } uint32_t vtable_idx = resolved_method->GetMethodIndex(); DCHECK(IsUint<16>(vtable_idx)); VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) << "(" << GetDexFile().PrettyMethod(method_idx, true) << ")" << " to " << Instruction::Name(new_opcode) << " by replacing method index " << method_idx << " by vtable index " << vtable_idx << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); // We are modifying 4 consecutive bytes. inst->SetOpcode(new_opcode); // Replace method index by vtable index. if (is_range) { inst->SetVRegB_3rc(static_cast(vtable_idx)); } else { inst->SetVRegB_35c(static_cast(vtable_idx)); } quickened_info_.push_back(QuickenedInfo(dex_pc, method_idx)); } CompiledMethod* ArtCompileDEX( CompilerDriver* driver, const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type ATTRIBUTE_UNUSED, uint16_t class_def_idx, uint32_t method_idx, Handle class_loader, const DexFile& dex_file, DexToDexCompilationLevel dex_to_dex_compilation_level) { DCHECK(driver != nullptr); if (dex_to_dex_compilation_level != DexToDexCompilationLevel::kDontDexToDexCompile) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); art::DexCompilationUnit unit( class_loader, class_linker, dex_file, code_item, class_def_idx, method_idx, access_flags, driver->GetVerifiedMethod(&dex_file, method_idx), hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file))); art::optimizer::DexCompiler dex_compiler(*driver, unit, dex_to_dex_compilation_level); dex_compiler.Compile(); if (dex_compiler.GetQuickenedInfo().empty()) { // No need to create a CompiledMethod if there are no quickened opcodes. return nullptr; } // Create a `CompiledMethod`, with the quickened information in the vmap table. Leb128EncodingVector<> builder; for (QuickenedInfo info : dex_compiler.GetQuickenedInfo()) { builder.PushBackUnsigned(info.dex_pc); builder.PushBackUnsigned(info.dex_member_index); } InstructionSet instruction_set = driver->GetInstructionSet(); if (instruction_set == kThumb2) { // Don't use the thumb2 instruction set to avoid the one off code delta. instruction_set = kArm; } return CompiledMethod::SwapAllocCompiledMethod( driver, instruction_set, ArrayRef(), // no code 0, 0, 0, ArrayRef(), // method_info ArrayRef(builder.GetData()), // vmap_table ArrayRef(), // cfi data ArrayRef()); } return nullptr; } } // namespace optimizer } // namespace art