/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Private C library headers. #include "private/ScopeGuard.h" #include "linker.h" #include "linker_block_allocator.h" #include "linker_cfi.h" #include "linker_config.h" #include "linker_gdb_support.h" #include "linker_globals.h" #include "linker_debug.h" #include "linker_dlwarning.h" #include "linker_main.h" #include "linker_namespaces.h" #include "linker_sleb128.h" #include "linker_phdr.h" #include "linker_relocs.h" #include "linker_reloc_iterators.h" #include "linker_utils.h" #include "android-base/strings.h" #include "android-base/stringprintf.h" #include "ziparchive/zip_archive.h" // Override macros to use C++ style casts. #undef ELF_ST_TYPE #define ELF_ST_TYPE(x) (static_cast(x) & 0xf) static android_namespace_t* g_anonymous_namespace = &g_default_namespace; static std::unordered_map g_exported_namespaces; static LinkerTypeAllocator g_soinfo_allocator; static LinkerTypeAllocator> g_soinfo_links_allocator; static LinkerTypeAllocator g_namespace_allocator; static LinkerTypeAllocator> g_namespace_list_allocator; static const char* const kLdConfigFilePath = "/system/etc/ld.config.txt"; #if defined(__LP64__) static const char* const kSystemLibDir = "/system/lib64"; static const char* const kVendorLibDir = "/vendor/lib64"; static const char* const kAsanSystemLibDir = "/data/asan/system/lib64"; static const char* const kAsanVendorLibDir = "/data/asan/vendor/lib64"; #else static const char* const kSystemLibDir = "/system/lib"; static const char* const kVendorLibDir = "/vendor/lib"; static const char* const kAsanSystemLibDir = "/data/asan/system/lib"; static const char* const kAsanVendorLibDir = "/data/asan/vendor/lib"; #endif static const char* const kAsanLibDirPrefix = "/data/asan"; static const char* const kDefaultLdPaths[] = { kSystemLibDir, kVendorLibDir, nullptr }; static const char* const kAsanDefaultLdPaths[] = { kAsanSystemLibDir, kSystemLibDir, kAsanVendorLibDir, kVendorLibDir, nullptr }; // Is ASAN enabled? static bool g_is_asan = false; static CFIShadowWriter g_cfi_shadow; CFIShadowWriter* get_cfi_shadow() { return &g_cfi_shadow; } static bool is_system_library(const std::string& realpath) { for (const auto& dir : g_default_namespace.get_default_library_paths()) { if (file_is_in_dir(realpath, dir)) { return true; } } return false; } // Checks if the file exists and not a directory. static bool file_exists(const char* path) { struct stat s; if (stat(path, &s) != 0) { return false; } return S_ISREG(s.st_mode); } static std::string resolve_soname(const std::string& name) { // We assume that soname equals to basename here // TODO(dimitry): consider having honest absolute-path -> soname resolution // note that since we might end up refusing to load this library because // it is not in shared libs list we need to get the soname without actually loading // the library. // // On the other hand there are several places where we already assume that // soname == basename in particular for any not-loaded library mentioned // in DT_NEEDED list. return basename(name.c_str()); } static bool maybe_accessible_via_namespace_links(android_namespace_t* ns, const char* name) { std::string soname = resolve_soname(name); for (auto& ns_link : ns->linked_namespaces()) { if (ns_link.is_accessible(soname.c_str())) { return true; } } return false; } // TODO(dimitry): The grey-list is a workaround for http://b/26394120 --- // gradually remove libraries from this list until it is gone. static bool is_greylisted(android_namespace_t* ns, const char* name, const soinfo* needed_by) { static const char* const kLibraryGreyList[] = { "libandroid_runtime.so", "libbinder.so", "libcrypto.so", "libcutils.so", "libexpat.so", "libgui.so", "libmedia.so", "libnativehelper.so", "libskia.so", "libssl.so", "libstagefright.so", "libsqlite.so", "libui.so", "libutils.so", "libvorbisidec.so", nullptr }; // If you're targeting N, you don't get the greylist. if (g_greylist_disabled || get_application_target_sdk_version() >= __ANDROID_API_N__) { return false; } // if the library needed by a system library - implicitly assume it // is greylisted unless it is in the list of shared libraries for one or // more linked namespaces if (needed_by != nullptr && is_system_library(needed_by->get_realpath())) { return !maybe_accessible_via_namespace_links(ns, name); } // if this is an absolute path - make sure it points to /system/lib(64) if (name[0] == '/' && dirname(name) == kSystemLibDir) { // and reduce the path to basename name = basename(name); } for (size_t i = 0; kLibraryGreyList[i] != nullptr; ++i) { if (strcmp(name, kLibraryGreyList[i]) == 0) { return true; } } return false; } // END OF WORKAROUND static std::vector g_ld_preload_names; static bool g_anonymous_namespace_initialized; #if STATS struct linker_stats_t { int count[kRelocMax]; }; static linker_stats_t linker_stats; void count_relocation(RelocationKind kind) { ++linker_stats.count[kind]; } #else void count_relocation(RelocationKind) { } #endif #if COUNT_PAGES uint32_t bitmask[4096]; #endif static void notify_gdb_of_load(soinfo* info) { if (info->is_linker() || info->is_main_executable()) { // gdb already knows about the linker and the main executable. return; } link_map* map = &(info->link_map_head); map->l_addr = info->load_bias; // link_map l_name field is not const. map->l_name = const_cast(info->get_realpath()); map->l_ld = info->dynamic; CHECK(map->l_name != nullptr); CHECK(map->l_name[0] != '\0'); notify_gdb_of_load(map); } static void notify_gdb_of_unload(soinfo* info) { notify_gdb_of_unload(&(info->link_map_head)); } LinkedListEntry* SoinfoListAllocator::alloc() { return