/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "method_handles-inl.h" #include "android-base/stringprintf.h" #include "common_dex_operations.h" #include "jvalue.h" #include "jvalue-inl.h" #include "mirror/emulated_stack_frame.h" #include "mirror/method_handle_impl-inl.h" #include "mirror/method_type.h" #include "reflection.h" #include "reflection-inl.h" #include "well_known_classes.h" namespace art { using android::base::StringPrintf; namespace { #define PRIMITIVES_LIST(V) \ V(Primitive::kPrimBoolean, Boolean, Boolean, Z) \ V(Primitive::kPrimByte, Byte, Byte, B) \ V(Primitive::kPrimChar, Char, Character, C) \ V(Primitive::kPrimShort, Short, Short, S) \ V(Primitive::kPrimInt, Int, Integer, I) \ V(Primitive::kPrimLong, Long, Long, J) \ V(Primitive::kPrimFloat, Float, Float, F) \ V(Primitive::kPrimDouble, Double, Double, D) // Assigns |type| to the primitive type associated with |klass|. Returns // true iff. |klass| was a boxed type (Integer, Long etc.), false otherwise. bool GetUnboxedPrimitiveType(ObjPtr klass, Primitive::Type* type) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); std::string storage; const char* descriptor = klass->GetDescriptor(&storage); static const char kJavaLangPrefix[] = "Ljava/lang/"; static const size_t kJavaLangPrefixSize = sizeof(kJavaLangPrefix) - 1; if (strncmp(descriptor, kJavaLangPrefix, kJavaLangPrefixSize) != 0) { return false; } descriptor += kJavaLangPrefixSize; #define LOOKUP_PRIMITIVE(primitive, _, java_name, ___) \ if (strcmp(descriptor, #java_name ";") == 0) { \ *type = primitive; \ return true; \ } PRIMITIVES_LIST(LOOKUP_PRIMITIVE); #undef LOOKUP_PRIMITIVE return false; } ObjPtr GetBoxedPrimitiveClass(Primitive::Type type) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); jmethodID m = nullptr; switch (type) { #define CASE_PRIMITIVE(primitive, _, java_name, __) \ case primitive: \ m = WellKnownClasses::java_lang_ ## java_name ## _valueOf; \ break; PRIMITIVES_LIST(CASE_PRIMITIVE); #undef CASE_PRIMITIVE case Primitive::Type::kPrimNot: case Primitive::Type::kPrimVoid: return nullptr; } return jni::DecodeArtMethod(m)->GetDeclaringClass(); } bool GetUnboxedTypeAndValue(ObjPtr o, Primitive::Type* type, JValue* value) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); ObjPtr klass = o->GetClass(); ArtField* primitive_field = &klass->GetIFieldsPtr()->At(0); #define CASE_PRIMITIVE(primitive, abbrev, _, shorthand) \ if (klass == GetBoxedPrimitiveClass(primitive)) { \ *type = primitive; \ value->Set ## shorthand(primitive_field->Get ## abbrev(o)); \ return true; \ } PRIMITIVES_LIST(CASE_PRIMITIVE) #undef CASE_PRIMITIVE return false; } inline bool IsReferenceType(Primitive::Type type) { return type == Primitive::kPrimNot; } inline bool IsPrimitiveType(Primitive::Type type) { return !IsReferenceType(type); } } // namespace bool IsParameterTypeConvertible(ObjPtr from, ObjPtr to) REQUIRES_SHARED(Locks::mutator_lock_) { // This function returns true if there's any conceivable conversion // between |from| and |to|. It's expected this method will be used // to determine if a WrongMethodTypeException should be raised. The // decision logic follows the documentation for MethodType.asType(). if (from == to) { return true; } Primitive::Type from_primitive = from->GetPrimitiveType(); Primitive::Type to_primitive = to->GetPrimitiveType(); DCHECK(from_primitive != Primitive::Type::kPrimVoid); DCHECK(to_primitive != Primitive::Type::kPrimVoid); // If |to| and |from| are references. if (IsReferenceType(from_primitive) && IsReferenceType(to_primitive)) { // Assignability is determined during parameter conversion when // invoking the associated method handle. return true; } // If |to| and |from| are primitives and a widening conversion exists. if (Primitive::IsWidenable(from_primitive, to_primitive)) { return true; } // If |to| is a reference and |from| is a primitive, then boxing conversion. if (IsReferenceType(to_primitive) && IsPrimitiveType(from_primitive)) { return to->IsAssignableFrom(GetBoxedPrimitiveClass(from_primitive)); } // If |from| is a reference and |to| is a primitive, then unboxing conversion. if (IsPrimitiveType(to_primitive) && IsReferenceType(from_primitive)) { if (from->DescriptorEquals("Ljava/lang/Object;")) { // Object might be converted into a primitive during unboxing. return true; } if (Primitive::IsNumericType(to_primitive) && from->DescriptorEquals("Ljava/lang/Number;")) { // Number might be unboxed into any of the number primitive types. return true; } Primitive::Type unboxed_type; if (GetUnboxedPrimitiveType(from, &unboxed_type)) { if (unboxed_type == to_primitive) { // Straightforward unboxing conversion such as Boolean => boolean. return true; } // Check if widening operations for numeric primitives would work, // such as Byte => byte => long. return Primitive::IsWidenable(unboxed_type, to_primitive); } } return false; } bool IsReturnTypeConvertible(ObjPtr from, ObjPtr to) REQUIRES_SHARED(Locks::mutator_lock_) { if (to->GetPrimitiveType() == Primitive::Type::kPrimVoid) { // Result will be ignored. return true; } else if (from->GetPrimitiveType() == Primitive::Type::kPrimVoid) { // Returned value will be 0 / null. return true; } else { // Otherwise apply usual parameter conversion rules. return IsParameterTypeConvertible(from, to); } } bool ConvertJValueCommon( Handle callsite_type, Handle callee_type, ObjPtr from, ObjPtr to, JValue* value) { // The reader maybe concerned about the safety of the heap object // that may be in |value|. There is only one case where allocation // is obviously needed and that's for boxing. However, in the case // of boxing |value| contains a non-reference type. const Primitive::Type from_type = from->GetPrimitiveType(); const Primitive::Type to_type = to->GetPrimitiveType(); // Put incoming value into |src_value| and set return value to 0. // Errors and conversions from void require the return value to be 0. const JValue src_value(*value); value->SetJ(0); // Conversion from void set result to zero. if (from_type == Primitive::kPrimVoid) { return true; } // This method must be called only when the types don't match. DCHECK(from != to); if (IsPrimitiveType(from_type) && IsPrimitiveType(to_type)) { // The source and target types are both primitives. if (UNLIKELY(!ConvertPrimitiveValueNoThrow(from_type, to_type, src_value, value))) { ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get()); return false; } return true; } else if (IsReferenceType(from_type) && IsReferenceType(to_type)) { // They're both reference types. If "from" is null, we can pass it // through unchanged. If not, we must generate a cast exception if // |to| is not assignable from the dynamic type of |ref|. // // Playing it safe with StackHandleScope here, not expecting any allocation // in mirror::Class::IsAssignable(). StackHandleScope<2> hs(Thread::Current()); Handle h_to(hs.NewHandle(to)); Handle h_obj(hs.NewHandle(src_value.GetL())); if (h_obj != nullptr && !to->IsAssignableFrom(h_obj->GetClass())) { ThrowClassCastException(h_to.Get(), h_obj->GetClass()); return false; } value->SetL(h_obj.Get()); return true; } else if (IsReferenceType(to_type)) { DCHECK(IsPrimitiveType(from_type)); // The source type is a primitive and the target type is a reference, so we must box. // The target type maybe a super class of the boxed source type, for example, // if the source type is int, it's boxed type is java.lang.Integer, and the target // type could be java.lang.Number. Primitive::Type type; if (!GetUnboxedPrimitiveType(to, &type)) { ObjPtr boxed_from_class = GetBoxedPrimitiveClass(from_type); if (boxed_from_class->IsSubClass(to)) { type = from_type; } else { ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get()); return false; } } if (UNLIKELY(from_type != type)) { ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get()); return false; } if (!ConvertPrimitiveValueNoThrow(from_type, type, src_value, value)) { ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get()); return false; } // Then perform the actual boxing, and then set the reference. ObjPtr boxed = BoxPrimitive(type, src_value); value->SetL(boxed.Ptr()); return true; } else { // The source type is a reference and the target type is a primitive, so we must unbox. DCHECK(IsReferenceType(from_type)); DCHECK(IsPrimitiveType(to_type)); ObjPtr from_obj(src_value.GetL()); if (UNLIKELY(from_obj == nullptr)) { ThrowNullPointerException( StringPrintf("Expected to unbox a '%s' primitive type but was returned null", from->PrettyDescriptor().c_str()).c_str()); return false; } Primitive::Type unboxed_type; JValue unboxed_value; if (UNLIKELY(!GetUnboxedTypeAndValue(from_obj, &unboxed_type, &unboxed_value))) { ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get()); return false; } if (UNLIKELY(!ConvertPrimitiveValueNoThrow(unboxed_type, to_type, unboxed_value, value))) { ThrowClassCastException(from, to); return false; } return true; } } namespace { template inline void CopyArgumentsFromCallerFrame(const ShadowFrame& caller_frame, ShadowFrame* callee_frame, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, const size_t first_dst_reg, const size_t num_regs) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < num_regs; ++i) { size_t dst_reg = first_dst_reg + i; size_t src_reg = is_range ? (first_arg + i) : args[i]; // Uint required, so that sign extension does not make this wrong on 64-bit systems uint32_t src_value = caller_frame.GetVReg(src_reg); ObjPtr o = caller_frame.GetVRegReference(src_reg); // If both register locations contains the same value, the register probably holds a reference. // Note: As an optimization, non-moving collectors leave a stale reference value // in the references array even after the original vreg was overwritten to a non-reference. if (src_value == reinterpret_cast(o.Ptr())) { callee_frame->SetVRegReference(dst_reg, o.Ptr()); } else { callee_frame->SetVReg(dst_reg, src_value); } } } template inline bool ConvertAndCopyArgumentsFromCallerFrame( Thread* self, Handle callsite_type, Handle callee_type, const ShadowFrame& caller_frame, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, uint32_t first_dst_reg, ShadowFrame* callee_frame) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr> from_types(callsite_type->GetPTypes()); ObjPtr> to_types(callee_type->GetPTypes()); const int32_t num_method_params = from_types->GetLength(); if (to_types->GetLength() != num_method_params) { ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get()); return false; } ShadowFrameGetter getter(first_arg, args, caller_frame); ShadowFrameSetter setter(callee_frame, first_dst_reg); return PerformConversions, ShadowFrameSetter>(self, callsite_type, callee_type, &getter, &setter, num_method_params); } inline bool IsMethodHandleInvokeExact(const ArtMethod* const method) { if (method == jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) { return true; } else { DCHECK_EQ(method, jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)); return false; } } inline bool IsInvoke(const mirror::MethodHandle::Kind handle_kind) { return handle_kind <= mirror::MethodHandle::Kind::kLastInvokeKind; } inline bool IsInvokeTransform(const mirror::MethodHandle::Kind handle_kind) { return (handle_kind == mirror::MethodHandle::Kind::kInvokeTransform || handle_kind == mirror::MethodHandle::Kind::kInvokeCallSiteTransform); } inline bool IsFieldAccess(mirror::MethodHandle::Kind handle_kind) { return (handle_kind >= mirror::MethodHandle::Kind::kFirstAccessorKind && handle_kind <= mirror::MethodHandle::Kind::kLastAccessorKind); } // Calculate the number of ins for a proxy or native method, where we // can't just look at the code item. static inline size_t GetInsForProxyOrNativeMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(method->IsNative() || method->IsProxyMethod()); method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); uint32_t shorty_length = 0; const char* shorty = method->GetShorty(&shorty_length); // Static methods do not include the receiver. The receiver isn't included // in the shorty_length though the return value is. size_t num_ins = method->IsStatic() ? shorty_length - 1 : shorty_length; for (const char* c = shorty + 1; *c != '\0'; ++c) { if (*c == 'J' || *c == 'D') { ++num_ins; } } return num_ins; } // Returns true iff. the callsite type for a polymorphic invoke is transformer // like, i.e that it has a single input argument whose type is // dalvik.system.EmulatedStackFrame. static inline bool IsCallerTransformer(Handle callsite_type) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr> param_types(callsite_type->GetPTypes()); if (param_types->GetLength() == 1) { ObjPtr param(param_types->GetWithoutChecks(0)); // NB Comparing descriptor here as it appears faster in cycle simulation than using: // param == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_EmulatedStackFrame) // Costs are 98 vs 173 cycles per invocation. return param->DescriptorEquals("Ldalvik/system/EmulatedStackFrame;"); } return false; } template static inline bool