/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_IMAGE_WRITER_H_ #define ART_COMPILER_IMAGE_WRITER_H_ #include #include "base/memory_tool.h" #include #include #include #include #include #include #include "art_method.h" #include "base/bit_utils.h" #include "base/dchecked_vector.h" #include "base/enums.h" #include "base/length_prefixed_array.h" #include "base/macros.h" #include "driver/compiler_driver.h" #include "gc/space/space.h" #include "image.h" #include "lock_word.h" #include "mem_map.h" #include "mirror/dex_cache.h" #include "obj_ptr.h" #include "oat_file.h" #include "os.h" #include "safe_map.h" #include "utils.h" namespace art { namespace gc { namespace space { class ImageSpace; } // namespace space } // namespace gc namespace mirror { class ClassLoader; } // namespace mirror class ClassLoaderVisitor; class ClassTable; class ImtConflictTable; static constexpr int kInvalidFd = -1; // Write a Space built during compilation for use during execution. class ImageWriter FINAL { public: ImageWriter(const CompilerDriver& compiler_driver, uintptr_t image_begin, bool compile_pic, bool compile_app_image, ImageHeader::StorageMode image_storage_mode, const std::vector& oat_filenames, const std::unordered_map& dex_file_oat_index_map); bool PrepareImageAddressSpace(); bool IsImageAddressSpaceReady() const { DCHECK(!image_infos_.empty()); for (const ImageInfo& image_info : image_infos_) { if (image_info.image_roots_address_ == 0u) { return false; } } return true; } ObjPtr GetClassLoader() { CHECK_EQ(class_loaders_.size(), compile_app_image_ ? 1u : 0u); return compile_app_image_ ? *class_loaders_.begin() : nullptr; } template T* GetImageAddress(T* object) const REQUIRES_SHARED(Locks::mutator_lock_) { if (object == nullptr || IsInBootImage(object)) { return object; } else { size_t oat_index = GetOatIndex(object); const ImageInfo& image_info = GetImageInfo(oat_index); return reinterpret_cast(image_info.image_begin_ + GetImageOffset(object)); } } ArtMethod* GetImageMethodAddress(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_); template PtrType GetDexCacheArrayElementImageAddress(const DexFile* dex_file, uint32_t offset) const REQUIRES_SHARED(Locks::mutator_lock_) { auto oat_it = dex_file_oat_index_map_.find(dex_file); DCHECK(oat_it != dex_file_oat_index_map_.end()); const ImageInfo& image_info = GetImageInfo(oat_it->second); auto it = image_info.dex_cache_array_starts_.find(dex_file); DCHECK(it != image_info.dex_cache_array_starts_.end()); return reinterpret_cast( image_info.image_begin_ + image_info.bin_slot_offsets_[kBinDexCacheArray] + it->second + offset); } size_t GetOatFileOffset(size_t oat_index) const { return GetImageInfo(oat_index).oat_offset_; } const uint8_t* GetOatFileBegin(size_t oat_index) const { return GetImageInfo(oat_index).oat_file_begin_; } // If image_fd is not kInvalidFd, then we use that for the image file. Otherwise we open // the names in image_filenames. // If oat_fd is not kInvalidFd, then we use that for the oat file. Otherwise we open // the names in oat_filenames. bool Write(int image_fd, const std::vector& image_filenames, const std::vector& oat_filenames) REQUIRES(!Locks::mutator_lock_); uintptr_t GetOatDataBegin(size_t oat_index) { return reinterpret_cast(GetImageInfo(oat_index).oat_data_begin_); } // Get the index of the oat file containing the dex file. // // This "oat_index" is used to retrieve information about the the memory layout // of the oat file and its associated image file, needed for link-time patching // of references to the image or across oat files. size_t GetOatIndexForDexFile(const DexFile* dex_file) const; // Get the index of the oat file containing the dex file served by the dex cache. size_t GetOatIndexForDexCache(ObjPtr dex_cache) const REQUIRES_SHARED(Locks::mutator_lock_); // Update the oat layout for the given oat file. // This will make the oat_offset for the next