/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "graph_visualizer.h" #include #include #include #include "bounds_check_elimination.h" #include "builder.h" #include "code_generator.h" #include "dead_code_elimination.h" #include "disassembler.h" #include "inliner.h" #include "licm.h" #include "nodes.h" #include "optimization.h" #include "reference_type_propagation.h" #include "register_allocator_linear_scan.h" #include "ssa_liveness_analysis.h" #include "utils/assembler.h" namespace art { static bool HasWhitespace(const char* str) { DCHECK(str != nullptr); while (str[0] != 0) { if (isspace(str[0])) { return true; } str++; } return false; } class StringList { public: enum Format { kArrayBrackets, kSetBrackets, }; // Create an empty list explicit StringList(Format format = kArrayBrackets) : format_(format), is_empty_(true) {} // Construct StringList from a linked list. List element class T // must provide methods `GetNext` and `Dump`. template explicit StringList(T* first_entry, Format format = kArrayBrackets) : StringList(format) { for (T* current = first_entry; current != nullptr; current = current->GetNext()) { current->Dump(NewEntryStream()); } } std::ostream& NewEntryStream() { if (is_empty_) { is_empty_ = false; } else { sstream_ << ","; } return sstream_; } private: Format format_; bool is_empty_; std::ostringstream sstream_; friend std::ostream& operator<<(std::ostream& os, const StringList& list); }; std::ostream& operator<<(std::ostream& os, const StringList& list) { switch (list.format_) { case StringList::kArrayBrackets: return os << "[" << list.sstream_.str() << "]"; case StringList::kSetBrackets: return os << "{" << list.sstream_.str() << "}"; default: LOG(FATAL) << "Invalid StringList format"; UNREACHABLE(); } } typedef Disassembler* create_disasm_prototype(InstructionSet instruction_set, DisassemblerOptions* options); class HGraphVisualizerDisassembler { public: HGraphVisualizerDisassembler(InstructionSet instruction_set, const uint8_t* base_address, const uint8_t* end_address) : instruction_set_(instruction_set), disassembler_(nullptr) { libart_disassembler_handle_ = dlopen(kIsDebugBuild ? "libartd-disassembler.so" : "libart-disassembler.so", RTLD_NOW); if (libart_disassembler_handle_ == nullptr) { LOG(WARNING) << "Failed to dlopen libart-disassembler: " << dlerror(); return; } create_disasm_prototype* create_disassembler = reinterpret_cast( dlsym(libart_disassembler_handle_, "create_disassembler")); if (create_disassembler == nullptr) { LOG(WARNING) << "Could not find create_disassembler entry: " << dlerror(); return; } // Reading the disassembly from 0x0 is easier, so we print relative // addresses. We will only disassemble the code once everything has // been generated, so we can read data in literal pools. disassembler_ = std::unique_ptr((*create_disassembler)( instruction_set, new DisassemblerOptions(/* absolute_addresses */ false, base_address, end_address, /* can_read_literals */ true, Is64BitInstructionSet(instruction_set) ? &Thread::DumpThreadOffset : &Thread::DumpThreadOffset))); } ~HGraphVisualizerDisassembler() { // We need to call ~Disassembler() before we close the library. disassembler_.reset(); if (libart_disassembler_handle_ != nullptr) { dlclose(libart_disassembler_handle_); } } void Disassemble(std::ostream& output, size_t start, size_t end) const { if (disassembler_ == nullptr) { return; } const uint8_t* base = disassembler_->GetDisassemblerOptions()->base_address_; if (instruction_set_ == kThumb2) { // ARM and Thumb-2 use the same disassembler. The bottom bit of the // address is used to distinguish between the two. base += 1; } disassembler_->Dump(output, base + start, base + end); } private: InstructionSet instruction_set_; std::unique_ptr