g_soinfo_links_allocator.alloc(); } void SoinfoListAllocator::free(LinkedListEntry* entry) { g_soinfo_links_allocator.free(entry); } LinkedListEntry* NamespaceListAllocator::alloc() { return g_namespace_list_allocator.alloc(); } void NamespaceListAllocator::free(LinkedListEntry* entry) { g_namespace_list_allocator.free(entry); } soinfo* soinfo_alloc(android_namespace_t* ns, const char* name, struct stat* file_stat, off64_t file_offset, uint32_t rtld_flags) { if (strlen(name) >= PATH_MAX) { DL_ERR("library name \"%s\" too long", name); return nullptr; } TRACE("name %s: allocating soinfo for ns=%p", name, ns); soinfo* si = new (g_soinfo_allocator.alloc()) soinfo(ns, name, file_stat, file_offset, rtld_flags); solist_add_soinfo(si); si->generate_handle(); ns->add_soinfo(si); TRACE("name %s: allocated soinfo @ %p", name, si); return si; } static void soinfo_free(soinfo* si) { if (si == nullptr) { return; } if (si->base != 0 && si->size != 0) { if (!si->is_mapped_by_caller()) { munmap(reinterpret_cast(si->base), si->size); } else { // remap the region as PROT_NONE, MAP_ANONYMOUS | MAP_NORESERVE mmap(reinterpret_cast(si->base), si->size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); } } TRACE("name %s: freeing soinfo @ %p", si->get_realpath(), si); if (!solist_remove_soinfo(si)) { // TODO (dimitry): revisit this - for now preserving the logic // but it does not look right, abort if soinfo is not in the list instead? return; } // clear links to/from si si->remove_all_links(); si->~soinfo(); g_soinfo_allocator.free(si); } static void parse_path(const char* path, const char* delimiters, std::vector* resolved_paths) { std::vector paths; split_path(path, delimiters, &paths); resolve_paths(paths, resolved_paths); } static void parse_LD_LIBRARY_PATH(const char* path) { std::vector ld_libary_paths; parse_path(path, ":", &ld_libary_paths); g_default_namespace.set_ld_library_paths(std::move(ld_libary_paths)); } static bool realpath_fd(int fd, std::string* realpath) { std::vector buf(PATH_MAX), proc_self_fd(PATH_MAX); __libc_format_buffer(&proc_self_fd[0], proc_self_fd.size(), "/proc/self/fd/%d", fd); if (readlink(&proc_self_fd[0], &buf[0], buf.size()) == -1) { PRINT("readlink(\"%s\") failed: %s [fd=%d]", &proc_self_fd[0], strerror(errno), fd); return false; } *realpath = &buf[0]; return true; } #if defined(__arm__) // For a given PC, find the .so that it belongs to. // Returns the base address of the .ARM.exidx section // for that .so, and the number of 8-byte entries // in that section (via *pcount). // // Intended to be called by libc's __gnu_Unwind_Find_exidx(). _Unwind_Ptr do_dl_unwind_find_exidx(_Unwind_Ptr pc, int* pcount) { uintptr_t addr = reinterpret_cast(pc); for (soinfo* si = solist_get_head(); si != 0; si = si->next) { if ((addr >= si->base) && (addr < (si->base + si->size))) { *pcount = si->ARM_exidx_count; return reinterpret_cast<_Unwind_Ptr>(si->ARM_exidx); } } *pcount = 0; return nullptr; } #endif // Here, we only have to provide a callback to iterate across all the // loaded libraries. gcc_eh does the rest. int do_dl_iterate_phdr(int (*cb)(dl_phdr_info* info, size_t size, void* data), void* data) { int rv = 0; for (soinfo* si = solist_get_head(); si != nullptr; si = si->next) { dl_phdr_info dl_info; dl_info.dlpi_addr = si->link_map_head.l_addr; dl_info.dlpi_name = si->link_map_head.l_name; dl_info.dlpi_phdr = si->phdr; dl_info.dlpi_phnum = si->phnum; rv = cb(&dl_info, sizeof(dl_phdr_info), data); if (rv != 0) { break; } } return rv; } bool soinfo_do_lookup(soinfo* si_from, const char* name, const version_info* vi, soinfo** si_found_in, const soinfo_list_t& global_group, const soinfo_list_t& local_group, const ElfW(Sym)** symbol) { SymbolName symbol_name(name); const ElfW(Sym)* s = nullptr; /* "This element's presence in a shared object library alters the dynamic linker's * symbol resolution algorithm for references within the library. Instead of starting * a symbol search with the executable file, the dynamic linker starts from the shared * object itself. If the shared object fails to supply the referenced symbol, the * dynamic linker then searches the executable file and other shared objects as usual." * * http://www.sco.com/developers/gabi/2012-12-31/ch5.dynamic.html * * Note that this is unlikely since static linker avoids generating * relocations for -Bsymbolic linked dynamic executables. */ if (si_from->has_DT_SYMBOLIC) { DEBUG("%s: looking up %s in local scope (DT_SYMBOLIC)", si_from->get_realpath(), name); if (!si_from->find_symbol_by_name(symbol_name, vi, &s)) { return false; } if (s != nullptr) { *si_found_in = si_from; } } // 1. Look for it in global_group if (s == nullptr) { bool error = false; global_group.visit([&](soinfo* global_si) { DEBUG("%s: looking up %s in %s (from global group)", si_from->get_realpath(), name, global_si->get_realpath()); if (!global_si->find_symbol_by_name(symbol_name, vi, &s)) { error = true; return false; } if (s != nullptr) { *si_found_in = global_si; return false; } return true; }); if (error) { return false; } } // 2. Look for it in the local group if (s == nullptr) { bool error = false; local_group.visit([&](soinfo* local_si) { if (local_si == si_from && si_from->has_DT_SYMBOLIC) { // we already did this - skip return true; } DEBUG("%s: looking up %s in %s (from local group)", si_from->get_realpath(), name, local_si->get_realpath()); if (!local_si->find_symbol_by_name(symbol_name, vi, &s)) { error = true; return false; } if (s != nullptr) { *si_found_in = local_si; return