/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_BASE_MUTEX_H_ #define ART_RUNTIME_BASE_MUTEX_H_ #include #include #include #include #include "atomic.h" #include "base/logging.h" #include "base/macros.h" #include "globals.h" #if defined(__APPLE__) #define ART_USE_FUTEXES 0 #else #define ART_USE_FUTEXES 1 #endif // Currently Darwin doesn't support locks with timeouts. #if !defined(__APPLE__) #define HAVE_TIMED_RWLOCK 1 #else #define HAVE_TIMED_RWLOCK 0 #endif namespace art { class SHARED_LOCKABLE ReaderWriterMutex; class SHARED_LOCKABLE MutatorMutex; class ScopedContentionRecorder; class Thread; // LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or // equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free // partial ordering and thereby cause deadlock situations to fail checks. // // [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163 enum LockLevel { kLoggingLock = 0, kSwapMutexesLock, kUnexpectedSignalLock, kThreadSuspendCountLock, kAbortLock, kJdwpAdbStateLock, kJdwpSocketLock, kRegionSpaceRegionLock, kMarkSweepMarkStackLock, kRosAllocGlobalLock, kRosAllocBracketLock, kRosAllocBulkFreeLock, kTaggingLockLevel, kTransactionLogLock, kJniFunctionTableLock, kJniWeakGlobalsLock, kJniGlobalsLock, kReferenceQueueSoftReferencesLock, kReferenceQueuePhantomReferencesLock, kReferenceQueueFinalizerReferencesLock, kReferenceQueueWeakReferencesLock, kReferenceQueueClearedReferencesLock, kReferenceProcessorLock, kJitDebugInterfaceLock, kAllocSpaceLock, kBumpPointerSpaceBlockLock, kArenaPoolLock, kInternTableLock, kOatFileSecondaryLookupLock, kHostDlOpenHandlesLock, kVerifierDepsLock, kOatFileManagerLock, kTracingUniqueMethodsLock, kTracingStreamingLock, kDeoptimizedMethodsLock, kClassLoaderClassesLock, kDefaultMutexLevel, kDexLock, kMarkSweepLargeObjectLock, kJdwpObjectRegistryLock, kModifyLdtLock, kAllocatedThreadIdsLock, kMonitorPoolLock, kClassLinkerClassesLock, // TODO rename. kJitCodeCacheLock, kCHALock, kBreakpointLock, kMonitorLock, kMonitorListLock, kJniLoadLibraryLock, kThreadListLock, kAllocTrackerLock, kDeoptimizationLock, kProfilerLock, kJdwpShutdownLock, kJdwpEventListLock, kJdwpAttachLock, kJdwpStartLock, kRuntimeShutdownLock, kTraceLock, kHeapBitmapLock, kMutatorLock, kInstrumentEntrypointsLock, kZygoteCreationLock, kLockLevelCount // Must come last. }; std::ostream& operator<<(std::ostream& os, const LockLevel& rhs); const bool kDebugLocking = kIsDebugBuild; // Record Log contention information, dumpable via SIGQUIT. #ifdef ART_USE_FUTEXES // To enable lock contention logging, set this to true. const bool kLogLockContentions = false; #else // Keep this false as lock contention logging is supported only with // futex. const bool kLogLockContentions = false; #endif const size_t kContentionLogSize = 4; const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0; const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0; // Base class for all Mutex implementations class BaseMutex { public: const char* GetName() const { return name_; } virtual bool IsMutex() const { return false; } virtual bool IsReaderWriterMutex() const { return false; } virtual bool IsMutatorMutex() const { return false; } virtual void Dump(std::ostream& os) const = 0; static void DumpAll(std::ostream& os); bool ShouldRespondToEmptyCheckpointRequest() const { return should_respond_to_empty_checkpoint_request_; } void SetShouldRespondToEmptyCheckpointRequest(bool value) { should_respond_to_empty_checkpoint_request_ = value; } virtual void WakeupToRespondToEmptyCheckpoint() = 0; protected: friend class ConditionVariable; BaseMutex(const char* name, LockLevel level); virtual ~BaseMutex(); void RegisterAsLocked(Thread* self); void RegisterAsUnlocked(Thread* self); void CheckSafeToWait(Thread* self); friend class ScopedContentionRecorder; void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked); void DumpContention(std::ostream& os) const; const LockLevel level_; // Support for lock hierarchy. const char* const name_; bool should_respond_to_empty_checkpoint_request_; // A log entry that records contention but makes no guarantee that either tid will be held live. struct ContentionLogEntry { ContentionLogEntry() : blocked_tid(0), owner_tid(0) {} uint64_t blocked_tid; uint64_t owner_tid; AtomicInteger count; }; struct ContentionLogData { ContentionLogEntry