/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "cha.h" #include "art_method-inl.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "runtime.h" #include "scoped_thread_state_change-inl.h" #include "stack.h" #include "thread.h" #include "thread_list.h" #include "thread_pool.h" namespace art { void ClassHierarchyAnalysis::AddDependency(ArtMethod* method, ArtMethod* dependent_method, OatQuickMethodHeader* dependent_header) { auto it = cha_dependency_map_.find(method); if (it == cha_dependency_map_.end()) { cha_dependency_map_[method] = new std::vector>(); it = cha_dependency_map_.find(method); } else { DCHECK(it->second != nullptr); } it->second->push_back(std::make_pair(dependent_method, dependent_header)); } std::vector>* ClassHierarchyAnalysis::GetDependents(ArtMethod* method) { auto it = cha_dependency_map_.find(method); if (it != cha_dependency_map_.end()) { DCHECK(it->second != nullptr); return it->second; } return nullptr; } void ClassHierarchyAnalysis::RemoveDependencyFor(ArtMethod* method) { auto it = cha_dependency_map_.find(method); if (it != cha_dependency_map_.end()) { auto dependents = it->second; cha_dependency_map_.erase(it); delete dependents; } } void ClassHierarchyAnalysis::RemoveDependentsWithMethodHeaders( const std::unordered_set& method_headers) { // Iterate through all entries in the dependency map and remove any entry that // contains one of those in method_headers. for (auto map_it = cha_dependency_map_.begin(); map_it != cha_dependency_map_.end(); ) { auto dependents = map_it->second; for (auto vec_it = dependents->begin(); vec_it != dependents->end(); ) { OatQuickMethodHeader* method_header = vec_it->second; auto it = std::find(method_headers.begin(), method_headers.end(), method_header); if (it != method_headers.end()) { vec_it = dependents->erase(vec_it); } else { vec_it++; } } // Remove the map entry if there are no more dependents. if (dependents->empty()) { map_it = cha_dependency_map_.erase(map_it); delete dependents; } else { map_it++; } } } // This stack visitor walks the stack and for compiled code with certain method // headers, sets the should_deoptimize flag on stack to 1. // TODO: also set the register value to 1 when should_deoptimize is allocated in // a register. class CHAStackVisitor FINAL : public StackVisitor { public: CHAStackVisitor(Thread* thread_in, Context* context, const std::unordered_set& method_headers) : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kSkipInlinedFrames), method_headers_(method_headers) { } bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* method = GetMethod(); // Avoid types of methods that do not have an oat quick method header. if (method == nullptr || method->IsRuntimeMethod() || method->IsNative() || method->IsProxyMethod()) { return true; } if (GetCurrentQuickFrame() == nullptr) { // Not compiled code. return true; } // Method may have multiple versions of compiled code. Check // the method header to see if it has should_deoptimize flag. const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); DCHECK(method_header != nullptr); if (!method_header->HasShouldDeoptimizeFlag()) { // This compiled version doesn't have should_deoptimize flag. Skip. return true; } auto it = std::find(method_headers_.begin(), method_headers_.end(), method_header); if (it == method_headers_.end()) { // Not in the list of method headers that should be deoptimized. return true; } // The compiled code on stack is not valid anymore. Need to deoptimize. SetShouldDeoptimizeFlag(); return true; } private: void SetShouldDeoptimizeFlag() REQUIRES_SHARED(Locks::mutator_lock_) { QuickMethodFrameInfo frame_info = GetCurrentQuickFrameInfo(); size_t frame_size = frame_info.FrameSizeInBytes(); uint8_t* sp = reinterpret_cast(GetCurrentQuickFrame()); size_t core_spill_size = POPCOUNT(frame_info.CoreSpillMask()) * GetBytesPerGprSpillLocation(kRuntimeISA); size_t fpu_spill_size = POPCOUNT(frame_info.FpSpillMask()) * GetBytesPerFprSpillLocation(kRuntimeISA); size_t offset = frame_size - core_spill_size - fpu_spill_size - kShouldDeoptimizeFlagSize; uint8_t* should_deoptimize_addr = sp + offset; // Set deoptimization flag to 