disassembler_; void* libart_disassembler_handle_; }; /** * HGraph visitor to generate a file suitable for the c1visualizer tool and IRHydra. */ class HGraphVisualizerPrinter : public HGraphDelegateVisitor { public: HGraphVisualizerPrinter(HGraph* graph, std::ostream& output, const char* pass_name, bool is_after_pass, bool graph_in_bad_state, const CodeGenerator& codegen, const DisassemblyInformation* disasm_info = nullptr) : HGraphDelegateVisitor(graph), output_(output), pass_name_(pass_name), is_after_pass_(is_after_pass), graph_in_bad_state_(graph_in_bad_state), codegen_(codegen), disasm_info_(disasm_info), disassembler_(disasm_info_ != nullptr ? new HGraphVisualizerDisassembler( codegen_.GetInstructionSet(), codegen_.GetAssembler().CodeBufferBaseAddress(), codegen_.GetAssembler().CodeBufferBaseAddress() + codegen_.GetAssembler().CodeSize()) : nullptr), indent_(0) {} void Flush() { // We use "\n" instead of std::endl to avoid implicit flushing which // generates too many syscalls during debug-GC tests (b/27826765). output_ << std::flush; } void StartTag(const char* name) { AddIndent(); output_ << "begin_" << name << "\n"; indent_++; } void EndTag(const char* name) { indent_--; AddIndent(); output_ << "end_" << name << "\n"; } void PrintProperty(const char* name, const char* property) { AddIndent(); output_ << name << " \"" << property << "\"\n"; } void PrintProperty(const char* name, const char* property, int id) { AddIndent(); output_ << name << " \"" << property << id << "\"\n"; } void PrintEmptyProperty(const char* name) { AddIndent(); output_ << name << "\n"; } void PrintTime(const char* name) { AddIndent(); output_ << name << " " << time(nullptr) << "\n"; } void PrintInt(const char* name, int value) { AddIndent(); output_ << name << " " << value << "\n"; } void AddIndent() { for (size_t i = 0; i < indent_; ++i) { output_ << " "; } } char GetTypeId(Primitive::Type type) { // Note that Primitive::Descriptor would not work for us // because it does not handle reference types (that is kPrimNot). switch (type) { case Primitive::kPrimBoolean: return 'z'; case Primitive::kPrimByte: return 'b'; case Primitive::kPrimChar: return 'c'; case Primitive::kPrimShort: return 's'; case Primitive::kPrimInt: return 'i'; case Primitive::kPrimLong: return 'j'; case Primitive::kPrimFloat: return 'f'; case Primitive::kPrimDouble: return 'd'; case Primitive::kPrimNot: return 'l'; case Primitive::kPrimVoid: return 'v'; } LOG(FATAL) << "Unreachable"; return 'v'; } void PrintPredecessors(HBasicBlock* block) { AddIndent(); output_ << "predecessors"; for (HBasicBlock* predecessor : block->GetPredecessors()) { output_ << " \"B" << predecessor->GetBlockId() << "\" "; } if (block->IsEntryBlock() && (disasm_info_ != nullptr)) { output_ << " \"" << kDisassemblyBlockFrameEntry << "\" "; } output_<< "\n"; } void PrintSuccessors(HBasicBlock* block) { AddIndent(); output_ << "successors"; for (HBasicBlock* successor : block->GetNormalSuccessors()) { output_ << " \"B" << successor->GetBlockId() << "\" "; } output_<< "\n"; } void PrintExceptionHandlers(HBasicBlock* block) { AddIndent(); output_ << "xhandlers"; for (HBasicBlock* handler : block->GetExceptionalSuccessors()) { output_ << " \"B" << handler->GetBlockId() << "\" "; } if (block->IsExitBlock() && (disasm_info_ != nullptr) && !disasm_info_->GetSlowPathIntervals().empty()) { output_ << " \"" << kDisassemblyBlockSlowPaths << "\" "; } output_<< "\n"; } void DumpLocation(std::ostream& stream, const Location& location) { if (location.IsRegister()) { codegen_.DumpCoreRegister(stream, location.reg()); } else if (location.IsFpuRegister()) { codegen_.DumpFloatingPointRegister(stream, location.reg()); } else if (location.IsConstant()) { stream << "#"; HConstant* constant = location.GetConstant(); if (constant->IsIntConstant()) { stream << constant->AsIntConstant()->GetValue(); } else if (constant->IsLongConstant()) { stream << constant->AsLongConstant()->GetValue(); } else if (constant->IsFloatConstant()) { stream << constant->AsFloatConstant()->GetValue(); } else if (constant->IsDoubleConstant()) { stream << constant->AsDoubleConstant()->GetValue(); } else if (constant->IsNullConstant()) { stream << "null"; } } else if (location.IsInvalid()) { stream << "invalid"; } else if (location.IsStackSlot()) { stream << location.GetStackIndex() << "(sp)"; } else if (location.IsFpuRegisterPair()) { codegen_.DumpFloatingPointRegister(stream, location.low()); stream << "|"; codegen_.DumpFloatingPointRegister(stream, location.high()); } else if (location.IsRegisterPair()) { codegen_.DumpCoreRegister(stream, location.low()); stream << "|"; codegen_.DumpCoreRegister(stream, location.high()); } else if (location.IsUnallocated()) { stream << "unallocated"; } else if (location.IsDoubleStackSlot()) { stream << "2x" << location.GetStackIndex() << "(sp)"; } else { DCHECK(location.IsSIMDStackSlot()); stream << "4x" << location.GetStackIndex() << "(sp)"; } } std::ostream& StartAttributeStream(const char* name = nullptr) { if (name == nullptr) { output_ << " "; } else { DCHECK(!HasWhitespace(name)) << "Checker does not allow spaces in attributes"; output_ << " " << name << ":"; } return output_; } void VisitParallelMove(HParallelMove* instruction) OVERRIDE { StartAttributeStream("liveness") << instruction->GetLifetimePosition(); StringList moves; for (size_t i = 0, e = instruction->NumMoves(); i < e; ++i) { MoveOperands* move = instruction->MoveOperandsAt(i); std::ostream& str = moves.NewEntryStream(); DumpLocation(str, move->GetSource()); str << "->"; DumpLocation(str, move->GetDestination()); } StartAttributeStream("moves") << moves; } void VisitIntConstant(HIntConstant* instruction) OVERRIDE { StartAttributeStream() << instruction->GetValue(); } void VisitLongConstant(HLongConstant* instruction) OVERRIDE { StartAttributeStream() << instruction->GetValue(); } void VisitFloatConstant(HFloatConstant* instruction) OVERRIDE { StartAttributeStream() << instruction->GetValue(); } void VisitDoubleConstant(HDoubleConstant* instruction) OVERRIDE { StartAttributeStream() << instruction->GetValue(); } void VisitPhi(HPhi* phi) OVERRIDE { StartAttributeStream("reg") << phi->GetRegNumber(); StartAttributeStream("is_catch_phi") << std::boolalpha << phi->IsCatchPhi() << std::noboolalpha; } void VisitMemoryBarrier(HMemoryBarrier* barrier) OVERRIDE { StartAttributeStream("kind") << barrier->GetBarrierKind(); } void VisitMonitorOperation(HMonitorOperation* monitor) OVERRIDE { StartAttributeStream("kind") << (monitor->IsEnter() ? "enter" : "exit"); } void VisitLoadClass(HLoadClass* load_class) OVERRIDE { StartAttributeStream("load_kind") << load_class->GetLoadKind(); const char* descriptor = load_class->GetDexFile().GetTypeDescriptor( load_class->GetDexFile().GetTypeId(load_class->GetTypeIndex())); StartAttributeStream("class_name") << PrettyDescriptor(descriptor); StartAttributeStream("gen_clinit_check") << std::boolalpha << load_class->MustGenerateClinitCheck() << std::noboolalpha; StartAttributeStream("needs_access_check") << std::boolalpha << load_class->NeedsAccessCheck() << std::noboolalpha; } void VisitLoadString(HLoadString* load_string) OVERRIDE { StartAttributeStream("load_kind") << load_string->GetLoadKind(); } void VisitCheckCast(HCheckCast* check_cast) OVERRIDE { StartAttributeStream("check_kind") << check_cast->GetTypeCheckKind(); StartAttributeStream("must_do_null_check") << std::boolalpha << check_cast->MustDoNullCheck() << std::noboolalpha; } void VisitInstanceOf(HInstanceOf* instance_of) OVERRIDE { StartAttributeStream("check_kind") << instance_of->GetTypeCheckKind(); StartAttributeStream("must_do_null_check") << std::boolalpha << instance_of->MustDoNullCheck() << std::noboolalpha; } void VisitArrayLength(HArrayLength* array_length) OVERRIDE { StartAttributeStream("is_string_length") << std::boolalpha << array_length->IsStringLength() << std::noboolalpha; if (array_length->IsEmittedAtUseSite()) { StartAttributeStream("emitted_at_use") << "true"; } } void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE { StartAttributeStream("is_string_char_at") << std::boolalpha << bounds_check->IsStringCharAt() << std::noboolalpha; } void VisitArrayGet(HArrayGet* array_get) OVERRIDE { StartAttributeStream("is_string_char_at") << std::boolalpha << array_get->IsStringCharAt() << std::noboolalpha; } void VisitArraySet(HArraySet* array_set) OVERRIDE { StartAttributeStream("value_can_be_null") << std::boolalpha << array_set->GetValueCanBeNull() << std::noboolalpha; StartAttributeStream("needs_type_check") << std::boolalpha << array_set->NeedsTypeCheck() << std::noboolalpha; } void VisitCompare(HCompare* compare) OVERRIDE { ComparisonBias bias = compare->GetBias(); StartAttributeStream("bias") << (bias == ComparisonBias::kGtBias ? "gt" : (bias == ComparisonBias::kLtBias ? "lt" : "none")); } void VisitInvoke(HInvoke* invoke) OVERRIDE { StartAttributeStream("dex_file_index") << invoke->GetDexMethodIndex(); StartAttributeStream("method_name") << GetGraph()->GetDexFile().PrettyMethod( invoke->GetDexMethodIndex(), /* with_signature */ false); } void VisitInvokeUnresolved(HInvokeUnresolved* invoke) OVERRIDE { VisitInvoke(invoke); StartAttributeStream("invoke_type") << invoke->GetInvokeType(); } void VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) OVERRIDE { VisitInvoke(invoke); StartAttributeStream("method_load_kind") << invoke->GetMethodLoadKind(); StartAttributeStream("intrinsic") << invoke->GetIntrinsic(); if (invoke->IsStatic()) { StartAttributeStream("clinit_check") << invoke->GetClinitCheckRequirement(); } } void VisitInvokeVirtual(HInvokeVirtual* invoke) OVERRIDE { VisitInvoke(invoke); StartAttributeStream("intrinsic") << invoke->GetIntrinsic(); } void VisitInvokePolymorphic(HInvokePolymorphic* invoke) OVERRIDE { VisitInvoke(invoke); StartAttributeStream("invoke_type") << "InvokePolymorphic"; } void VisitInstanceFieldGet(HInstanceFieldGet* iget) OVERRIDE { StartAttributeStream("field_name") << iget->GetFieldInfo().GetDexFile().PrettyField(iget->GetFieldInfo().GetFieldIndex(), /* with type */ false); StartAttributeStream("field_type") << iget->GetFieldType(); } void VisitInstanceFieldSet(HInstanceFieldSet* iset) OVERRIDE { StartAttributeStream("field_name") << iset->GetFieldInfo().GetDexFile().PrettyField(iset->GetFieldInfo().GetFieldIndex(), /* with type */ false); StartAttributeStream("field_type") << iset->GetFieldType(); } void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* field_access) OVERRIDE { StartAttributeStream("field_type") << field_access->GetFieldType(); } void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* field_access) OVERRIDE { StartAttributeStream("field_type") << field_access->GetFieldType(); } void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* field_access) OVERRIDE { StartAttributeStream("field_type") << field_access->GetFieldType(); } void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* field_access) OVERRIDE { StartAttributeStream("field_type") << field_access->GetFieldType(); } void VisitTryBoundary(HTryBoundary* try_boundary) OVERRIDE { StartAttributeStream("kind") << (try_boundary->IsEntry() ? "entry" : "exit"); } void VisitDeoptimize(HDeoptimize* deoptimize) OVERRIDE { StartAttributeStream("kind") << deoptimize->GetKind(); } void