contention_log[kContentionLogSize]; // The next entry in the contention log to be updated. Value ranges from 0 to // kContentionLogSize - 1. AtomicInteger cur_content_log_entry; // Number of times the Mutex has been contended. AtomicInteger contention_count; // Sum of time waited by all contenders in ns. Atomic wait_time; void AddToWaitTime(uint64_t value); ContentionLogData() : wait_time(0) {} }; ContentionLogData contention_log_data_[kContentionLogDataSize]; public: bool HasEverContended() const { if (kLogLockContentions) { return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0; } return false; } }; // A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain // exclusive access to what it guards. A Mutex can be in one of two states: // - Free - not owned by any thread, // - Exclusive - owned by a single thread. // // The effect of locking and unlocking operations on the state is: // State | ExclusiveLock | ExclusiveUnlock // ------------------------------------------- // Free | Exclusive | error // Exclusive | Block* | Free // * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in // an error. Being non-reentrant simplifies Waiting on ConditionVariables. std::ostream& operator<<(std::ostream& os, const Mutex& mu); class LOCKABLE Mutex : public BaseMutex { public: explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false); ~Mutex(); virtual bool IsMutex() const { return true; } // Block until mutex is free then acquire exclusive access. void ExclusiveLock(Thread* self) ACQUIRE(); void Lock(Thread* self) ACQUIRE() { ExclusiveLock(self); } // Returns true if acquires exclusive access, false otherwise. bool ExclusiveTryLock(Thread* self) TRY_ACQUIRE(true); bool TryLock(Thread* self) TRY_ACQUIRE(true) { return ExclusiveTryLock(self); } // Release exclusive access. void ExclusiveUnlock(Thread* self) RELEASE(); void Unlock(Thread* self) RELEASE() { ExclusiveUnlock(self); } // Is the current thread the exclusive holder of the Mutex. bool IsExclusiveHeld(const Thread* self) const; // Assert that the Mutex is exclusively held by the current thread. void AssertExclusiveHeld(const Thread* self) ASSERT_CAPABILITY(this) { if (kDebugLocking && (gAborting == 0)) { CHECK(IsExclusiveHeld(self)) << *this; } } void AssertHeld(const Thread* self) ASSERT_CAPABILITY(this) { AssertExclusiveHeld(self); } // Assert that the Mutex is not held by the current thread. void AssertNotHeldExclusive(const Thread* self) ASSERT_CAPABILITY(!*this) { if (kDebugLocking && (gAborting == 0)) { CHECK(!IsExclusiveHeld(self)) << *this; } } void AssertNotHeld(const Thread* self) ASSERT_CAPABILITY(!*this) { AssertNotHeldExclusive(self); } // Id associated with exclusive owner. No memory ordering semantics if called from a thread other // than the owner. uint64_t GetExclusiveOwnerTid() const; // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld. unsigned int GetDepth() const { return recursion_count_; } virtual void Dump(std::ostream& os) const; // For negative capabilities in clang annotations. const Mutex& operator!() const { return *this; } void WakeupToRespondToEmptyCheckpoint() OVERRIDE; private: #if ART_USE_FUTEXES // 0 is unheld, 1 is held. AtomicInteger state_; // Exclusive owner. volatile uint64_t exclusive_owner_; // Number of waiting contenders. AtomicInteger num_contenders_; #else pthread_mutex_t mutex_; volatile uint64_t exclusive_owner_; // Guarded by mutex_. #endif const bool recursive_; // Can the lock be recursively held? unsigned int recursion_count_; friend class ConditionVariable; DISALLOW_COPY_AND_ASSIGN(Mutex); }; // A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex. // Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader) // access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a // condition variable. A ReaderWriterMutex can be in one of three states: // - Free - not owned by any thread, // - Exclusive - owned by a single thread, // - Shared(n) - shared amongst n threads. // // The effect of locking and unlocking operations on the state is: // // State | ExclusiveLock | ExclusiveUnlock | SharedLock | SharedUnlock // ---------------------------------------------------------------------------- // Free | Exclusive | error | SharedLock(1) | error // Exclusive | Block | Free | Block | error // Shared(n) | Block | error | SharedLock(n+1)* | Shared(n-1) or Free // * for large values of n the SharedLock may block. std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu); class SHARED_LOCKABLE ReaderWriterMutex : public BaseMutex { public: explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel); ~ReaderWriterMutex(); virtual bool IsReaderWriterMutex() const { return true; } // Block until ReaderWriterMutex is free then acquire exclusive access. void ExclusiveLock(Thread* self) ACQUIRE(); void WriterLock(Thread* self) ACQUIRE() { ExclusiveLock(self); } // Release exclusive access. void ExclusiveUnlock(Thread* self) RELEASE(); void WriterUnlock(Thread* self) RELEASE() { ExclusiveUnlock(self); } // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success // or false if timeout is reached. #if HAVE_TIMED_RWLOCK bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) EXCLUSIVE_TRYLOCK_FUNCTION(true); #endif // Block until ReaderWriterMutex is shared or free then acquire a share on the access. void SharedLock(Thread* self) ACQUIRE_SHARED() ALWAYS_INLINE; void ReaderLock(Thread* self) ACQUIRE_SHARED() { SharedLock(self); } // Try to acquire share of ReaderWriterMutex. bool SharedTryLock(Thread* self) SHARED_TRYLOCK_FUNCTION(true); // Release a share of the access. void SharedUnlock(Thread* self) RELEASE_SHARED() ALWAYS_INLINE; void ReaderUnlock(Thread* self) RELEASE_SHARED() { SharedUnlock(self); } // Is the current thread the exclusive holder of the ReaderWriterMutex. bool IsExclusiveHeld(const Thread* self) const; // Assert the current thread has exclusive access to the ReaderWriterMutex. void AssertExclusiveHeld(const Thread* self) ASSERT_CAPABILITY(this) { if (kDebugLocking && (gAborting == 0)) { CHECK(IsExclusiveHeld(self)) << *this; } } void AssertWriterHeld(const Thread* self) ASSERT_CAPABILITY(this) { AssertExclusiveHeld(self); } // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex. void AssertNotExclusiveHeld(const Thread* self) ASSERT_CAPABILITY(!this) { if (kDebugLocking && (gAborting == 0)) { CHECK(!IsExclusiveHeld(self)) << *this; } } void AssertNotWriterHeld(const Thread* self) ASSERT_CAPABILITY(!this) { AssertNotExclusiveHeld(self); } // Is the current thread a shared holder of the ReaderWriterMutex. bool IsSharedHeld(const Thread* self) const; // Assert the current thread has shared access to the ReaderWriterMutex. void AssertSharedHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) { if (kDebugLocking && (gAborting == 0)) { // TODO: we can only assert this well when self != null. CHECK(IsSharedHeld(self) || self == nullptr) << *this; } } void AssertReaderHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) { AssertSharedHeld(self); } // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive // mode. void AssertNotHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(!this) { if (kDebugLocking && (gAborting == 0)) { CHECK(!IsSharedHeld(self)) << *this; } } // Id associated with exclusive owner. No memory ordering semantics if called from a thread other // than the owner. uint64_t GetExclusiveOwnerTid() const; virtual void Dump(std::ostream& os) const; // For negative capabilities in clang annotations. const ReaderWriterMutex& operator!() const { return *this; } void WakeupToRespondToEmptyCheckpoint() OVERRIDE; private: #if ART_USE_FUTEXES // Out-of-inline path for handling contention for a SharedLock. void HandleSharedLockContention(Thread* self, int32_t cur_state); // -1 implies held exclusive, +ve shared held by state_ many owners. AtomicInteger state_; // Exclusive owner. Modification guarded by this mutex. volatile uint64_t exclusive_owner_; // Number of contenders waiting for a reader share. AtomicInteger num_pending_readers_; // Number of contenders waiting to be the writer. AtomicInteger num_pending_writers_; #else pthread_rwlock_t rwlock_; volatile uint64_t exclusive_owner_; // Guarded by rwlock_. #endif DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex); }; // MutatorMutex is a special kind of ReaderWriterMutex created specifically for the // Locks::mutator_lock_ mutex. The behaviour is identical to the ReaderWriterMutex except that // thread state changes also play a part in lock ownership. The mutator_lock_ will not be truly // held by any mutator threads. However, a thread in the kRunnable state is considered