oat file valid. void UpdateOatFileLayout(size_t oat_index, size_t oat_loaded_size, size_t oat_data_offset, size_t oat_data_size); // Update information about the oat header, i.e. checksum and trampoline offsets. void UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header); private: using WorkStack = std::stack>; bool AllocMemory(); // Mark the objects defined in this space in the given live bitmap. void RecordImageAllocations() REQUIRES_SHARED(Locks::mutator_lock_); // Classify different kinds of bins that objects end up getting packed into during image writing. // Ordered from dirtiest to cleanest (until ArtMethods). enum Bin { kBinMiscDirty, // Dex caches, object locks, etc... kBinClassVerified, // Class verified, but initializers haven't been run // Unknown mix of clean/dirty: kBinRegular, kBinClassInitialized, // Class initializers have been run // All classes get their own bins since their fields often dirty kBinClassInitializedFinalStatics, // Class initializers have been run, no non-final statics // Likely-clean: kBinString, // [String] Almost always immutable (except for obj header). // Add more bins here if we add more segregation code. // Non mirror fields must be below. // ArtFields should be always clean. kBinArtField, // If the class is initialized, then the ArtMethods are probably clean. kBinArtMethodClean, // ArtMethods may be dirty if the class has native methods or a declaring class that isn't // initialized. kBinArtMethodDirty, // IMT (clean) kBinImTable, // Conflict tables (clean). kBinIMTConflictTable, // Runtime methods (always clean, do not have a length prefix array). kBinRuntimeMethod, // Dex cache arrays have a special slot for PC-relative addressing. Since they are // huge, and as such their dirtiness is not important for the clean/dirty separation, // we arbitrarily keep them at the end of the native data. kBinDexCacheArray, // Arrays belonging to dex cache. kBinSize, // Number of bins which are for mirror objects. kBinMirrorCount = kBinArtField, }; friend std::ostream& operator<<(std::ostream& stream, const Bin& bin); enum NativeObjectRelocationType { kNativeObjectRelocationTypeArtField, kNativeObjectRelocationTypeArtFieldArray, kNativeObjectRelocationTypeArtMethodClean, kNativeObjectRelocationTypeArtMethodArrayClean, kNativeObjectRelocationTypeArtMethodDirty, kNativeObjectRelocationTypeArtMethodArrayDirty, kNativeObjectRelocationTypeRuntimeMethod, kNativeObjectRelocationTypeIMTable, kNativeObjectRelocationTypeIMTConflictTable, kNativeObjectRelocationTypeDexCacheArray, }; friend std::ostream& operator<<(std::ostream& stream, const NativeObjectRelocationType& type); enum OatAddress { kOatAddressInterpreterToInterpreterBridge, kOatAddressInterpreterToCompiledCodeBridge, kOatAddressJNIDlsymLookup, kOatAddressQuickGenericJNITrampoline, kOatAddressQuickIMTConflictTrampoline, kOatAddressQuickResolutionTrampoline, kOatAddressQuickToInterpreterBridge, // Number of elements in the enum. kOatAddressCount, }; friend std::ostream& operator<<(std::ostream& stream, const OatAddress& oat_address); static constexpr size_t kBinBits = MinimumBitsToStore(kBinMirrorCount - 1); // uint32 = typeof(lockword_) // Subtract read barrier bits since we want these to remain 0, or else it may result in DCHECK // failures due to invalid read barrier bits during object field reads. static const size_t kBinShift = BitSizeOf() - kBinBits - LockWord::kGCStateSize; // 111000.....0 static const size_t kBinMask = ((static_cast(1) << kBinBits) - 1) << kBinShift; // We use the lock word to store the bin # and bin index of the object in the image. // // The struct size must be exactly sizeof(LockWord), currently 32-bits, since this will end up // stored in the lock word bit-for-bit when object forwarding addresses are being calculated. struct BinSlot { explicit BinSlot(uint32_t lockword); BinSlot(Bin bin, uint32_t index); // The bin