VisitVecHalvingAdd(HVecHalvingAdd* hadd) OVERRIDE { StartAttributeStream("unsigned") << std::boolalpha << hadd->IsUnsigned() << std::noboolalpha; StartAttributeStream("rounded") << std::boolalpha << hadd->IsRounded() << std::noboolalpha; } void VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) OVERRIDE { StartAttributeStream("kind") << instruction->GetOpKind(); } #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64) void VisitMultiplyAccumulate(HMultiplyAccumulate* instruction) OVERRIDE { StartAttributeStream("kind") << instruction->GetOpKind(); } void VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) OVERRIDE { StartAttributeStream("kind") << instruction->GetOpKind(); } void VisitDataProcWithShifterOp(HDataProcWithShifterOp* instruction) OVERRIDE { StartAttributeStream("kind") << instruction->GetInstrKind() << "+" << instruction->GetOpKind(); if (HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind())) { StartAttributeStream("shift") << instruction->GetShiftAmount(); } } #endif bool IsPass(const char* name) { return strcmp(pass_name_, name) == 0; } void PrintInstruction(HInstruction* instruction) { output_ << instruction->DebugName(); HConstInputsRef inputs = instruction->GetInputs(); if (!inputs.empty()) { StringList input_list; for (const HInstruction* input : inputs) { input_list.NewEntryStream() << GetTypeId(input->GetType()) << input->GetId(); } StartAttributeStream() << input_list; } instruction->Accept(this); if (instruction->HasEnvironment()) { StringList envs; for (HEnvironment* environment = instruction->GetEnvironment(); environment != nullptr; environment = environment->GetParent()) { StringList vregs; for (size_t i = 0, e = environment->Size(); i < e; ++i) { HInstruction* insn = environment->GetInstructionAt(i); if (insn != nullptr) { vregs.NewEntryStream() << GetTypeId(insn->GetType()) << insn->GetId(); } else { vregs.NewEntryStream() << "_"; } } envs.NewEntryStream() << vregs; } StartAttributeStream("env") << envs; } if (IsPass(SsaLivenessAnalysis::kLivenessPassName) && is_after_pass_ && instruction->GetLifetimePosition() != kNoLifetime) { StartAttributeStream("liveness") << instruction->GetLifetimePosition(); if (instruction->HasLiveInterval()) { LiveInterval* interval = instruction->GetLiveInterval(); StartAttributeStream("ranges") << StringList(interval->GetFirstRange(), StringList::kSetBrackets); StartAttributeStream("uses") << StringList(interval->GetFirstUse()); StartAttributeStream("env_uses") << StringList(interval->GetFirstEnvironmentUse()); StartAttributeStream("is_fixed") << interval->IsFixed(); StartAttributeStream("is_split") << interval->IsSplit(); StartAttributeStream("is_low") << interval->IsLowInterval(); StartAttributeStream("is_high") << interval->IsHighInterval(); } } if (IsPass(RegisterAllocator::kRegisterAllocatorPassName) && is_after_pass_) { StartAttributeStream("liveness") << instruction->GetLifetimePosition(); LocationSummary* locations = instruction->GetLocations(); if (locations != nullptr) { StringList input_list; for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { DumpLocation(input_list.NewEntryStream(), locations->InAt(i)); } std::ostream& attr = StartAttributeStream("locations"); attr << input_list << "->"; DumpLocation(attr, locations->Out()); } } HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation(); if (loop_info == nullptr) { StartAttributeStream("loop") << "none"; } else { StartAttributeStream("loop") << "B" << loop_info->GetHeader()->GetBlockId(); HLoopInformation* outer = loop_info->GetPreHeader()->GetLoopInformation(); if (outer != nullptr) { StartAttributeStream("outer_loop") << "B" << outer->GetHeader()->GetBlockId(); } else { StartAttributeStream("outer_loop") << "none"; } StartAttributeStream("irreducible") << std::boolalpha << loop_info->IsIrreducible() << std::noboolalpha; } if ((IsPass(HGraphBuilder::kBuilderPassName) || IsPass(HInliner::kInlinerPassName)) && (instruction->GetType() == Primitive::kPrimNot)) { ReferenceTypeInfo info = instruction->IsLoadClass() ? instruction->AsLoadClass()->GetLoadedClassRTI() : instruction->GetReferenceTypeInfo(); ScopedObjectAccess soa(Thread::Current()); if (info.IsValid()) { StartAttributeStream("klass") << mirror::Class::PrettyDescriptor(info.GetTypeHandle().Get()); StartAttributeStream("can_be_null") << std::boolalpha << instruction->CanBeNull() << std::noboolalpha; StartAttributeStream("exact") << std::boolalpha << info.IsExact() << std::noboolalpha; } else if (instruction->IsLoadClass()) { StartAttributeStream("klass") << "unresolved"; } else { // The NullConstant may be added to the graph during other passes that happen between // ReferenceTypePropagation and Inliner (e.g. InstructionSimplifier). If the inliner // doesn't run or doesn't inline anything, the NullConstant remains untyped. // So we should check NullConstants for validity only after reference type propagation. DCHECK(graph_in_bad_state_ || (!is_after_pass_ && IsPass(HGraphBuilder::kBuilderPassName))) << instruction->DebugName() << instruction->GetId() << " has invalid rti " << (is_after_pass_ ? "after" : "before") << " pass " << pass_name_; } } if (disasm_info_ != nullptr) { DCHECK(disassembler_ != nullptr); // If the information is available, disassemble the code generated for // this instruction. auto it = disasm_info_->GetInstructionIntervals().find(instruction); if (it != disasm_info_->GetInstructionIntervals().end() && it->second.start != it->second.end) { output_ << "\n"; disassembler_->Disassemble(output_, it->second.start, it->second.end); } } } void PrintInstructions(const HInstructionList& list) { for (HInstructionIterator it(list); !it.Done(); it.Advance()) { HInstruction* instruction = it.Current(); int bci = 0; size_t num_uses = instruction->GetUses().SizeSlow(); AddIndent(); output_ << bci << " " << num_uses << " " << GetTypeId(instruction->GetType()) << instruction->GetId() << " "; PrintInstruction(instruction); output_ << " " << kEndInstructionMarker << "\n"; } } void DumpStartOfDisassemblyBlock(const char* block_name, int predecessor_index, int successor_index) { StartTag("block"); PrintProperty("name", block_name); PrintInt("from_bci", -1); PrintInt("to_bci", -1); if (predecessor_index != -1) { PrintProperty("predecessors", "B", predecessor_index); } else { PrintEmptyProperty("predecessors"); } if (successor_index != -1) { PrintProperty("successors", "B", successor_index); } else { PrintEmptyProperty("successors"); } PrintEmptyProperty("xhandlers"); PrintEmptyProperty("flags"); StartTag("states"); StartTag("locals"); PrintInt("size", 0); PrintProperty("method", "None"); EndTag("locals"); EndTag("states"); StartTag("HIR"); } void DumpEndOfDisassemblyBlock() { EndTag("HIR"); EndTag("block"); } void DumpDisassemblyBlockForFrameEntry() { DumpStartOfDisassemblyBlock(kDisassemblyBlockFrameEntry, -1, GetGraph()->GetEntryBlock()->GetBlockId()); output_ << " 0 0 disasm " << kDisassemblyBlockFrameEntry << " "; GeneratedCodeInterval frame_entry = disasm_info_->GetFrameEntryInterval(); if (frame_entry.start != frame_entry.end) { output_ << "\n"; disassembler_->Disassemble(output_, frame_entry.start, frame_entry.end); } output_ << kEndInstructionMarker << "\n"; DumpEndOfDisassemblyBlock(); } void DumpDisassemblyBlockForSlowPaths() { if (disasm_info_->GetSlowPathIntervals().empty()) { return; } // If the graph has an exit block we attach the block for the slow paths // after it. Else we just add the block to the graph without linking it to // any