/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_arm.h" #include #include "base/bit_utils.h" #include "base/logging.h" #include "entrypoints/quick/quick_entrypoints.h" #include "offsets.h" #include "thread.h" namespace art { namespace arm { const char* kRegisterNames[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "fp", "ip", "sp", "lr", "pc" }; const char* kConditionNames[] = { "EQ", "NE", "CS", "CC", "MI", "PL", "VS", "VC", "HI", "LS", "GE", "LT", "GT", "LE", "AL", }; std::ostream& operator<<(std::ostream& os, const Register& rhs) { if (rhs >= R0 && rhs <= PC) { os << kRegisterNames[rhs]; } else { os << "Register[" << static_cast(rhs) << "]"; } return os; } std::ostream& operator<<(std::ostream& os, const SRegister& rhs) { if (rhs >= S0 && rhs < kNumberOfSRegisters) { os << "s" << static_cast(rhs); } else { os << "SRegister[" << static_cast(rhs) << "]"; } return os; } std::ostream& operator<<(std::ostream& os, const DRegister& rhs) { if (rhs >= D0 && rhs < kNumberOfDRegisters) { os << "d" << static_cast(rhs); } else { os << "DRegister[" << static_cast(rhs) << "]"; } return os; } std::ostream& operator<<(std::ostream& os, const Condition& rhs) { if (rhs >= EQ && rhs <= AL) { os << kConditionNames[rhs]; } else { os << "Condition[" << static_cast(rhs) << "]"; } return os; } ShifterOperand::ShifterOperand(uint32_t immed) : type_(kImmediate), rm_(kNoRegister), rs_(kNoRegister), is_rotate_(false), is_shift_(false), shift_(kNoShift), rotate_(0), immed_(immed) { CHECK(immed < (1u << 12) || ArmAssembler::ModifiedImmediate(immed) != kInvalidModifiedImmediate); } uint32_t ShifterOperand::encodingArm() const { CHECK(is_valid()); switch (type_) { case kImmediate: if (is_rotate_) { return (rotate_ << kRotateShift) | (immed_ << kImmed8Shift); } else { return immed_; } case kRegister: if (is_shift_) { uint32_t shift_type; switch (shift_) { case arm::Shift::ROR: shift_type = static_cast(shift_); CHECK_NE(immed_, 0U); break; case arm::Shift::RRX: shift_type = static_cast(arm::Shift::ROR); // Same encoding as ROR. CHECK_EQ(immed_, 0U); break; default: shift_type = static_cast(shift_); } // Shifted immediate or register. if (rs_ == kNoRegister) { // Immediate shift. return immed_ << kShiftImmShift | shift_type << kShiftShift | static_cast(rm_); } else { // Register shift. return static_cast(rs_) << kShiftRegisterShift | shift_type << kShiftShift | (1 << 4) | static_cast(rm_); } } else { // Simple register return static_cast(rm_); } default: // Can't get here. LOG(FATAL) << "Invalid shifter operand for ARM"; return 0; } } uint32_t ShifterOperand::encodingThumb() const { switch (type_) { case kImmediate: return immed_; case kRegister: if (is_shift_) { // Shifted immediate or register. if (rs_ == kNoRegister) { // Immediate shift. if (shift_ == RRX) { DCHECK_EQ(immed_, 0u); // RRX is encoded as an ROR with imm 0. return ROR << 4 | static_cast(rm_); } else { DCHECK((1 <= immed_ && immed_ <= 31) || (immed_ == 0u && shift_ == LSL) || (immed_ == 32u && (shift_ == ASR || shift_ == LSR))); uint32_t imm3 = (immed_ >> 2) & 7 /* 0b111*/; uint32_t imm2 = immed_ & 3U /* 0b11 */; return imm3 << 12 | imm2 << 6 | shift_ << 4 | static_cast(rm_); } } else { LOG(FATAL) << "No register-shifted register instruction available in thumb"; return 0; } } else { // Simple register return static_cast(rm_); } default: // Can't get here. LOG(FATAL) << "Invalid shifter operand for thumb"; UNREACHABLE(); } } uint32_t Address::encodingArm() const { CHECK(IsAbsoluteUint<12>(offset_)); uint32_t encoding; if (is_immed_offset_) { if (offset_ < 0) { encoding = (am_ ^ (1 << kUShift)) | -offset_; // Flip U to adjust sign. } else { encoding = am_ | offset_; } } else { uint32_t shift = shift_; if (shift == RRX) { CHECK_EQ(offset_, 0); shift = ROR; } encoding = am_ | static_cast(rm_) | shift << 5 | offset_ << 7 | B25; } encoding |= static_cast(rn_) << kRnShift; return encoding; } uint32_t Address::encodingThumb(bool is_32bit) const { uint32_t encoding = 0; if (is_immed_offset_) { encoding = static_cast(rn_) << 16; // Check for the T3/T4 encoding. // PUW must Offset for T3 // Convert ARM PU0W to PUW // The Mode is in ARM encoding format which is: // |P|U|0|W| // we need this in thumb2 mode: // |P|U|W| uint32_t am = am_; int32_t offset = offset_; if (offset < 0) { am ^= 1 << kUShift; offset = -offset; } if (offset_ < 0 || (offset >= 0 && offset < 256 && am_ != Mode::Offset)) { // T4 encoding. uint32_t PUW = am >> 21; // Move down to bottom of word. PUW = (PUW >> 1) | (PUW & 1); // Bits 3, 2 and 0. // If P is 0 then W must be 1 (Different from ARM). if ((PUW & 4U /* 0b100 */) == 0) { PUW |= 1U /* 0b1 */; } encoding |= B11 | PUW << 8 | offset; } else { // T3 encoding (also sets op1 to 0b01). encoding |= B23 | offset_; } } else { // Register offset, possibly shifted. // Need to choose between encoding T1 (16 bit) or T2. // Only Offset mode is supported. Shift must be LSL and the count // is only 2 bits. CHECK_EQ(shift_, LSL); CHECK_LE(offset_, 4); CHECK_EQ(am_, Offset); bool is_t2 = is_32bit; if (ArmAssembler::IsHighRegister(rn_) || ArmAssembler::IsHighRegister(rm_)) { is_t2 = true; } else if (offset_ != 0) { is_t2 = true; } if (is_t2) { encoding = static_cast(rn_) << 16 | static_cast(rm_) | offset_ << 4; } else { encoding = static_cast(rn_) << 3 | static_cast(rm_) << 6; } } return encoding; } // This is very like the ARM encoding except the offset is 10 bits. uint32_t Address::encodingThumbLdrdStrd() const { DCHECK(IsImmediate()); uint32_t encoding; uint32_t am = am_; // If P is 0 then W must be 1 (Different from ARM). uint32_t PU1W = am_ >> 21; // Move down to bottom of word. if ((PU1W & 8U /* 0b1000 */) == 0) { am |= 1 << 21; // Set W bit. } if (offset_ < 0) { int32_t off = -offset_; CHECK_LT(off, 1024); CHECK_ALIGNED(off, 4); encoding = (am ^ (1 << kUShift)) | off >> 2; // Flip U to adjust sign. } else { CHECK_LT(offset_, 1024); CHECK_ALIGNED(offset_, 4); encoding = am | offset_ >> 2; } encoding |= static_cast(rn_) << 16; return encoding; } // Encoding for ARM addressing mode 3. uint32_t Address::encoding3() const { const uint32_t offset_mask = (1 << 12) - 1; uint32_t encoding = encodingArm(); uint32_t offset = encoding & offset_mask; CHECK_LT(offset, 256u); return (encoding & ~offset_mask) | ((offset & 0xf0) << 4) | (offset & 0xf); } // Encoding for vfp load/store addressing. uint32_t Address::vencoding() const { CHECK(IsAbsoluteUint<10>(offset_)); // In the range -1020 to +1020. CHECK_ALIGNED(offset_, 2); // Multiple of 4. const uint32_t offset_mask = (1 << 12) - 1; uint32_t encoding = encodingArm(); uint32_t offset = encoding & offset_mask; CHECK((am_ == Offset) || (am_ == NegOffset)); uint32_t vencoding_value = (encoding & (0xf << kRnShift)) | (offset >> 2); if (am_ == Offset) { vencoding_value |= 1 << 23; } return vencoding_value; } bool Address::CanHoldLoadOffsetArm(LoadOperandType type, int offset) { switch (type) { case kLoadSignedByte: case kLoadSignedHalfword: case kLoadUnsignedHalfword: case kLoadWordPair: return IsAbsoluteUint<8>(offset); // Addressing mode 3. case kLoadUnsignedByte: case kLoadWord: return IsAbsoluteUint<12>(offset); // Addressing mode 2. case kLoadSWord: case kLoadDWord: return