an object belongs to, i.e. regular, class/verified, class/initialized, etc. Bin GetBin() const; // The offset in bytes from the beginning of the bin. Aligned to object size. uint32_t GetIndex() const; // Pack into a single uint32_t, for storing into a lock word. uint32_t Uint32Value() const { return lockword_; } // Comparison operator for map support bool operator<(const BinSlot& other) const { return lockword_ < other.lockword_; } private: // Must be the same size as LockWord, any larger and we would truncate the data. const uint32_t lockword_; }; struct ImageInfo { ImageInfo(); ImageInfo(ImageInfo&&) = default; // Create the image sections into the out sections variable, returns the size of the image // excluding the bitmap. size_t CreateImageSections(ImageSection* out_sections) const; std::unique_ptr image_; // Memory mapped for generating the image. // Target begin of this image. Notes: It is not valid to write here, this is the address // of the target image, not necessarily where image_ is mapped. The address is only valid // after layouting (otherwise null). uint8_t* image_begin_ = nullptr; // Offset to the free space in image_, initially size of image header. size_t image_end_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); uint32_t image_roots_address_ = 0; // The image roots address in the image. size_t image_offset_ = 0; // Offset of this image from the start of the first image. // Image size is the *address space* covered by this image. As the live bitmap is aligned // to the page size, the live bitmap will cover more address space than necessary. But live // bitmaps may not overlap, so an image has a "shadow," which is accounted for in the size. // The next image may only start at image_begin_ + image_size_ (which is guaranteed to be // page-aligned). size_t image_size_ = 0; // Oat data. // Offset of the oat file for this image from start of oat files. This is // valid when the previous oat file has been written. size_t oat_offset_ = 0; // Layout of the loaded ELF file containing the oat file, valid after UpdateOatFileLayout(). const uint8_t* oat_file_begin_ = nullptr; size_t oat_loaded_size_ = 0; const uint8_t* oat_data_begin_ = nullptr; size_t oat_size_ = 0; // Size of the corresponding oat data. // The oat header checksum, valid after UpdateOatFileHeader(). uint32_t oat_checksum_ = 0u; // Image bitmap which lets us know where the objects inside of the image reside. std::unique_ptr image_bitmap_; // The start offsets of the dex cache arrays. SafeMap dex_cache_array_starts_; // Offset from oat_data_begin_ to the stubs. uint32_t oat_address_offsets_[kOatAddressCount] = {}; // Bin slot tracking for dirty object packing. size_t bin_slot_sizes_[kBinSize] = {}; // Number of bytes in a bin. size_t bin_slot_offsets_[kBinSize] = {}; // Number of bytes in previous bins. size_t bin_slot_count_[kBinSize] = {}; // Number of objects in a bin. // Cached size of the intern table for when we allocate memory. size_t intern_table_bytes_ = 0; // Number of image class table bytes. size_t class_table_bytes_ = 0; // Number of object fixup bytes. size_t object_fixup_bytes_ = 0; // Number of pointer fixup bytes. size_t pointer_fixup_bytes_ = 0; // Intern table associated with this image for serialization. std::unique_ptr intern_table_; // Class table associated with this image for serialization. std::unique_ptr class_table_; }; // We use the lock word to store the offset of the object in the image. void AssignImageOffset(mirror::Object* object, BinSlot bin_slot) REQUIRES_SHARED(Locks::mutator_lock_); void SetImageOffset(mirror::Object* object, size_t offset) REQUIRES_SHARED(Locks::mutator_lock_); bool IsImageOffsetAssigned(mirror::Object* object) const REQUIRES_SHARED(Locks::mutator_lock_); size_t GetImageOffset(mirror::Object* object) const REQUIRES_SHARED(Locks::mutator_lock_); void UpdateImageOffset(mirror::Object* obj, uintptr_t