1. DCHECK(*should_deoptimize_addr == 0 || *should_deoptimize_addr == 1); *should_deoptimize_addr = 1; } // Set of method headers for compiled code that should be deoptimized. const std::unordered_set& method_headers_; DISALLOW_COPY_AND_ASSIGN(CHAStackVisitor); }; class CHACheckpoint FINAL : public Closure { public: explicit CHACheckpoint(const std::unordered_set& method_headers) : barrier_(0), method_headers_(method_headers) {} void Run(Thread* thread) OVERRIDE { // Note thread and self may not be equal if thread was already suspended at // the point of the request. Thread* self = Thread::Current(); ScopedObjectAccess soa(self); CHAStackVisitor visitor(thread, nullptr, method_headers_); visitor.WalkStack(); barrier_.Pass(self); } void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) { Thread* self = Thread::Current(); ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun); barrier_.Increment(self, threads_running_checkpoint); } private: // The barrier to be passed through and for the requestor to wait upon. Barrier barrier_; // List of method headers for invalidated compiled code. const std::unordered_set& method_headers_; DISALLOW_COPY_AND_ASSIGN(CHACheckpoint); }; void ClassHierarchyAnalysis::VerifyNonSingleImplementation(mirror::Class* verify_class, uint16_t verify_index, ArtMethod* excluded_method) { // Grab cha_lock_ to make sure all single-implementation updates are seen. PointerSize image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); MutexLock cha_mu(Thread::Current(), *Locks::cha_lock_); while (verify_class != nullptr) { if (verify_index >= verify_class->GetVTableLength()) { return; } ArtMethod* verify_method = verify_class->GetVTableEntry(verify_index, image_pointer_size); if (verify_method != excluded_method) { DCHECK(!verify_method->HasSingleImplementation()) << "class: " << verify_class->PrettyClass() << " verify_method: " << verify_method->PrettyMethod(true) << " excluded_method: " << excluded_method->PrettyMethod(true); if (verify_method->IsAbstract()) { DCHECK(verify_method->GetSingleImplementation(image_pointer_size) == nullptr); } } verify_class = verify_class->GetSuperClass(); } } void ClassHierarchyAnalysis::CheckVirtualMethodSingleImplementationInfo( Handle klass, ArtMethod* virtual_method, ArtMethod* method_in_super, std::unordered_set& invalidated_single_impl_methods, PointerSize pointer_size) { // TODO: if klass is not instantiable, virtual_method isn't invocable yet so // even if it overrides, it doesn't invalidate single-implementation // assumption. DCHECK((virtual_method != method_in_super) || virtual_method->IsAbstract()); DCHECK(method_in_super->GetDeclaringClass()->IsResolved()) << "class isn't resolved"; // If virtual_method doesn't come from a default interface method, it should // be supplied by klass. DCHECK(virtual_method == method_in_super || virtual_method->IsCopied() || virtual_method->GetDeclaringClass() == klass.Get()); // To make updating single-implementation flags simple, we always maintain the following // invariant: // Say all virtual methods in the same vtable slot, starting from the bottom child class // to super classes, is a sequence of unique methods m3, m2, m1, ... (after removing duplicate // methods for inherited methods). // For example for the following class hierarchy, // class A { void m() { ... } } // class B extends A { void m() { ... } } // class C extends B {} // class D extends C { void m() { ... } } // the sequence is D.m(), B.m(), A.m(). // The single-implementation status for that sequence of methods begin with one or two true's, // then become all falses. The only case where two true's are possible is for one abstract // method m and one non-abstract method mImpl that overrides method m. // With the invariant, when linking in a new class, we only need to at most update one or // two methods in the sequence for their single-implementation status, in order to maintain // the invariant. if (!method_in_super->HasSingleImplementation()) { // method_in_super already has multiple implementations. All methods in the // same vtable slots in its super classes should have // non-single-implementation already. if (kIsDebugBuild) { VerifyNonSingleImplementation(klass->GetSuperClass()->GetSuperClass(), method_in_super->GetMethodIndex(), nullptr /* excluded_method */); } return; } uint16_t method_index = method_in_super->GetMethodIndex(); if (method_in_super->IsAbstract()) { if (kIsDebugBuild) { // An abstract method should have made all methods in the same vtable // slot above it in the class hierarchy having non-single-implementation. mirror::Class* super_super = klass->GetSuperClass()->GetSuperClass(); VerifyNonSingleImplementation(super_super, method_index, method_in_super); } if (virtual_method->IsAbstract()) { // SUPER: abstract, VIRTUAL: abstract. if (method_in_super == virtual_method) { DCHECK(klass->IsInstantiable()); // An instantiable subclass hasn't provided a concrete implementation of // the abstract method. Invoking method_in_super may throw AbstractMethodError. // This is an uncommon case, so we simply treat method_in_super as not // having single-implementation. invalidated_single_impl_methods.insert(method_in_super); return; } else { // One abstract method overrides another abstract method. This is an uncommon // case. We simply treat method_in_super as not having single-implementation. invalidated_single_impl_methods.insert(method_in_super); return; } } else { // SUPER: abstract, VIRTUAL: non-abstract. // A non-abstract method overrides an abstract method. if (method_in_super->GetSingleImplementation(pointer_size) == nullptr) { // Abstract method_in_super has no implementation yet. // We need to grab cha_lock_ since there may be multiple class linking // going on that can check/modify the single-implementation flag/method // of method_in_super. MutexLock cha_mu(Thread::Current(), *Locks::cha_lock_); if (!method_in_super->HasSingleImplementation()) { return; } if (method_in_super->GetSingleImplementation(pointer_size) == nullptr) { // virtual_method becomes the first implementation for method_in_super. method_in_super->SetSingleImplementation(virtual_method, pointer_size); // Keep method_in_super's single-implementation status. return; } // Fall through to invalidate method_in_super's single-implementation status. } // Abstract method_in_super already got one implementation. // Invalidate method_in_super's single-implementation status. invalidated_single_impl_methods.insert(method_in_super); return; } } else { if (virtual_method->IsAbstract()) { // SUPER: non-abstract, VIRTUAL: abstract. // An abstract method overrides a non-abstract method. This is an uncommon // case, we simply treat both methods as not having single-implementation. invalidated_single_impl_methods.insert(virtual_method); // Fall-through to handle invalidating method_in_super of its // single-implementation status. } // SUPER: non-abstract, VIRTUAL: non-abstract/abstract(fall-through from previous if). // Invalidate method_in_super's single-implementation status. invalidated_single_impl_methods.insert(method_in_super); // method_in_super might be the single-implementation of another abstract method, // which should be also invalidated of its single-implementation status. mirror::Class* super_super = klass->GetSuperClass()->GetSuperClass(); while (super_super != nullptr && method_index < super_super->GetVTableLength()) { ArtMethod* method_in_super_super = super_super->GetVTableEntry(method_index, pointer_size); if (method_in_super_super != method_in_super) { if (method_in_super_super->IsAbstract()) { if (method_in_super_super->HasSingleImplementation()) { // Invalidate method_in_super's single-implementation status. invalidated_single_impl_methods.insert(method_in_super_super); // No need to further traverse up the class hierarchy since if there // are cases that one abstract method overrides another method, we // should have made that method having non-single-implementation already. } else { // method_in_super_super is already non-single-implementation. // No need to further traverse up the class hierarchy. } } else { DCHECK(!method_in_super_super->HasSingleImplementation()); // No need to further traverse up the class hierarchy since two non-abstract // methods (method_in_super and method_in_super_super) should have set all // other