false; } return true; }); if (error) { return false; } } if (s != nullptr) { TRACE_TYPE(LOOKUP, "si %s sym %s s->st_value = %p, " "found in %s, base = %p, load bias = %p", si_from->get_realpath(), name, reinterpret_cast(s->st_value), (*si_found_in)->get_realpath(), reinterpret_cast((*si_found_in)->base), reinterpret_cast((*si_found_in)->load_bias)); } *symbol = s; return true; } ProtectedDataGuard::ProtectedDataGuard() { if (ref_count_++ == 0) { protect_data(PROT_READ | PROT_WRITE); } if (ref_count_ == 0) { // overflow __libc_fatal("Too many nested calls to dlopen()"); } } ProtectedDataGuard::~ProtectedDataGuard() { if (--ref_count_ == 0) { protect_data(PROT_READ); } } void ProtectedDataGuard::protect_data(int protection) { g_soinfo_allocator.protect_all(protection); g_soinfo_links_allocator.protect_all(protection); g_namespace_allocator.protect_all(protection); g_namespace_list_allocator.protect_all(protection); } size_t ProtectedDataGuard::ref_count_ = 0; // Each size has it's own allocator. template class SizeBasedAllocator { public: static void* alloc() { return allocator_.alloc(); } static void free(void* ptr) { allocator_.free(ptr); } private: static LinkerBlockAllocator allocator_; }; template LinkerBlockAllocator SizeBasedAllocator::allocator_(size); template class TypeBasedAllocator { public: static T* alloc() { return reinterpret_cast(SizeBasedAllocator::alloc()); } static void free(T* ptr) { SizeBasedAllocator::free(ptr); } }; class LoadTask { public: struct deleter_t { void operator()(LoadTask* t) { t->~LoadTask(); TypeBasedAllocator::free(t); } }; static deleter_t deleter; static LoadTask* create(const char* name, soinfo* needed_by, std::unordered_map* readers_map) { LoadTask* ptr = TypeBasedAllocator::alloc(); return new (ptr) LoadTask(name, needed_by, readers_map); } const char* get_name() const { return name_; } soinfo* get_needed_by() const { return needed_by_; } soinfo* get_soinfo() const { return si_; } void set_soinfo(soinfo* si) { si_ = si; } off64_t get_file_offset() const { return file_offset_; } void set_file_offset(off64_t offset) { file_offset_ = offset; } int get_fd() const { return fd_; } void set_fd(int fd, bool assume_ownership) { fd_ = fd; close_fd_ = assume_ownership; } const android_dlextinfo* get_extinfo() const { return extinfo_; } void set_extinfo(const android_dlextinfo* extinfo) { extinfo_ = extinfo; } bool is_dt_needed() const { return is_dt_needed_; } void set_dt_needed(bool is_dt_needed) { is_dt_needed_ = is_dt_needed; } const ElfReader& get_elf_reader() const { CHECK(si_ != nullptr); return (*elf_readers_map_)[si_]; } ElfReader& get_elf_reader() { CHECK(si_ != nullptr); return (*elf_readers_map_)[si_]; } std::unordered_map* get_readers_map() { return elf_readers_map_; } bool read(const char* realpath, off64_t file_size) { ElfReader& elf_reader = get_elf_reader(); return elf_reader.Read(realpath, fd_, file_offset_, file_size); } bool load() { ElfReader& elf_reader = get_elf_reader(); if (!elf_reader.Load(extinfo_)) { return false; } si_->base = elf_reader.load_start(); si_->size = elf_reader.load_size(); si_->set_mapped_by_caller(elf_reader.is_mapped_by_caller()); si_->load_bias = elf_reader.load_bias(); si_->phnum = elf_reader.phdr_count(); si_->phdr = elf_reader.loaded_phdr(); return true; } private: LoadTask(const char* name, soinfo* needed_by, std::unordered_map* readers_map) : name_(name), needed_by_(needed_by), si_(nullptr), fd_(-1), close_fd_(false), file_offset_(0), elf_readers_map_(readers_map), is_dt_needed_(false) {} ~LoadTask() { if (fd_ != -1 && close_fd_) { close(fd_); } } const char* name_; soinfo* needed_by_; soinfo* si_; const android_dlextinfo* extinfo_; int fd_; bool close_fd_; off64_t file_offset_; std::unordered_map* elf_readers_map_; // TODO(dimitry): needed by workaround for http://b/26394120 (the grey-list) bool is_dt_needed_; // END OF WORKAROUND DISALLOW_IMPLICIT_CONSTRUCTORS(LoadTask); }; LoadTask::deleter_t LoadTask::deleter; template using linked_list_t = LinkedList>>; typedef linked_list_t SoinfoLinkedList; typedef linked_list_t StringLinkedList; typedef std::vector LoadTaskList; enum walk_action_result_t : uint32_t { kWalkStop = 0, kWalkContinue = 1, kWalkSkip = 2 }; // This function walks down the tree of soinfo dependencies // in breadth-first order and // * calls action(soinfo* si) for each node, and // * terminates walk if action returns kWalkStop // * skips children of the node if action // return kWalkSkip // // walk_dependencies_tree returns false if walk was terminated // by the action and true otherwise. template static bool walk_dependencies_tree(soinfo* root_soinfos[], size_t root_soinfos_size, F action) { SoinfoLinkedList visit_list; SoinfoLinkedList visited; for (size_t i = 0; i < root_soinfos_size; ++i) { visit_list.push_back(root_soinfos[i]); } soinfo* si; while ((si = visit_list.pop_front()) != nullptr) { if (visited.contains(si)) { continue; } walk_action_result_t result = action(si); if (result == kWalkStop) { return false; } visited.push_back(si); if (result != kWalkSkip) { si->get_children().for_each([&](soinfo* child) { visit_list.push_back(child); }); } } return true; } static const ElfW(Sym)* dlsym_handle_lookup(android_namespace_t* ns, soinfo* root, soinfo* skip_until, soinfo** found, SymbolName& symbol_name, const version_info* vi) { const ElfW(Sym)* result = nullptr; bool skip_lookup = skip_until != nullptr; walk_dependencies_tree(&root, 1, [&](soinfo* current_soinfo) { if (skip_lookup) { skip_lookup = current_soinfo != skip_until; return kWalkContinue; } if (!ns->is_accessible(current_soinfo)) { return kWalkSkip; } if (!current_soinfo->find_symbol_by_name(symbol_name, vi, &result)) { result = nullptr; return kWalkStop; } if (result != nullptr) { *found = current_soinfo; return kWalkStop; } return kWalkContinue; }); return result; } static const ElfW(Sym)* dlsym_linear_lookup(android_namespace_t* ns, const char* name, const version_info* vi, soinfo** found, soinfo* caller, void* handle); // This is used by dlsym(3). It performs symbol lookup only within the // specified soinfo object and its dependencies in breadth first order. static const ElfW(Sym)* dlsym_handle_lookup(soinfo* si, soinfo** found, const char* name, const version_info* vi) { // According to man dlopen(3) and posix docs in the case when si is handle // of the main executable we need to search not only in the executable and its // dependencies but also in all libraries loaded with RTLD_GLOBAL. // // Since RTLD_GLOBAL is always set for the main executable and all dt_needed shared // libraries and they are loaded in breath-first (correct) order we can just execute // dlsym(RTLD_DEFAULT, ...); instead of doing two stage lookup. if (si == solist_get_somain()) { return dlsym_linear_lookup(&g_default_namespace, name, vi, found, nullptr, RTLD_DEFAULT); } SymbolName symbol_name(name); // note that the namespace is not the namespace associated with caller_addr // we use ns associated with root si intentionally here. Using caller_ns // causes problems when user uses dlopen_ext to open a library in the separate // namespace and then calls dlsym() on the handle. return dlsym_handle_lookup(si->get_primary_namespace(), si, nullptr, found, symbol_name, vi); } /* This is used by dlsym(3) to performs a global symbol lookup. If the start value is null (for RTLD_DEFAULT), the search starts at the beginning of the global solist. Otherwise the search starts at the specified soinfo (for RTLD_NEXT). */ static const ElfW(Sym)* dlsym_linear_lookup(android_namespace_t* ns, const char* name, const version_info* vi, soinfo** found, soinfo* caller, void* handle) { SymbolName symbol_name(name); auto& soinfo_list = ns->soinfo_list(); auto start = soinfo_list.begin(); if (handle == RTLD_NEXT) { if (caller == nullptr) { return nullptr; } else { auto it = soinfo_list.find(caller); CHECK (it != soinfo_list.end()); start = ++it; } } const ElfW(Sym)* s = nullptr; for (auto it = start, end = soinfo_list.end(); it != end; ++it) { soinfo* si = *it; // Do not skip RTLD_LOCAL libraries in dlsym(RTLD_DEFAULT, ...) // if the library is opened by application with target api level < M. // See http://b/21565766 if ((si->get_rtld_flags() & RTLD_GLOBAL) == 0 && si->get_target_sdk_version() >= __ANDROID_API_M__) { continue; } if (!si->find_symbol_by_name(symbol_name, vi, &s)) { return nullptr; } if (s != nullptr) { *found = si; break; } } // If not found - use dlsym_handle_lookup for caller's // local_group unless it is part of the global group in which // case we already did it. if (s == nullptr && caller != nullptr && (caller->get_rtld_flags() & RTLD_GLOBAL) == 0) { soinfo* local_group_root = caller->get_local_group_root(); return dlsym_handle_lookup(local_group_root->get_primary_namespace(), local_group_root, (handle == RTLD_NEXT) ? caller : nullptr, found, symbol_name, vi); } if (s != nullptr) { TRACE_TYPE(LOOKUP, "%s s->st_value = %p, found->base = %p", name, reinterpret_cast(s->st_value), reinterpret_cast((*found)->base)); } return s; } soinfo* find_containing_library(const void* p) { ElfW(Addr) address = reinterpret_cast(p); for (soinfo* si = solist_get_head(); si != nullptr; si = si->next) { if (address >= si->base && address - si->base < si->size) { return si; } } return nullptr; } class ZipArchiveCache { public: ZipArchiveCache() {} ~ZipArchiveCache(); bool get_or_open(const char* zip_path, ZipArchiveHandle* handle); private: DISALLOW_COPY_AND_ASSIGN(ZipArchiveCache); std::unordered_map cache_; }; bool ZipArchiveCache::get_or_open(const char* zip_path, ZipArchiveHandle* handle) { std::string key(zip_path); auto it = cache_.find(key); if (it != cache_.end()) { *handle = it->second; return true; } int fd = TEMP_FAILURE_RETRY(open(zip_path, O_RDONLY | O_CLOEXEC)); if (fd == -1) { return false; } if (OpenArchiveFd(fd, "", handle) != 0) { // invalid zip-file (?) CloseArchive(handle); close(fd); return false; } cache_[key] = *handle; return true; } ZipArchiveCache::~ZipArchiveCache() { for (const auto& it : cache_) { CloseArchive(it.second); } } static int open_library_in_zipfile(ZipArchiveCache* zip_archive_cache, const char* const input_path, off64_t* file_offset, std::string* realpath) { std::string normalized_path; if (!normalize_path(input_path, &normalized_path)) { return -1; } const char* const path = normalized_path.c_str(); TRACE("Trying zip file open from path \"%s\" -> normalized \"%s\"", input_path, path); // Treat an '!/' separator inside a path as the separator between the name // of the zip file on disk and the subdirectory to search within it. // For example, if path is "foo.zip!