to have // shared ownership of the mutator lock and therefore transitions in and out of the kRunnable // state have associated implications on lock ownership. Extra methods to handle the state // transitions have been added to the interface but are only accessible to the methods dealing // with state transitions. The thread state and flags attributes are used to ensure thread state // transitions are consistent with the permitted behaviour of the mutex. // // *) The most important consequence of this behaviour is that all threads must be in one of the // suspended states before exclusive ownership of the mutator mutex is sought. // std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu); class SHARED_LOCKABLE MutatorMutex : public ReaderWriterMutex { public: explicit MutatorMutex(const char* name, LockLevel level = kDefaultMutexLevel) : ReaderWriterMutex(name, level) {} ~MutatorMutex() {} virtual bool IsMutatorMutex() const { return true; } // For negative capabilities in clang annotations. const MutatorMutex& operator!() const { return *this; } private: friend class Thread; void TransitionFromRunnableToSuspended(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE; void TransitionFromSuspendedToRunnable(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE; DISALLOW_COPY_AND_ASSIGN(MutatorMutex); }; // ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually // (Signal) or all at once (Broadcast). class ConditionVariable { public: ConditionVariable(const char* name, Mutex& mutex); ~ConditionVariable(); void Broadcast(Thread* self); void Signal(Thread* self); // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their // pointer copy, thereby defeating annotalysis. void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS; bool TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS; // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held // when waiting. // TODO: remove this. void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS; private: const char* const name_; // The Mutex being used by waiters. It is an error to mix condition variables between different // Mutexes. Mutex& guard_; #if ART_USE_FUTEXES // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_ // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait // without guard_ held. AtomicInteger sequence_; // Number of threads that have come into to wait, not the length of the waiters on the futex as // waiters may have been requeued onto guard_. Guarded by guard_. volatile int32_t num_waiters_; #else pthread_cond_t cond_; #endif DISALLOW_COPY_AND_ASSIGN(ConditionVariable); }; // Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it // upon destruction. class SCOPED_CAPABILITY MutexLock { public: MutexLock(Thread* self, Mutex& mu) ACQUIRE(mu) : self_(self), mu_(mu) { mu_.ExclusiveLock(self_); } ~MutexLock() RELEASE() { mu_.ExclusiveUnlock(self_); } private: Thread* const self_; Mutex& mu_; DISALLOW_COPY_AND_ASSIGN(MutexLock); }; // Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)". #define MutexLock(x) static_assert(0, "MutexLock declaration missing variable name") // Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon // construction and releases it upon destruction. class SCOPED_CAPABILITY ReaderMutexLock { public: ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) ACQUIRE(mu) ALWAYS_INLINE : self_(self), mu_(mu) { mu_.SharedLock(self_); } ~ReaderMutexLock() RELEASE() ALWAYS_INLINE { mu_.SharedUnlock(self_); } private: Thread* const self_; ReaderWriterMutex& mu_; DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock); }; // Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of // "ReaderMutexLock mu(lock)". #define ReaderMutexLock(x) static_assert(0, "ReaderMutexLock declaration missing variable name") // Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon // construction and releases it upon destruction. class SCOPED_CAPABILITY WriterMutexLock { public: WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) { mu_.ExclusiveLock(self_); } ~WriterMutexLock() UNLOCK_FUNCTION() { mu_.ExclusiveUnlock(self_); } private: Thread* const self_; ReaderWriterMutex& mu_; DISALLOW_COPY_AND_ASSIGN(WriterMutexLock); }; // Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of // "WriterMutexLock mu(lock)". #define WriterMutexLock(x) static_assert(0, "WriterMutexLock declaration missing variable name") // For StartNoThreadSuspension and EndNoThreadSuspension. class CAPABILITY("role") Role { public: void Acquire() ACQUIRE() {} void Release() RELEASE() {} const Role& operator!