methods (abstract or not) in the vtable slot to be non-single-implementation. } if (kIsDebugBuild) { VerifyNonSingleImplementation(super_super->GetSuperClass(), method_index, method_in_super_super); } // No need to go any further. return; } else { super_super = super_super->GetSuperClass(); } } } } void ClassHierarchyAnalysis::CheckInterfaceMethodSingleImplementationInfo( Handle klass, ArtMethod* interface_method, ArtMethod* implementation_method, std::unordered_set& invalidated_single_impl_methods, PointerSize pointer_size) { DCHECK(klass->IsInstantiable()); DCHECK(interface_method->IsAbstract() || interface_method->IsDefault()); if (!interface_method->HasSingleImplementation()) { return; } if (implementation_method->IsAbstract()) { // An instantiable class doesn't supply an implementation for // interface_method. Invoking the interface method on the class will throw // AbstractMethodError. This is an uncommon case, so we simply treat // interface_method as not having single-implementation. invalidated_single_impl_methods.insert(interface_method); return; } // We need to grab cha_lock_ since there may be multiple class linking going // on that can check/modify the single-implementation flag/method of // interface_method. MutexLock cha_mu(Thread::Current(), *Locks::cha_lock_); // Do this check again after we grab cha_lock_. if (!interface_method->HasSingleImplementation()) { return; } ArtMethod* single_impl = interface_method->GetSingleImplementation(pointer_size); if (single_impl == nullptr) { // implementation_method becomes the first implementation for // interface_method. interface_method->SetSingleImplementation(implementation_method, pointer_size); // Keep interface_method's single-implementation status. return; } DCHECK(!single_impl->IsAbstract()); if (single_impl->GetDeclaringClass() == implementation_method->GetDeclaringClass()) { // Same implementation. Since implementation_method may be a copy of a default // method, we need to check the declaring class for equality. return; } // Another implementation for interface_method. invalidated_single_impl_methods.insert(interface_method); } void ClassHierarchyAnalysis::InitSingleImplementationFlag(Handle klass, ArtMethod* method, PointerSize pointer_size) { DCHECK(method->IsCopied() || method->GetDeclaringClass() == klass.Get()); if (klass->IsFinal() || method->IsFinal()) { // Final classes or methods do not need CHA for devirtualization. // This frees up modifier bits for intrinsics which currently are only // used for static methods or methods of final classes. return; } if (method->IsAbstract()) { // single-implementation of abstract method shares the same field // that's used for JNI function of native method. It's fine since a method // cannot be both abstract and native. DCHECK(!method->IsNative()) << "Abstract method cannot be native"; if (method->GetDeclaringClass()->IsInstantiable()) { // Rare case, but we do accept it (such as 800-smali/smali/b_26143249.smali). // Do not attempt to devirtualize it. method->SetHasSingleImplementation(false); DCHECK(method->GetSingleImplementation(pointer_size) == nullptr); } else { // Abstract method starts with single-implementation flag set and null // implementation method. method->SetHasSingleImplementation(true); DCHECK(method->GetSingleImplementation(pointer_size) == nullptr); } } else { method->SetHasSingleImplementation(true); // Single implementation of non-abstract method is itself. DCHECK_EQ(method->GetSingleImplementation(pointer_size), method); } } void ClassHierarchyAnalysis::UpdateAfterLoadingOf(Handle klass) { PointerSize image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); if (klass->IsInterface()) { for (ArtMethod& method : klass->GetDeclaredVirtualMethods(image_pointer_size)) { DCHECK(method.IsAbstract() || method.IsDefault()); InitSingleImplementationFlag(klass, &method, image_pointer_size); } return; } mirror::Class* super_class = klass->GetSuperClass(); if (super_class == nullptr) { return; } // Keeps track of all methods whose single-implementation assumption // is invalidated by linking `klass`. std::unordered_set invalidated_single_impl_methods; // Do an