/bar/bas/x.so", then we search for // "bar/bas/x.so" within "foo.zip". const char* const separator = strstr(path, kZipFileSeparator); if (separator == nullptr) { return -1; } char buf[512]; if (strlcpy(buf, path, sizeof(buf)) >= sizeof(buf)) { PRINT("Warning: ignoring very long library path: %s", path); return -1; } buf[separator - path] = '\0'; const char* zip_path = buf; const char* file_path = &buf[separator - path + 2]; int fd = TEMP_FAILURE_RETRY(open(zip_path, O_RDONLY | O_CLOEXEC)); if (fd == -1) { return -1; } ZipArchiveHandle handle; if (!zip_archive_cache->get_or_open(zip_path, &handle)) { // invalid zip-file (?) close(fd); return -1; } ZipEntry entry; if (FindEntry(handle, ZipString(file_path), &entry) != 0) { // Entry was not found. close(fd); return -1; } // Check if it is properly stored if (entry.method != kCompressStored || (entry.offset % PAGE_SIZE) != 0) { close(fd); return -1; } *file_offset = entry.offset; if (realpath_fd(fd, realpath)) { *realpath += separator; } else { PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.", normalized_path.c_str()); *realpath = normalized_path; } return fd; } static bool format_path(char* buf, size_t buf_size, const char* path, const char* name) { int n = __libc_format_buffer(buf, buf_size, "%s/%s", path, name); if (n < 0 || n >= static_cast(buf_size)) { PRINT("Warning: ignoring very long library path: %s/%s", path, name); return false; } return true; } static int open_library_on_paths(ZipArchiveCache* zip_archive_cache, const char* name, off64_t* file_offset, const std::vector& paths, std::string* realpath) { for (const auto& path : paths) { char buf[512]; if (!format_path(buf, sizeof(buf), path.c_str(), name)) { continue; } int fd = -1; if (strstr(buf, kZipFileSeparator) != nullptr) { fd = open_library_in_zipfile(zip_archive_cache, buf, file_offset, realpath); } if (fd == -1) { fd = TEMP_FAILURE_RETRY(open(buf, O_RDONLY | O_CLOEXEC)); if (fd != -1) { *file_offset = 0; if (!realpath_fd(fd, realpath)) { PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.", buf); *realpath = buf; } } } if (fd != -1) { return fd; } } return -1; } static int open_library(android_namespace_t* ns, ZipArchiveCache* zip_archive_cache, const char* name, soinfo *needed_by, off64_t* file_offset, std::string* realpath) { TRACE("[ opening %s ]", name); // If the name contains a slash, we should attempt to open it directly and not search the paths. if (strchr(name, '/') != nullptr) { int fd = -1; if (strstr(name, kZipFileSeparator) != nullptr) { fd = open_library_in_zipfile(zip_archive_cache, name, file_offset, realpath); } if (fd == -1) { fd = TEMP_FAILURE_RETRY(open(name, O_RDONLY | O_CLOEXEC)); if (fd != -1) { *file_offset = 0; if (!realpath_fd(fd, realpath)) { PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.", name); *realpath = name; } } } return fd; } // Otherwise we try LD_LIBRARY_PATH first, and fall back to the default library path int fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_ld_library_paths(), realpath); if (fd == -1 && needed_by != nullptr) { fd = open_library_on_paths(zip_archive_cache, name, file_offset, needed_by->get_dt_runpath(), realpath); // Check if the library is accessible if (fd != -1 && !ns->is_accessible(*realpath)) { fd = -1; } } if (fd == -1) { fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_default_library_paths(), realpath); } // TODO(dimitry): workaround for http://b/26394120 (the grey-list) if (fd == -1 && ns->is_greylist_enabled() && is_greylisted(ns, name, needed_by)) { // try searching for it on default_namespace default_library_path fd = open_library_on_paths(zip_archive_cache, name, file_offset, g_default_namespace.get_default_library_paths(), realpath); } // END OF WORKAROUND return fd; } const char* fix_dt_needed(const char* dt_needed, const char* sopath __unused) { #if !defined(__LP64__) // Work around incorrect DT_NEEDED entries for old apps: http://b/21364029 if (get_application_target_sdk_version() < __ANDROID_API_M__) { const char* bname = basename(dt_needed); if (bname != dt_needed) { DL_WARN("library \"%s\" has invalid DT_NEEDED entry \"%s\"", sopath, dt_needed); add_dlwarning(sopath, "invalid DT_NEEDED entry", dt_needed); } return bname; } #endif return dt_needed; } template static void for_each_dt_needed(const ElfReader& elf_reader, F action) { for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) { if (d->d_tag == DT_NEEDED) { action(fix_dt_needed(elf_reader.get_string(d->d_un.d_val), elf_reader.name())); } } } static bool find_loaded_library_by_inode(android_namespace_t* ns, const struct stat& file_stat, off64_t file_offset, bool search_linked_namespaces, soinfo** candidate) { auto predicate = [&](soinfo* si) { return si->get_st_dev() != 0 && si->get_st_ino() != 0 && si->get_st_dev() == file_stat.st_dev && si->get_st_ino() == file_stat.st_ino && si->get_file_offset() == file_offset; }; *candidate = ns->soinfo_list().find_if(predicate); if (*candidate == nullptr && search_linked_namespaces) { for (auto& link : ns->linked_namespaces()) { android_namespace_t* linked_ns = link.linked_namespace(); soinfo* si = linked_ns->soinfo_list().find_if(predicate); if (si != nullptr && link.is_accessible(si->get_soname())) { *candidate = si; return true; } } } return *candidate != nullptr; } static bool load_library(android_namespace_t* ns, LoadTask* task, LoadTaskList* load_tasks, int rtld_flags, const std::string& realpath, bool search_linked_namespaces) { off64_t file_offset = task->get_file_offset(); const char* name = task->get_name(); const android_dlextinfo* extinfo = task->get_extinfo(); if ((file_offset % PAGE_SIZE) != 0) { DL_ERR("file offset for the library \"%s\" is not page-aligned: %" PRId64, name, file_offset); return false; } if (file_offset < 0) { DL_ERR("file offset for the library \"%s\" is negative: %" PRId64, name, file_offset); return false; } struct stat file_stat; if (TEMP_FAILURE_RETRY(fstat(task->get_fd(), &file_stat)) != 0) { DL_ERR("unable to stat file for the library \"%s\": %s", name, strerror(errno)); return false; } if (file_offset >= file_stat.st_size) { DL_ERR("file offset for the library \"%s\" >= file size: %" PRId64 " >= %" PRId64, name, file_offset, file_stat.st_size); return false; } // Check for symlink and other situations where // file can have different names, unless ANDROID_DLEXT_FORCE_LOAD is set if (extinfo == nullptr || (extinfo->flags & ANDROID_DLEXT_FORCE_LOAD) == 0) { soinfo* si = nullptr; if (find_loaded_library_by_inode(ns, file_stat, file_offset, search_linked_namespaces, &si)) { TRACE("library \"%s\" is already loaded under different name/path \"%s\" - " "will return existing soinfo", name, si->get_realpath()); task->set_soinfo(si); return true; } } if ((rtld_flags & RTLD_NOLOAD) != 0) { DL_ERR("library \"%s\" wasn't loaded and RTLD_NOLOAD prevented it", name); return false; } struct statfs fs_stat; if (TEMP_FAILURE_RETRY(fstatfs(task->get_fd(), &fs_stat)) != 0) { DL_ERR("unable to fstatfs file for the library \"%s\": %s", name, strerror(errno)); return false; } // do not check accessibility using realpath if fd is located on tmpfs // this enables use of memfd_create() for apps if ((fs_stat.f_type != TMPFS_MAGIC) && (!ns->is_accessible(realpath))) { // TODO(dimitry): workaround for http://b/26394120 - the grey-list // TODO(dimitry) before O release: add a namespace attribute to have this enabled // only for classloader-namespaces const soinfo* needed_by = task->is_dt_needed() ? task->get_needed_by() : nullptr; if (is_greylisted(ns, name, needed_by)) { // print warning only if needed by non-system library if (needed_by == nullptr || !is_system_library(needed_by->get_realpath())) { const soinfo* needed_or_dlopened_by = task->get_needed_by(); const char* sopath = needed_or_dlopened_by == nullptr ? "(unknown)" : needed_or_dlopened_by->get_realpath(); DL_WARN("library \"%s\" (\"%s\") needed or dlopened by \"%s\" is not accessible for the namespace \"%s\"" " - the access is temporarily granted as a workaround for http://b/26394120, note that the access" " will be removed in future releases of Android.", name, realpath.c_str(), sopath, ns->get_name()); add_dlwarning(sopath, "unauthorized access to", name); } } else { // do not load libraries if they are not accessible for the specified namespace. const char* needed_or_dlopened_by = task->get_needed_by() == nullptr ? "(unknown)" : task->get_needed_by()->get_realpath(); DL_ERR("library \"%s\" needed or dlopened by \"%s\" is not accessible for the namespace \"%s\"", name, needed_or_dlopened_by, ns->get_name()); // do not print this if a library is in the list of shared libraries for linked namespaces if (!maybe_accessible_via_namespace_links(ns, name)) { PRINT("library \"%s\" (\"%s\") needed or dlopened by \"%s\" is not accessible for the" " namespace: [name=\"%s\", ld_library_paths=\"%s\", default_library_paths=\"%s\"," " permitted_paths=\"%s\"]", name, realpath.c_str(), needed_or_dlopened_by, ns->get_name(), android::base::Join(ns->get_ld_library_paths(), ':').c_str(), android::base::Join(ns->get_default_library_paths(), ':').c_str(), android::base::Join(ns->get_permitted_paths(), ':').c_str()); } return false; } } soinfo* si = soinfo_alloc(ns, realpath.c_str(), &file_stat, file_offset, rtld_flags); if (si == nullptr) { return false; } task->set_soinfo(si); // Read the ELF header and some of the segments. if (!task->read(realpath.c_str(), file_stat.st_size)) { soinfo_free(si); task->set_soinfo(nullptr); return false; } // find and set DT_RUNPATH and dt_soname // Note that these field values are temporary and are // going to be overwritten on soinfo::prelink_image // with values from PT_LOAD segments. const ElfReader& elf_reader = task->get_elf_reader(); for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) { if (d->d_tag == DT_RUNPATH) { si->set_dt_runpath(elf_reader.get_string(d->d_un.d_val)); } if (d->d_tag == DT_SONAME) { si->set_soname(elf_reader.get_string(d->d_un.d_val)); } } for_each_dt_needed(task->get_elf_reader(), [&](const char* name) { load_tasks->push_back(LoadTask::create(name, si, task->get_readers_map())); }); return true; } static bool load_library(android_namespace_t* ns, LoadTask* task, ZipArchiveCache* zip_archive_cache, LoadTaskList* load_tasks, int rtld_flags, bool search_linked_namespaces) { const char* name = task->get_name(); soinfo* needed_by = task->get_needed_by(); const android_dlextinfo* extinfo = task->get_extinfo(); off64_t file_offset; std::string realpath; if (extinfo != nullptr && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) != 0) { file_offset = 0; if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) { file_offset = extinfo->library_fd_offset; } if (!realpath_fd(extinfo->library_fd, &realpath)) { PRINT("warning: unable to get realpath for the library \"%s\" by extinfo->library_fd. " "Will use given name.", name); realpath = name; } task->set_fd(extinfo->library_fd, false); task->set_file_offset(file_offset); return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces); } // Open the file. int fd = open_library(ns, zip_archive_cache, name, needed_by, &file_offset, &realpath); if (fd == -1) { DL_ERR("library \"%s\" not found", name); return false; } task->set_fd(fd, true); task->set_file_offset(file_offset); return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces); } static bool find_loaded_library_by_soname(android_namespace_t* ns, const char* name, soinfo** candidate) { return !ns->soinfo_list().visit([&](soinfo* si) { const char* soname = si->get_soname(); if (soname != nullptr && (strcmp(name, soname) == 0)) { *candidate = si; return false; } return true; }); } // Returns true if library was found and false otherwise static bool