offset) REQUIRES_SHARED(Locks::mutator_lock_); void PrepareDexCacheArraySlots() REQUIRES_SHARED(Locks::mutator_lock_); void AssignImageBinSlot(mirror::Object* object, size_t oat_index) REQUIRES_SHARED(Locks::mutator_lock_); mirror::Object* TryAssignBinSlot(WorkStack& work_stack, mirror::Object* obj, size_t oat_index) REQUIRES_SHARED(Locks::mutator_lock_); void SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) REQUIRES_SHARED(Locks::mutator_lock_); bool IsImageBinSlotAssigned(mirror::Object* object) const REQUIRES_SHARED(Locks::mutator_lock_); BinSlot GetImageBinSlot(mirror::Object* object) const REQUIRES_SHARED(Locks::mutator_lock_); void AddDexCacheArrayRelocation(void* array, size_t offset, ObjPtr dex_cache) REQUIRES_SHARED(Locks::mutator_lock_); void AddMethodPointerArray(mirror::PointerArray* arr) REQUIRES_SHARED(Locks::mutator_lock_); static void* GetImageAddressCallback(void* writer, mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { return reinterpret_cast(writer)->GetImageAddress(obj); } mirror::Object* GetLocalAddress(mirror::Object* object) const REQUIRES_SHARED(Locks::mutator_lock_) { size_t offset = GetImageOffset(object); size_t oat_index = GetOatIndex(object); const ImageInfo& image_info = GetImageInfo(oat_index); uint8_t* dst = image_info.image_->Begin() + offset; return reinterpret_cast(dst); } // Returns the address in the boot image if we are compiling the app image. const uint8_t* GetOatAddress(OatAddress type) const; const uint8_t* GetOatAddressForOffset(uint32_t offset, const ImageInfo& image_info) const { // With Quick, code is within the OatFile, as there are all in one // .o ELF object. But interpret it as signed. DCHECK_LE(static_cast(offset), static_cast(image_info.oat_size_)); DCHECK(image_info.oat_data_begin_ != nullptr); return offset == 0u ? nullptr : image_info.oat_data_begin_ + static_cast(offset); } // Returns true if the class was in the original requested image classes list. bool KeepClass(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_); // Debug aid that list of requested image classes. void DumpImageClasses(); // Preinitializes some otherwise lazy fields (such as Class name) to avoid runtime image dirtying. void ComputeLazyFieldsForImageClasses() REQUIRES_SHARED(Locks::mutator_lock_); // Visit all class loaders. void VisitClassLoaders(ClassLoaderVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_); // Remove unwanted classes from various roots. void PruneNonImageClasses() REQUIRES_SHARED(Locks::mutator_lock_); // Remove unwanted classes from the DexCache roots and preload deterministic DexCache contents. void PruneAndPreloadDexCache(ObjPtr dex_cache, ObjPtr class_loader) REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::classlinker_classes_lock_); // Verify unwanted classes removed. void CheckNonImageClassesRemoved() REQUIRES_SHARED(Locks::mutator_lock_); static void CheckNonImageClassesRemovedCallback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_); // Lays out where the image objects will be at runtime. void CalculateNewObjectOffsets() REQUIRES_SHARED(Locks::mutator_lock_); void ProcessWorkStack(WorkStack* work_stack) REQUIRES_SHARED(Locks::mutator_lock_); void CreateHeader(size_t oat_index) REQUIRES_SHARED(Locks::mutator_lock_); mirror::ObjectArray* CreateImageRoots(size_t oat_index) const REQUIRES_SHARED(Locks::mutator_lock_); void CalculateObjectBinSlots(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); void UnbinObjectsIntoOffset(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); static void EnsureBinSlotAssignedCallback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_); static void DeflateMonitorCallback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_); static void UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_); // Creates the contiguous image in memory and adjusts pointers. void CopyAndFixupNativeData(size_t