entry-by-entry comparison of vtable contents with super's vtable. for (int32_t i = 0; i < super_class->GetVTableLength(); ++i) { ArtMethod* method = klass->GetVTableEntry(i, image_pointer_size); ArtMethod* method_in_super = super_class->GetVTableEntry(i, image_pointer_size); if (method == method_in_super) { // vtable slot entry is inherited from super class. if (method->IsAbstract() && klass->IsInstantiable()) { // An instantiable class that inherits an abstract method is treated as // supplying an implementation that throws AbstractMethodError. CheckVirtualMethodSingleImplementationInfo(klass, method, method_in_super, invalidated_single_impl_methods, image_pointer_size); } continue; } InitSingleImplementationFlag(klass, method, image_pointer_size); CheckVirtualMethodSingleImplementationInfo(klass, method, method_in_super, invalidated_single_impl_methods, image_pointer_size); } // For new virtual methods that don't override. for (int32_t i = super_class->GetVTableLength(); i < klass->GetVTableLength(); ++i) { ArtMethod* method = klass->GetVTableEntry(i, image_pointer_size); InitSingleImplementationFlag(klass, method, image_pointer_size); } if (klass->IsInstantiable()) { auto* iftable = klass->GetIfTable(); const size_t ifcount = klass->GetIfTableCount(); for (size_t i = 0; i < ifcount; ++i) { mirror::Class* interface = iftable->GetInterface(i); for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) { ArtMethod* interface_method = interface->GetVirtualMethod(j, image_pointer_size); mirror::PointerArray* method_array = iftable->GetMethodArray(i); ArtMethod* implementation_method = method_array->GetElementPtrSize(j, image_pointer_size); DCHECK(implementation_method != nullptr) << klass->PrettyClass(); CheckInterfaceMethodSingleImplementationInfo(klass, interface_method, implementation_method, invalidated_single_impl_methods, image_pointer_size); } } } InvalidateSingleImplementationMethods(invalidated_single_impl_methods); } void ClassHierarchyAnalysis::InvalidateSingleImplementationMethods( std::unordered_set& invalidated_single_impl_methods) { if (!invalidated_single_impl_methods.empty()) { Runtime* const runtime = Runtime::Current(); Thread *self = Thread::Current(); // Method headers for compiled code to be invalidated. std::unordered_set dependent_method_headers; PointerSize image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); { // We do this under cha_lock_. Committing code also grabs this lock to // make sure the code is only committed when all single-implementation // assumptions are still true. MutexLock cha_mu(self, *Locks::cha_lock_); // Invalidate compiled methods that assume some virtual calls have only // single implementations. for (ArtMethod* invalidated : invalidated_single_impl_methods) { if (!invalidated->HasSingleImplementation()) { // It might have been invalidated already when other class linking is // going on. continue; } invalidated->SetHasSingleImplementation(false); if (invalidated->IsAbstract()) { // Clear the single implementation method. invalidated->SetSingleImplementation(nullptr, image_pointer_size); } if (runtime->IsAotCompiler()) { // No need to invalidate any compiled code as the AotCompiler doesn't // run any code. continue; } // Invalidate all dependents. auto dependents = GetDependents(invalidated); if (dependents == nullptr) { continue; } for (const auto& dependent : *dependents) { ArtMethod* method = dependent.first;; OatQuickMethodHeader* method_header = dependent.second; VLOG(class_linker) << "CHA invalidated compiled code for " << method->PrettyMethod(); DCHECK(runtime->UseJitCompilation()); runtime->GetJit()->GetCodeCache()->InvalidateCompiledCodeFor( method, method_header); dependent_method_headers.insert(method_header); } RemoveDependencyFor(invalidated); } } if (dependent_method_headers.empty()) { return; } // Deoptimze compiled code on stack that should have been invalidated. CHACheckpoint checkpoint(dependent_method_headers); size_t threads_running_checkpoint = runtime->GetThreadList()->RunCheckpoint(&checkpoint); if (threads_running_checkpoint != 0) { checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint); } } } } // namespace art