find_loaded_library_by_soname(android_namespace_t* ns, const char* name, bool search_linked_namespaces, soinfo** candidate) { *candidate = nullptr; // Ignore filename with path. if (strchr(name, '/') != nullptr) { return false; } bool found = find_loaded_library_by_soname(ns, name, candidate); if (!found && search_linked_namespaces) { // if a library was not found - look into linked namespaces for (auto& link : ns->linked_namespaces()) { if (!link.is_accessible(name)) { continue; } android_namespace_t* linked_ns = link.linked_namespace(); if (find_loaded_library_by_soname(linked_ns, name, candidate)) { return true; } } } return found; } static bool find_library_in_linked_namespace(const android_namespace_link_t& namespace_link, LoadTask* task, int rtld_flags) { android_namespace_t* ns = namespace_link.linked_namespace(); soinfo* candidate; bool loaded = false; std::string soname; if (find_loaded_library_by_soname(ns, task->get_name(), false, &candidate)) { loaded = true; soname = candidate->get_soname(); } else { soname = resolve_soname(task->get_name()); } if (!namespace_link.is_accessible(soname.c_str())) { // the library is not accessible via namespace_link return false; } // if library is already loaded - return it if (loaded) { task->set_soinfo(candidate); return true; } // try to load the library - once namespace boundary is crossed // we need to load a library within separate load_group // to avoid using symbols from foreign namespace while. // // All symbols during relocation should be resolved within a // namespace to preserve library locality to a namespace. const char* name = task->get_name(); if (find_libraries(ns, task->get_needed_by(), &name, 1, &candidate, nullptr /* ld_preloads */, 0 /* ld_preload_count*/, rtld_flags, nullptr /* extinfo*/, false /* add_as_children */, false /* search_linked_namespaces */)) { task->set_soinfo(candidate); return true; } return false; } static bool find_library_internal(android_namespace_t* ns, LoadTask* task, ZipArchiveCache* zip_archive_cache, LoadTaskList* load_tasks, int rtld_flags, bool search_linked_namespaces) { soinfo* candidate; if (find_loaded_library_by_soname(ns, task->get_name(), search_linked_namespaces, &candidate)) { task->set_soinfo(candidate); return true; } // Library might still be loaded, the accurate detection // of this fact is done by load_library. TRACE("[ \"%s\" find_loaded_library_by_soname failed (*candidate=%s@%p). Trying harder...]", task->get_name(), candidate == nullptr ? "n/a" : candidate->get_realpath(), candidate); if (load_library(ns, task, zip_archive_cache, load_tasks, rtld_flags, search_linked_namespaces)) { return true; } if (search_linked_namespaces) { // if a library was not found - look into linked namespaces for (auto& linked_namespace : ns->linked_namespaces()) { if (find_library_in_linked_namespace(linked_namespace, task, rtld_flags)) { return true; } } } return false; } static void soinfo_unload(soinfo* si); static void soinfo_unload(soinfo* soinfos[], size_t count); // TODO: this is slightly unusual way to construct // the global group for relocation. Not every RTLD_GLOBAL // library is included in this group for backwards-compatibility // reasons. // // This group consists of the main executable, LD_PRELOADs // and libraries with the DF_1_GLOBAL flag set. static soinfo_list_t make_global_group(android_namespace_t* ns) { soinfo_list_t global_group; ns->soinfo_list().for_each([&](soinfo* si) { if ((si->get_dt_flags_1() & DF_1_GLOBAL) != 0) { global_group.push_back(si); } }); return global_group; } // This function provides a list of libraries to be shared // by the namespace. For the default namespace this is the global // group (see make_global_group). For all others this is a group // of RTLD_GLOBAL libraries (which includes the global group from // the default namespace). static soinfo_list_t get_shared_group(android_namespace_t* ns) { if (ns == &g_default_namespace) { return make_global_group(ns); } soinfo_list_t shared_group; ns->soinfo_list().for_each([&](soinfo* si) { if ((si->get_rtld_flags() & RTLD_GLOBAL) != 0) { shared_group.push_back(si); } }); return shared_group; } static void shuffle(std::vector* v) { for (size_t i = 0, size = v->size(); i < size; ++i) { size_t n = size - i; size_t r = arc4random_uniform(n); std::swap((*v)[n-1], (*v)[r]); } } // add_as_children - add first-level loaded libraries (i.e. library_names[], but // not their transitive dependencies) as children of the start_with library. // This is false when find_libraries is called for dlopen(), when newly loaded // libraries must form a disjoint tree. bool find_libraries(android_namespace_t* ns, soinfo* start_with, const char* const library_names[], size_t library_names_count, soinfo* soinfos[], std::vector* ld_preloads, size_t ld_preloads_count, int rtld_flags, const android_dlextinfo* extinfo, bool add_as_children, bool search_linked_namespaces) { // Step 0: prepare. LoadTaskList load_tasks; std::unordered_map readers_map; for (size_t i = 0; i < library_names_count; ++i) { const char* name = library_names[i]; load_tasks.push_back(LoadTask::create(name, start_with, &readers_map)); } // Construct global_group. soinfo_list_t global_group = make_global_group(ns); // If soinfos array is null allocate one on stack. // The array is needed in case of failure; for example // when library_names[] = {libone.so, libtwo.so} and libone.so // is loaded correctly but libtwo.so failed for some reason. // In this case libone.so should be unloaded on return. // See also implementation of failure_guard below. if (soinfos == nullptr) { size_t