() const { return *this; } }; class Uninterruptible : public Role { }; // Global mutexes corresponding to the levels above. class Locks { public: static void Init(); static void InitConditions() NO_THREAD_SAFETY_ANALYSIS; // Condition variables. // Destroying various lock types can emit errors that vary depending upon // whether the client (art::Runtime) is currently active. Allow the client // to set a callback that is used to check when it is acceptable to call // Abort. The default behavior is that the client *is not* able to call // Abort if no callback is established. using ClientCallback = bool(); static void SetClientCallback(ClientCallback* is_safe_to_call_abort_cb) NO_THREAD_SAFETY_ANALYSIS; // Checks for whether it is safe to call Abort() without using locks. static bool IsSafeToCallAbortRacy() NO_THREAD_SAFETY_ANALYSIS; // Add a mutex to expected_mutexes_on_weak_ref_access_. static void AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock = true); // Remove a mutex from expected_mutexes_on_weak_ref_access_. static void RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock = true); // Check if the given mutex is in expected_mutexes_on_weak_ref_access_. static bool IsExpectedOnWeakRefAccess(BaseMutex* mutex); // Guards allocation entrypoint instrumenting. static Mutex* instrument_entrypoints_lock_; // A barrier is used to synchronize the GC/Debugger thread with mutator threads. When GC/Debugger // thread wants to suspend all mutator threads, it needs to wait for all mutator threads to pass // a barrier. Threads that are already suspended will get their barrier passed by the GC/Debugger // thread; threads in the runnable state will pass the barrier when they transit to the suspended // state. GC/Debugger thread will be woken up when all mutator threads are suspended. // // Thread suspension: // mutator thread | GC/Debugger // .. running .. | .. running .. // .. running .. | Request thread suspension by: // .. running .. | - acquiring thread_suspend_count_lock_ // .. running .. | - incrementing Thread::suspend_count_ on // .. running .. | all mutator threads // .. running .. | - releasing thread_suspend_count_lock_ // .. running .. | Block wait for all threads to pass a barrier // Poll Thread::suspend_count_ and enter full | .. blocked .. // suspend code. | .. blocked .. // Change state to kSuspended (pass the barrier) | Wake up when all threads pass the barrier // x: Acquire thread_suspend_count_lock_ | .. running .. // while Thread::suspend_count_ > 0 | .. running .. // - wait on Thread::resume_cond_ | .. running .. // (releases thread_suspend_count_lock_) | .. running .. // .. waiting .. | Request thread resumption by: // .. waiting .. | - acquiring thread_suspend_count_lock_ // .. waiting .. | - decrementing Thread::suspend_count_ on // .. waiting .. | all mutator threads // .. waiting .. | - notifying on Thread::resume_cond_ // - re-acquire thread_suspend_count_lock_ | - releasing thread_suspend_count_lock_ // Release thread_suspend_count_lock_ | .. running .. // Change to kRunnable | .. running .. // - this uses a CAS operation to ensure the | .. running .. // suspend request flag isn't raised as the | .. running .. // state is changed | .. running .. // - if the CAS operation fails then goto x | .. running .. // .. running .. | .. running .. static MutatorMutex* mutator_lock_ ACQUIRED_AFTER(instrument_entrypoints_lock_); // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap. static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_); // Guards shutdown of the runtime. static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_); // Guards background profiler global state. static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_); // Guards trace (ie traceview) requests. static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_); // Guards debugger recent allocation records. static Mutex* alloc_tracker_lock_ ACQUIRED_AFTER(trace_lock_); // Guards updates to instrumentation to ensure mutual exclusion of // events like deoptimization requests. // TODO: improve name, perhaps