DoCallPolymorphic(ArtMethod* called_method, Handle callsite_type, Handle target_type, Thread* self, ShadowFrame& shadow_frame, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // Compute method information. const DexFile::CodeItem* code_item = called_method->GetCodeItem(); // Number of registers for the callee's call frame. Note that for non-exact // invokes, we always derive this information from the callee method. We // cannot guarantee during verification that the number of registers encoded // in the invoke is equal to the number of ins for the callee. This is because // some transformations (such as boxing a long -> Long or wideining an // int -> long will change that number. uint16_t num_regs; size_t num_input_regs; size_t first_dest_reg; if (LIKELY(code_item != nullptr)) { num_regs = code_item->registers_size_; first_dest_reg = num_regs - code_item->ins_size_; num_input_regs = code_item->ins_size_; // Parameter registers go at the end of the shadow frame. DCHECK_NE(first_dest_reg, (size_t)-1); } else { // No local regs for proxy and native methods. DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs = num_input_regs = GetInsForProxyOrNativeMethod(called_method); first_dest_reg = 0; } // Allocate shadow frame on the stack. ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); // Whether this polymorphic invoke was issued by a transformer method. bool is_caller_transformer = false; // Thread might be suspended during PerformArgumentConversions due to the // allocations performed during boxing. { ScopedStackedShadowFramePusher pusher( self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction); if (callsite_type->IsExactMatch(target_type.Get())) { // This is an exact invoke, we can take the fast path of just copying all // registers without performing any argument conversions. CopyArgumentsFromCallerFrame(shadow_frame, new_shadow_frame, args, first_arg, first_dest_reg, num_input_regs); } else { // This includes the case where we're entering this invoke-polymorphic // from a transformer method. In that case, the callsite_type will contain // a single argument of type dalvik.system.EmulatedStackFrame. In that // case, we'll have to unmarshal the EmulatedStackFrame into the // new_shadow_frame and perform argument conversions on it. if (IsCallerTransformer(callsite_type)) { is_caller_transformer = true; // The emulated stack frame is the first and only argument when we're coming // through from a transformer. size_t first_arg_register = (is_range) ? first_arg : args[0]; ObjPtr emulated_stack_frame( reinterpret_cast( shadow_frame.GetVRegReference(first_arg_register))); if (!emulated_stack_frame->WriteToShadowFrame(self, target_type, first_dest_reg, new_shadow_frame)) { DCHECK(self->IsExceptionPending()); result->SetL(0); return false; } } else { if (!callsite_type->IsConvertible(target_type.Get())) { ThrowWrongMethodTypeException(target_type.Get(), callsite_type.Get()); return false; } if (!ConvertAndCopyArgumentsFromCallerFrame(self, callsite_type, target_type, shadow_frame, args, first_arg, first_dest_reg, new_shadow_frame)) { DCHECK(self->IsExceptionPending()); result->SetL(0); return false; } } } } PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result); if (self->IsExceptionPending()) { return false; } // If the caller of this signature polymorphic method was a transformer, // we need to copy the result back out to the emulated stack frame. if (is_caller_transformer) { StackHandleScope<2> hs(self); size_t first_callee_register = is_range ? (first_arg) : args[0]; Handle emulated_stack_frame( hs.NewHandle(reinterpret_cast( shadow_frame.GetVRegReference(first_callee_register)))); Handle emulated_stack_type(hs.NewHandle(emulated_stack_frame->GetType())); JValue local_result; local_result.SetJ(result->GetJ()); if (ConvertReturnValue(emulated_stack_type, target_type, &local_result)) { emulated_stack_frame->SetReturnValue(self, local_result); return true; } DCHECK(self->IsExceptionPending()); return false; } return ConvertReturnValue(callsite_type, target_type, result); } template static inline bool DoCallTransform(ArtMethod* called_method, Handle callsite_type, Handle callee_type, Thread* self, ShadowFrame& shadow_frame, Handle receiver, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // This can be fixed to two, because the method we're calling here // (MethodHandle.transformInternal) doesn't have any locals and the signature // is known : // // private MethodHandle.transformInternal(EmulatedStackFrame sf); // // This means we need only two vregs : // - One for the receiver object. // - One for the only method argument (an EmulatedStackFrame). static constexpr size_t kNumRegsForTransform = 2; const DexFile::CodeItem* code_item = called_method->GetCodeItem(); DCHECK(code_item != nullptr); DCHECK_EQ(kNumRegsForTransform, code_item->registers_size_); DCHECK_EQ(kNumRegsForTransform, code_item->ins_size_); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(kNumRegsForTransform, &shadow_frame, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); StackHandleScope<1> hs(self); MutableHandle sf(hs.NewHandle(nullptr)); if (IsCallerTransformer(callsite_type)) { // If we're entering this transformer from another transformer, we can pass // through the handle directly to the callee, instead of having to // instantiate a new stack frame based on the shadow frame. size_t first_callee_register = is_range ? first_arg : args[0]; sf.Assign(reinterpret_cast( shadow_frame.GetVRegReference(first_callee_register))); } else { sf.Assign(mirror::EmulatedStackFrame::CreateFromShadowFrameAndArgs(self, callsite_type, callee_type, shadow_frame, first_arg, args)); // Something went wrong while creating the emulated stack frame, we should // throw the pending exception. if (sf == nullptr) { DCHECK(self->IsExceptionPending()); return false; } } new_shadow_frame->SetVRegReference(0, receiver.Get()); new_shadow_frame->SetVRegReference(1, sf.Get()); PerformCall(self, code_item, shadow_frame.GetMethod(), 0 /* first destination register */, new_shadow_frame, result); if (self->IsExceptionPending()) { return false; } // If the called transformer method we called has returned a value, then we // need to copy it back to |result|. sf->GetReturnValue(self, result); return ConvertReturnValue(callsite_type, callee_type, result); } inline static ObjPtr GetAndInitializeDeclaringClass(Thread* self, ArtField* field) REQUIRES_SHARED(Locks::mutator_lock_) { // Method handle invocations on static fields should ensure class is // initialized. This usually happens when an instance is constructed // or class members referenced, but this is not guaranteed when // looking up method handles. ObjPtr klass = field->GetDeclaringClass(); if (UNLIKELY(!klass->IsInitialized())) { StackHandleScope<1> hs(self); HandleWrapperObjPtr h(hs.NewHandleWrapper(&klass)); if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h, true, true)) { DCHECK(self->IsExceptionPending()); return nullptr; } } return klass; } ArtMethod* RefineTargetMethod(Thread* self, ShadowFrame& shadow_frame, const mirror::MethodHandle::Kind& handle_kind, Handle handle_type, Handle callsite_type, const uint32_t receiver_reg, ArtMethod* target_method) REQUIRES_SHARED(Locks::mutator_lock_) { if (handle_kind == mirror::MethodHandle::Kind::kInvokeVirtual || handle_kind == mirror::MethodHandle::Kind::kInvokeInterface) { // For virtual and interface methods ensure target_method points to // the actual method to invoke. ObjPtr receiver(shadow_frame.GetVRegReference(receiver_reg)); if (IsCallerTransformer(callsite_type)) { // The current receiver is an emulated stack frame, the method's // receiver needs to be fetched from there as the emulated frame // will be unpacked into a new frame. receiver = ObjPtr::DownCast(receiver)->GetReceiver(); } ObjPtr declaring_class(target_method->GetDeclaringClass()); if (receiver == nullptr || receiver->GetClass() != declaring_class) { // Verify that _vRegC is an object reference and of the type expected by // the receiver. if (!VerifyObjectIsClass(receiver, declaring_class)) { DCHECK(self->IsExceptionPending()); return nullptr; } return receiver->GetClass()->FindVirtualMethodForVirtualOrInterface( target_method, kRuntimePointerSize); } } else if (handle_kind == mirror::MethodHandle::Kind::kInvokeDirect) { // String constructors are a special case, they are replaced with // StringFactory methods. if (target_method->IsConstructor() && target_method->GetDeclaringClass()->IsStringClass()) { DCHECK(handle_type->GetRType()->IsStringClass()); return WellKnownClasses::StringInitToStringFactory(target_method); } } else if (handle_kind == mirror::MethodHandle::Kind::kInvokeSuper) { ObjPtr declaring_class = target_method->GetDeclaringClass(); // Note that we're not dynamically dispatching on the type of the receiver // here. We use the static type of the "receiver" object that we've // recorded in the method handle's type, which will be the same as the // special caller that was specified at the point of lookup. ObjPtr referrer_class = handle_type->GetPTypes()->Get(0); if (!declaring_class->IsInterface()) { ObjPtr super_class = referrer_class->GetSuperClass(); uint16_t vtable_index = target_method->GetMethodIndex(); DCHECK(super_class != nullptr); DCHECK(super_class->HasVTable()); // Note that super_class is a super of referrer_class and target_method // will always be declared by super_class (or one of its super classes). DCHECK_LT(vtable_index, super_class->GetVTableLength()); return super_class->GetVTableEntry(vtable_index, kRuntimePointerSize); } else { return referrer_class->FindVirtualMethodForInterfaceSuper(target_method, kRuntimePointerSize); } } return target_method; } template bool DoInvokePolymorphicMethod(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); Handle handle_type(hs.NewHandle(method_handle->GetMethodType())); const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind(); DCHECK(IsInvoke(handle_kind)); // Get the method we're actually invoking along with the kind of // invoke that is desired. We don't need to perform access checks at this // point because they would have been performed on our behalf at the point // of creation of the method handle. ArtMethod* target_method = method_handle->GetTargetMethod(); uint32_t receiver_reg = is_range ? first_arg: args[0]; ArtMethod* called_method = RefineTargetMethod(self, shadow_frame, handle_kind, handle_type, callsite_type, receiver_reg, target_method); if (called_method == nullptr) { DCHECK(self->IsExceptionPending()); return false; } if (IsInvokeTransform(handle_kind)) { // There are two cases here - method handles representing regular // transforms and those representing call site transforms. Method // handles for call site transforms adapt their MethodType to match // the call site. For these, the |callee_type| is the same as the // |callsite_type|. The VarargsCollector is such a tranform, its // method type depends on the call site, ie. x(a) or x(a, b), or // x(a, b, c). The VarargsCollector invokes a variable arity method // with the arity arguments in an array. Handle callee_type = (handle_kind == mirror::MethodHandle::Kind::kInvokeCallSiteTransform) ? callsite_type : handle_type; return DoCallTransform(called_method, callsite_type, callee_type, self, shadow_frame, method_handle /* receiver */, args, first_arg, result); } else { return DoCallPolymorphic(called_method, callsite_type, handle_type, self, shadow_frame, args, first_arg, result); } } // Helper for getters in invoke-polymorphic. inline static void DoFieldGetForInvokePolymorphic(Thread* self, const ShadowFrame& shadow_frame, ObjPtr& obj, ArtField* field, Primitive::Type field_type, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { switch (field_type) { case Primitive::kPrimBoolean: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimByte: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimChar: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimShort: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimInt: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimLong: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimFloat: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimDouble: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimNot: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } } // Helper for setters in invoke-polymorphic. inline bool DoFieldPutForInvokePolymorphic(Thread* self, ShadowFrame& shadow_frame, ObjPtr& obj, ArtField* field, Primitive::Type field_type, const JValue& value) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!Runtime::Current()->IsActiveTransaction()); static const bool kTransaction = false; // Not in a transaction. static const bool kAssignabilityCheck = false; // No access check. switch (field_type) { case Primitive::kPrimBoolean: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimByte: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimChar: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimShort: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimInt: case