other. DumpStartOfDisassemblyBlock( kDisassemblyBlockSlowPaths, GetGraph()->HasExitBlock() ? GetGraph()->GetExitBlock()->GetBlockId() : -1, -1); for (SlowPathCodeInfo info : disasm_info_->GetSlowPathIntervals()) { output_ << " 0 0 disasm " << info.slow_path->GetDescription() << "\n"; disassembler_->Disassemble(output_, info.code_interval.start, info.code_interval.end); output_ << kEndInstructionMarker << "\n"; } DumpEndOfDisassemblyBlock(); } void Run() { StartTag("cfg"); std::string pass_desc = std::string(pass_name_) + " (" + (is_after_pass_ ? "after" : "before") + (graph_in_bad_state_ ? ", bad_state" : "") + ")"; PrintProperty("name", pass_desc.c_str()); if (disasm_info_ != nullptr) { DumpDisassemblyBlockForFrameEntry(); } VisitInsertionOrder(); if (disasm_info_ != nullptr) { DumpDisassemblyBlockForSlowPaths(); } EndTag("cfg"); Flush(); } void VisitBasicBlock(HBasicBlock* block) OVERRIDE { StartTag("block"); PrintProperty("name", "B", block->GetBlockId()); if (block->GetLifetimeStart() != kNoLifetime) { // Piggy back on these fields to show the lifetime of the block. PrintInt("from_bci", block->GetLifetimeStart()); PrintInt("to_bci", block->GetLifetimeEnd()); } else { PrintInt("from_bci", -1); PrintInt("to_bci", -1); } PrintPredecessors(block); PrintSuccessors(block); PrintExceptionHandlers(block); if (block->IsCatchBlock()) { PrintProperty("flags", "catch_block"); } else { PrintEmptyProperty("flags"); } if (block->GetDominator() != nullptr) { PrintProperty("dominator", "B", block->GetDominator()->GetBlockId()); } StartTag("states"); StartTag("locals"); PrintInt("size", 0); PrintProperty("method", "None"); for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { AddIndent(); HInstruction* instruction = it.Current(); output_ << instruction->GetId() << " " << GetTypeId(instruction->GetType()) << instruction->GetId() << "[ "; for (const HInstruction* input : instruction->GetInputs()) { output_ << input->GetId() << " "; } output_ << "]\n"; } EndTag("locals"); EndTag("states"); StartTag("HIR"); PrintInstructions(block->GetPhis()); PrintInstructions(block->GetInstructions()); EndTag("HIR"); EndTag("block"); } static constexpr const char* const kEndInstructionMarker = "<|@"; static constexpr const char* const kDisassemblyBlockFrameEntry = "FrameEntry"; static constexpr const char* const kDisassemblyBlockSlowPaths = "SlowPaths"; private: std::ostream& output_; const char* pass_name_; const bool is_after_pass_; const bool graph_in_bad_state_; const CodeGenerator& codegen_; const DisassemblyInformation* disasm_info_; std::unique_ptr disassembler_; size_t indent_; DISALLOW_COPY_AND_ASSIGN(HGraphVisualizerPrinter); }; HGraphVisualizer::HGraphVisualizer(std::ostream* output, HGraph* graph, const CodeGenerator& codegen) : output_(output), graph_(graph), codegen_(codegen) {} void HGraphVisualizer::PrintHeader(const char* method_name) const { DCHECK(output_ != nullptr); HGraphVisualizerPrinter printer(graph_, *output_, "", true, false, codegen_); printer.StartTag("compilation"); printer.PrintProperty("name", method_name); printer.PrintProperty("method", method_name); printer.PrintTime("date"); printer.EndTag("compilation"); printer.Flush(); } void HGraphVisualizer::DumpGraph(const char* pass_name, bool is_after_pass, bool graph_in_bad_state) const { DCHECK(output_ != nullptr); if (!graph_->GetBlocks().empty()) { HGraphVisualizerPrinter printer(graph_, *output_, pass_name, is_after_pass, graph_in_bad_state, codegen_); printer.Run(); } } void HGraphVisualizer::DumpGraphWithDisassembly() const { DCHECK(output_ != nullptr); if (!graph_->GetBlocks().empty()) { HGraphVisualizerPrinter printer(graph_, *output_, "disassembly", /* is_after_pass */ true, /* graph_in_bad_state */ false, codegen_, codegen_.GetDisassemblyInformation()); printer.Run(); } } } // namespace art