instrumentation_update_lock_. static Mutex* deoptimization_lock_ ACQUIRED_AFTER(alloc_tracker_lock_); // Guards Class Hierarchy Analysis (CHA). static Mutex* cha_lock_ ACQUIRED_AFTER(deoptimization_lock_); // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads // attaching and detaching. static Mutex* thread_list_lock_ ACQUIRED_AFTER(cha_lock_); // Signaled when threads terminate. Used to determine when all non-daemons have terminated. static ConditionVariable* thread_exit_cond_ GUARDED_BY(Locks::thread_list_lock_); // Guards maintaining loading library data structures. static Mutex* jni_libraries_lock_ ACQUIRED_AFTER(thread_list_lock_); // Guards breakpoints. static ReaderWriterMutex* breakpoint_lock_ ACQUIRED_AFTER(jni_libraries_lock_); // Guards lists of classes within the class linker. static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_); // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code // doesn't try to hold a higher level Mutex. #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_) static Mutex* allocated_monitor_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_); // Guard the allocation/deallocation of thread ids. static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(allocated_monitor_ids_lock_); // Guards modification of the LDT on x86. static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_); static ReaderWriterMutex* dex_lock_ ACQUIRED_AFTER(modify_ldt_lock_); // Guards opened oat files in OatFileManager. static ReaderWriterMutex* oat_file_manager_lock_ ACQUIRED_AFTER(dex_lock_); // Guards extra string entries for VerifierDeps. static ReaderWriterMutex* verifier_deps_lock_ ACQUIRED_AFTER(oat_file_manager_lock_); // Guards dlopen_handles_ in DlOpenOatFile. static Mutex* host_dlopen_handles_lock_ ACQUIRED_AFTER(verifier_deps_lock_); // Guards intern table. static Mutex* intern_table_lock_ ACQUIRED_AFTER(host_dlopen_handles_lock_); // Guards reference processor. static Mutex* reference_processor_lock_ ACQUIRED_AFTER(intern_table_lock_); // Guards cleared references queue. static Mutex* reference_queue_cleared_references_lock_ ACQUIRED_AFTER(reference_processor_lock_); // Guards weak references queue. static Mutex* reference_queue_weak_references_lock_ ACQUIRED_AFTER(reference_queue_cleared_references_lock_); // Guards finalizer references queue. static Mutex* reference_queue_finalizer_references_lock_ ACQUIRED_AFTER(reference_queue_weak_references_lock_); // Guards phantom references queue. static Mutex* reference_queue_phantom_references_lock_ ACQUIRED_AFTER(reference_queue_finalizer_references_lock_); // Guards soft references queue. static Mutex* reference_queue_soft_references_lock_ ACQUIRED_AFTER(reference_queue_phantom_references_lock_); // Guard accesses to the JNI Global Reference table. static ReaderWriterMutex* jni_globals_lock_ ACQUIRED_AFTER(reference_queue_soft_references_lock_); // Guard accesses to the JNI Weak Global Reference table. static Mutex* jni_weak_globals_lock_ ACQUIRED_AFTER(jni_globals_lock_); // Guard accesses to the JNI function table override. static Mutex* jni_function_table_lock_ ACQUIRED_AFTER(jni_weak_globals_lock_); // Have an exclusive aborting thread. static Mutex* abort_lock_ ACQUIRED_AFTER(jni_function_table_lock_); // Allow mutual exclusion when manipulating Thread::suspend_count_. // TODO: Does the trade-off of a per-thread lock make sense? static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_); // One unexpected signal at a time lock. static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_); // Have an exclusive logging thread. static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_); // List of mutexes that we expect a thread may hold when accessing weak refs. This is used to // avoid a deadlock in the empty checkpoint while weak ref access is disabled (b/34964016). If we // encounter an unexpected mutex on accessing weak refs, // Thread::CheckEmptyCheckpointFromWeakRefAccess will detect it. static std::vector expected_mutexes_on_weak_ref_access_; static Atomic expected_mutexes_on_weak_ref_access_guard_; class ScopedExpectedMutexesOnWeakRefAccessLock; }; class Roles { public: // Uninterruptible means that the thread may not become suspended. static Uninterruptible uninterruptible_; }; } // namespace art #endif // ART_RUNTIME_BASE_MUTEX_H_