Primitive::kPrimFloat: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimLong: case Primitive::kPrimDouble: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimNot: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } } static JValue GetValueFromShadowFrame(const ShadowFrame& shadow_frame, Primitive::Type field_type, uint32_t vreg) REQUIRES_SHARED(Locks::mutator_lock_) { JValue field_value; switch (field_type) { case Primitive::kPrimBoolean: field_value.SetZ(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimByte: field_value.SetB(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimChar: field_value.SetC(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimShort: field_value.SetS(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimInt: case Primitive::kPrimFloat: field_value.SetI(shadow_frame.GetVReg(vreg)); break; case Primitive::kPrimLong: case Primitive::kPrimDouble: field_value.SetJ(shadow_frame.GetVRegLong(vreg)); break; case Primitive::kPrimNot: field_value.SetL(shadow_frame.GetVRegReference(vreg)); break; case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return field_value; } template bool DoInvokePolymorphicFieldAccess(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); Handle handle_type(hs.NewHandle(method_handle->GetMethodType())); const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind(); ArtField* field = method_handle->GetTargetField(); Primitive::Type field_type = field->GetTypeAsPrimitiveType(); switch (handle_kind) { case mirror::MethodHandle::kInstanceGet: { size_t obj_reg = is_range ? first_arg : args[0]; ObjPtr obj = shadow_frame.GetVRegReference(obj_reg); DoFieldGetForInvokePolymorphic(self, shadow_frame, obj, field, field_type, result); if (do_conversions && !ConvertReturnValue(callsite_type, handle_type, result)) { DCHECK(self->IsExceptionPending()); return false; } return true; } case mirror::MethodHandle::kStaticGet: { ObjPtr obj = GetAndInitializeDeclaringClass(self, field); if (obj == nullptr) { DCHECK(self->IsExceptionPending()); return false; } DoFieldGetForInvokePolymorphic(self, shadow_frame, obj, field, field_type, result); if (do_conversions && !ConvertReturnValue(callsite_type, handle_type, result)) { DCHECK(self->IsExceptionPending()); return false; } return true; } case mirror::MethodHandle::kInstancePut: { size_t obj_reg = is_range ? first_arg : args[0]; size_t value_reg = is_range ? (first_arg + 1) : args[1]; const size_t kPTypeIndex = 1; // Use ptypes instead of field type since we may be unboxing a reference for a primitive // field. The field type is incorrect for this case. JValue value = GetValueFromShadowFrame( shadow_frame, callsite_type->GetPTypes()->Get(kPTypeIndex)->GetPrimitiveType(), value_reg); if (do_conversions && !ConvertArgumentValue(callsite_type, handle_type, kPTypeIndex, &value)) { DCHECK(self->IsExceptionPending()); return false; } ObjPtr obj = shadow_frame.GetVRegReference(obj_reg); return DoFieldPutForInvokePolymorphic(self, shadow_frame, obj, field, field_type, value); } case mirror::MethodHandle::kStaticPut: { ObjPtr obj = GetAndInitializeDeclaringClass(self, field); if (obj == nullptr) { DCHECK(self->IsExceptionPending()); return false; } size_t value_reg = is_range ? first_arg : args[0]; const size_t kPTypeIndex = 0; // Use ptypes instead of field type since we may be unboxing a reference for a primitive // field. The field type is incorrect for this case. JValue value = GetValueFromShadowFrame( shadow_frame, callsite_type->GetPTypes()->Get(kPTypeIndex)->GetPrimitiveType(), value_reg); if (do_conversions && !ConvertArgumentValue(callsite_type, handle_type, kPTypeIndex, &value)) { DCHECK(self->IsExceptionPending()); return false; } return DoFieldPutForInvokePolymorphic(self, shadow_frame, obj, field, field_type, value); } default: LOG(FATAL) << "Unreachable: " << handle_kind; UNREACHABLE(); } } template static inline bool DoInvokePolymorphicNonExact(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind(); ObjPtr handle_type(method_handle->GetMethodType()); CHECK(handle_type != nullptr); if (IsFieldAccess(handle_kind)) { DCHECK(!callsite_type->IsExactMatch(handle_type.Ptr())); if (!callsite_type->IsConvertible(handle_type.Ptr())) { ThrowWrongMethodTypeException(handle_type.Ptr(), callsite_type.Get()); return false; } const bool do_convert = true; return