oat_index) REQUIRES_SHARED(Locks::mutator_lock_); void CopyAndFixupObjects() REQUIRES_SHARED(Locks::mutator_lock_); static void CopyAndFixupObjectsCallback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_); void CopyAndFixupObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); void CopyAndFixupMethod(ArtMethod* orig, ArtMethod* copy, const ImageInfo& image_info) REQUIRES_SHARED(Locks::mutator_lock_); void CopyAndFixupImTable(ImTable* orig, ImTable* copy) REQUIRES_SHARED(Locks::mutator_lock_); void CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) REQUIRES_SHARED(Locks::mutator_lock_); void FixupClass(mirror::Class* orig, mirror::Class* copy) REQUIRES_SHARED(Locks::mutator_lock_); void FixupObject(mirror::Object* orig, mirror::Object* copy) REQUIRES_SHARED(Locks::mutator_lock_); void FixupDexCache(mirror::DexCache* orig_dex_cache, mirror::DexCache* copy_dex_cache) REQUIRES_SHARED(Locks::mutator_lock_); void FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr, mirror::Class* klass, Bin array_type) REQUIRES_SHARED(Locks::mutator_lock_); // Get quick code for non-resolution/imt_conflict/abstract method. const uint8_t* GetQuickCode(ArtMethod* method, const ImageInfo& image_info, bool* quick_is_interpreted) REQUIRES_SHARED(Locks::mutator_lock_); // Calculate the sum total of the bin slot sizes in [0, up_to). Defaults to all bins. size_t GetBinSizeSum(ImageInfo& image_info, Bin up_to = kBinSize) const; // Return true if a method is likely to be dirtied at runtime. bool WillMethodBeDirty(ArtMethod* m) const REQUIRES_SHARED(Locks::mutator_lock_); // Assign the offset for an ArtMethod. void AssignMethodOffset(ArtMethod* method, NativeObjectRelocationType type, size_t oat_index) REQUIRES_SHARED(Locks::mutator_lock_); // Return true if imt was newly inserted. bool TryAssignImTableOffset(ImTable* imt, size_t oat_index) REQUIRES_SHARED(Locks::mutator_lock_); // Assign the offset for an IMT conflict table. Does nothing if the table already has a native // relocation. void TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) REQUIRES_SHARED(Locks::mutator_lock_); // Return true if klass is loaded by the boot class loader but not in the boot image. bool IsBootClassLoaderNonImageClass(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_); // Return true if klass depends on a boot class loader non image class. We want to prune these // classes since we do not want any boot class loader classes in the image. This means that // we also cannot have any classes which refer to these boot class loader non image classes. // PruneAppImageClass also prunes if klass depends on a non-image class according to the compiler // driver. bool PruneAppImageClass(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_); // early_exit is true if we had a cyclic dependency anywhere down the chain. bool PruneAppImageClassInternal(ObjPtr klass, bool* early_exit, std::unordered_set* visited) REQUIRES_SHARED(Locks::mutator_lock_); bool IsMultiImage() const { return image_infos_.size() > 1; } static Bin BinTypeForNativeRelocationType(NativeObjectRelocationType type); uintptr_t NativeOffsetInImage(void* obj) REQUIRES_SHARED(Locks::mutator_lock_); // Location of where the object will be when the image is loaded at runtime. template T* NativeLocationInImage(T* obj) REQUIRES_SHARED(Locks::mutator_lock_); // Location of where the temporary copy of the object currently is. template T* NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) REQUIRES_SHARED(Locks::mutator_lock_); // Return true of obj is inside of the boot image space. This may only return true if we are // compiling an app image. bool IsInBootImage(const void* obj) const; // Return true if ptr is within the boot oat file. bool IsInBootOatFile(const void* ptr) const; // Get the index of the oat file associated with the object. size_t GetOatIndex(mirror::Object* object) const