IsAbsoluteUint<10>(offset); // VFP addressing mode. default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } bool Address::CanHoldStoreOffsetArm(StoreOperandType type, int offset) { switch (type) { case kStoreHalfword: case kStoreWordPair: return IsAbsoluteUint<8>(offset); // Addressing mode 3. case kStoreByte: case kStoreWord: return IsAbsoluteUint<12>(offset); // Addressing mode 2. case kStoreSWord: case kStoreDWord: return IsAbsoluteUint<10>(offset); // VFP addressing mode. default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } bool Address::CanHoldLoadOffsetThumb(LoadOperandType type, int offset) { switch (type) { case kLoadSignedByte: case kLoadSignedHalfword: case kLoadUnsignedHalfword: case kLoadUnsignedByte: case kLoadWord: return IsAbsoluteUint<12>(offset); case kLoadSWord: case kLoadDWord: return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; // VFP addressing mode. case kLoadWordPair: return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } bool Address::CanHoldStoreOffsetThumb(StoreOperandType type, int offset) { switch (type) { case kStoreHalfword: case kStoreByte: case kStoreWord: return IsAbsoluteUint<12>(offset); case kStoreSWord: case kStoreDWord: return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; // VFP addressing mode. case kStoreWordPair: return IsAbsoluteUint<10>(offset) && (offset & 3) == 0; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } } void ArmAssembler::Pad(uint32_t bytes) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); for (uint32_t i = 0; i < bytes; ++i) { buffer_.Emit(0); } } static int LeadingZeros(uint32_t val) { uint32_t alt; int32_t n; int32_t count; count = 16; n = 32; do { alt = val >> count; if (alt != 0) { n = n - count; val = alt; } count >>= 1; } while (count); return n - val; } uint32_t ArmAssembler::ModifiedImmediate(uint32_t value) { int32_t z_leading; int32_t z_trailing; uint32_t b0 = value & 0xff; /* Note: case of value==0 must use 0:000:0:0000000 encoding */ if (value <= 0xFF) return b0; // 0:000:a:bcdefgh. if (value == ((b0 << 16) | b0)) return (0x1 << 12) | b0; /* 0:001:a:bcdefgh */ if (value == ((b0 << 24) | (b0 << 16) | (b0 << 8) | b0)) return (0x3 << 12) | b0; /* 0:011:a:bcdefgh */ b0 = (value >> 8) & 0xff; if (value == ((b0 << 24) | (b0 << 8))) return (0x2 << 12) | b0; /* 0:010:a:bcdefgh */ /* Can we do it with rotation? */ z_leading = LeadingZeros(value); z_trailing = 32 - LeadingZeros(~value & (value - 1)); /* A run of eight or fewer active bits? */ if ((z_leading + z_trailing) < 24) return kInvalidModifiedImmediate; /* No - bail */ /* left-justify the constant, discarding msb (known to be 1) */ value <<= z_leading + 1; /* Create bcdefgh */ value >>= 25; /* Put it all together */ uint32_t v = 8 + z_leading; uint32_t i = (v & 16U /* 0b10000 */) >> 4; uint32_t imm3 = (v >> 1) & 7U /* 0b111 */; uint32_t a = v & 1; return value | i << 26 | imm3 << 12 | a << 7; } void ArmAssembler::FinalizeTrackedLabels() { if (!tracked_labels_.empty()) { // This array should be sorted, as assembly is generated in linearized order. It isn't // technically required, but GetAdjustedPosition() used in AdjustLabelPosition() can take // advantage of it. So ensure that it's actually the case. DCHECK(std::is_sorted( tracked_labels_.begin(), tracked_labels_.end(), [](const Label* lhs, const Label* rhs) { return lhs->Position() < rhs->Position(); })); Label* last_label = nullptr; // Track duplicates, we must not adjust twice. for (Label* label : tracked_labels_) { DCHECK_NE(label, last_label); AdjustLabelPosition(label); last_label = label; } } } } // namespace arm } // namespace art