DoInvokePolymorphicFieldAccess( self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } return DoInvokePolymorphicMethod(self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } template bool DoInvokePolymorphicExact(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind(); Handle method_handle_type(hs.NewHandle(method_handle->GetMethodType())); if (IsFieldAccess(handle_kind)) { const bool do_convert = false; return DoInvokePolymorphicFieldAccess( self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } // Slow-path check. if (IsInvokeTransform(handle_kind) || IsCallerTransformer(callsite_type)) { return DoInvokePolymorphicMethod(self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } // On the fast-path. This is equivalent to DoCallPolymoprhic without the conversion paths. ArtMethod* target_method = method_handle->GetTargetMethod(); uint32_t receiver_reg = is_range ? first_arg : args[0]; ArtMethod* called_method = RefineTargetMethod(self, shadow_frame, handle_kind, method_handle_type, callsite_type, receiver_reg, target_method); if (called_method == nullptr) { DCHECK(self->IsExceptionPending()); return false; } // Compute method information. const DexFile::CodeItem* code_item = called_method->GetCodeItem(); uint16_t num_regs; size_t num_input_regs; size_t first_dest_reg; if (LIKELY(code_item != nullptr)) { num_regs = code_item->registers_size_; first_dest_reg = num_regs - code_item->ins_size_; num_input_regs = code_item->ins_size_; // Parameter registers go at the end of the shadow frame. DCHECK_NE(first_dest_reg, (size_t)-1); } else { // No local regs for proxy and native methods. DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs = num_input_regs = GetInsForProxyOrNativeMethod(called_method); first_dest_reg = 0; } // Allocate shadow frame on the stack. const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon"); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); CopyArgumentsFromCallerFrame(shadow_frame, new_shadow_frame, args, first_arg, first_dest_reg, num_input_regs); self->EndAssertNoThreadSuspension(old_cause); PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result); if (self->IsExceptionPending()) { return false; } return true; } } // namespace template bool DoInvokePolymorphic(Thread* self, ArtMethod* invoke_method, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const uint32_t (&args)[Instruction::kMaxVarArgRegs], uint32_t first_arg, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr method_handle_type = method_handle->GetMethodType(); if (IsMethodHandleInvokeExact(invoke_method)) { // We need to check the nominal type of the handle in addition to the // real type. The "nominal" type is present when MethodHandle.asType is // called any handle, and results in the declared type of the handle // changing. ObjPtr nominal_type(method_handle->GetNominalType()); if (UNLIKELY(nominal_type != nullptr)) { if (UNLIKELY(!callsite_type->IsExactMatch(nominal_type.Ptr()))) { ThrowWrongMethodTypeException(nominal_type.Ptr(), callsite_type.Get()); return false; } if (LIKELY(!nominal_type->IsExactMatch(method_handle_type.Ptr()))) { // Different nominal type means we have to treat as non-exact. return DoInvokePolymorphicNonExact(self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } } if (!callsite_type->IsExactMatch(method_handle_type.Ptr())) { ThrowWrongMethodTypeException(method_handle_type.Ptr(), callsite_type.Get()); return false; } return DoInvokePolymorphicExact(self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } else { if (UNLIKELY(callsite_type->IsExactMatch(method_handle_type.Ptr()))) { // A non-exact invoke that can be invoked exactly. return DoInvokePolymorphicExact(self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } return DoInvokePolymorphicNonExact(self, shadow_frame, method_handle, callsite_type, args, first_arg, result); } } #define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoInvokePolymorphic<_is_range>( \ Thread* self, \ ArtMethod* invoke_method, \ ShadowFrame& shadow_frame, \ Handle method_handle, \ Handle callsite_type, \ const uint32_t (&args)[Instruction::kMaxVarArgRegs], \ uint32_t first_arg, \ JValue* result) EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true); EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false); #undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL } // namespace art