REQUIRES_SHARED(Locks::mutator_lock_); // The oat index for shared data in multi-image and all data in single-image compilation. size_t GetDefaultOatIndex() const { return 0u; } ImageInfo& GetImageInfo(size_t oat_index) { return image_infos_[oat_index]; } const ImageInfo& GetImageInfo(size_t oat_index) const { return image_infos_[oat_index]; } // Find an already strong interned string in the other images or in the boot image. Used to // remove duplicates in the multi image and app image case. mirror::String* FindInternedString(mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_); // Return true if there already exists a native allocation for an object. bool NativeRelocationAssigned(void* ptr) const; void CopyReference(mirror::HeapReference* dest, ObjPtr src) REQUIRES_SHARED(Locks::mutator_lock_); void CopyReference(mirror::CompressedReference* dest, ObjPtr src) REQUIRES_SHARED(Locks::mutator_lock_); void CopyAndFixupPointer(void** target, void* value); const CompilerDriver& compiler_driver_; // Beginning target image address for the first image. uint8_t* global_image_begin_; // Offset from image_begin_ to where the first object is in image_. size_t image_objects_offset_begin_; // Pointer arrays that need to be updated. Since these are only some int and long arrays, we need // to keep track. These include vtable arrays, iftable arrays, and dex caches. std::unordered_map pointer_arrays_; // Saved hash codes. We use these to restore lockwords which were temporarily used to have // forwarding addresses as well as copying over hash codes. std::unordered_map saved_hashcode_map_; // Oat index map for objects. std::unordered_map oat_index_map_; // Boolean flags. const bool compile_pic_; const bool compile_app_image_; // Size of pointers on the target architecture. PointerSize target_ptr_size_; // Image data indexed by the oat file index. dchecked_vector image_infos_; // ArtField, ArtMethod relocating map. These are allocated as array of structs but we want to // have one entry per art field for convenience. ArtFields are placed right after the end of the // image objects (aka sum of bin_slot_sizes_). ArtMethods are placed right after the ArtFields. struct NativeObjectRelocation { size_t oat_index; uintptr_t offset; NativeObjectRelocationType type; bool IsArtMethodRelocation() const { return type == kNativeObjectRelocationTypeArtMethodClean || type == kNativeObjectRelocationTypeArtMethodDirty || type == kNativeObjectRelocationTypeRuntimeMethod; } }; std::unordered_map native_object_relocations_; // Runtime ArtMethods which aren't reachable from any Class but need to be copied into the image. ArtMethod* image_methods_[ImageHeader::kImageMethodsCount]; // Counters for measurements, used for logging only. uint64_t dirty_methods_; uint64_t clean_methods_; // Prune class memoization table to speed up ContainsBootClassLoaderNonImageClass. std::unordered_map prune_class_memo_; // Class loaders with a class table to write out. There should only be one class loader because // dex2oat loads the dex files to be compiled into a single class loader. For the boot image, // null is a valid entry. std::unordered_set class_loaders_; // Which mode the image is stored as, see image.h const ImageHeader::StorageMode image_storage_mode_; // The file names of oat files. const std::vector& oat_filenames_; // Map of dex files to the indexes of oat files that they were compiled into. const std::unordered_map& dex_file_oat_index_map_; class ComputeLazyFieldsForClassesVisitor; class FixupClassVisitor; class FixupRootVisitor; class FixupVisitor; class GetRootsVisitor; class ImageAddressVisitorForDexCacheArray; class NativeLocationVisitor; class PruneClassesVisitor; class PruneClassLoaderClassesVisitor; class RegisterBootClassPathClassesVisitor; class VisitReferencesVisitor; DISALLOW_COPY_AND_ASSIGN(ImageWriter); }; } // namespace art #endif // ART_COMPILER_IMAGE_WRITER_H_