soinfos_size = sizeof(soinfo*)*library_names_count; soinfos = reinterpret_cast(alloca(soinfos_size)); memset(soinfos, 0, soinfos_size); } // list of libraries to link - see step 2. size_t soinfos_count = 0; auto scope_guard = make_scope_guard([&]() { for (LoadTask* t : load_tasks) { LoadTask::deleter(t); } }); auto failure_guard = make_scope_guard([&]() { // Housekeeping soinfo_unload(soinfos, soinfos_count); }); ZipArchiveCache zip_archive_cache; // Step 1: expand the list of load_tasks to include // all DT_NEEDED libraries (do not load them just yet) for (size_t i = 0; iget_needed_by(); bool is_dt_needed = needed_by != nullptr && (needed_by != start_with || add_as_children); task->set_extinfo(is_dt_needed ? nullptr : extinfo); task->set_dt_needed(is_dt_needed); if (!find_library_internal(ns, task, &zip_archive_cache, &load_tasks, rtld_flags, search_linked_namespaces || is_dt_needed)) { return false; } soinfo* si = task->get_soinfo(); if (is_dt_needed) { needed_by->add_child(si); if (si->is_linked()) { si->increment_ref_count(); } } // When ld_preloads is not null, the first // ld_preloads_count libs are in fact ld_preloads. if (ld_preloads != nullptr && soinfos_count < ld_preloads_count) { ld_preloads->push_back(si); } if (soinfos_count < library_names_count) { soinfos[soinfos_count++] = si; } } // Step 2: Load libraries in random order (see b/24047022) LoadTaskList load_list; for (auto&& task : load_tasks) { soinfo* si = task->get_soinfo(); auto pred = [&](const LoadTask* t) { return t->get_soinfo() == si; }; if (!si->is_linked() && std::find_if(load_list.begin(), load_list.end(), pred) == load_list.end() ) { load_list.push_back(task); } } shuffle(&load_list); for (auto&& task : load_list) { if (!task->load()) { return false; } } // Step 3: pre-link all DT_NEEDED libraries in breadth first order. for (auto&& task : load_tasks) { soinfo* si = task->get_soinfo(); if (!si->is_linked() && !si->prelink_image()) { return false; } } // Step 4: Add LD_PRELOADed libraries to the global group for // future runs. There is no need to explicitly add them to // the global group for this run because they are going to // appear in the local group in the correct order. if (ld_preloads != nullptr) { for (auto&& si : *ld_preloads) { si->set_dt_flags_1(si->get_dt_flags_1() | DF_1_GLOBAL); } } // Step 5: link libraries. soinfo_list_t local_group; walk_dependencies_tree( (start_with != nullptr && add_as_children) ? &start_with : soinfos, (start_with != nullptr && add_as_children) ? 1 : soinfos_count, [&] (soinfo* si) { if (ns->is_accessible(si)) { local_group.push_back(si); return kWalkContinue; } else { return kWalkSkip; } }); bool linked = local_group.visit([&](soinfo* si) { if (!si->is_linked()) { if (!si->link_image(global_group, local_group, extinfo) || !get_cfi_shadow()->AfterLoad(si, solist_get_head())) { return false; } } return true; }); if (linked) { local_group.for_each([](soinfo* si) { if (!si->is_linked()) { si->set_linked(); } }); failure_guard.disable(); } return linked; } static soinfo* find_library(android_namespace_t* ns, const char* name, int rtld_flags, const android_dlextinfo* extinfo, soinfo* needed_by) { soinfo* si; if (name == nullptr) { si = solist_get_somain(); } else if (!find_libraries(ns, needed_by, &name, 1, &si, nullptr, 0, rtld_flags, extinfo, false /* add_as_children */, true /* search_linked_namespaces */)) { return nullptr; } si->increment_ref_count(); return si; } static void soinfo_unload(soinfo* root) { if (root->is_linked()) { root = root->get_local_group_root(); } ScopedTrace trace((std::string("unload ") + root->get_realpath()).c_str()); if (!root->can_unload()) { TRACE("not unloading \"%s\" - the binary is flagged with NODELETE", root->get_realpath()); return; } soinfo_unload(&root, 1); } static void soinfo_unload(soinfo* soinfos[], size_t count) { // Note that the library can be loaded but not linked; // in which case there is no root but we still need // to walk the tree and unload soinfos involved. // // This happens on unsuccessful dlopen, when one of // the DT_NEEDED libraries could not be linked/found. if (count == 0) { return; } soinfo_list_t unload_list; for (size_t i = 0; i < count; ++i) { soinfo* si = soinfos[i]; if (si->can_unload()) { size_t ref_count = si->is_linked() ? si->decrement_ref_count() : 0; if (ref_count == 0) { unload_list.push_back(si); } else { TRACE("not unloading '%s' group, decrementing ref_count to %zd", si->get_realpath(), ref_count); } } else { TRACE("not unloading '%s' - the binary is flagged with NODELETE", si->get_realpath()); return; } } // This is used to identify soinfos outside of the load-group // note that we cannot have > 1 in the array and have any of them // linked. This is why we can safely use the first one. soinfo* root = soinfos[0]; soinfo_list_t local_unload_list; soinfo_list_t external_unload_list; soinfo* si = nullptr; while ((si = unload_list.pop_front()) != nullptr) { if (local_unload_list.contains(si)) { continue; } local_unload_list.push_back(si); if (si->has_min_version(0)) { soinfo* child = nullptr; while ((child = si->get_children().pop_front()) != nullptr) { TRACE("%s@%p needs to unload %s@%p", si->get_realpath(), si, child->get_realpath(), child); child->get_parents().remove(si); if (local_unload_list.contains(child)) { continue; } else if (child->is_linked() && child->get_local_group_root() != root) { external_unload_list.push_back(child); } else if (child->get_parents().empty()) { unload_list.push_back(child); } } } else { #if !defined(__work_around_b_24465209__) __libc_fatal("soinfo for \"%s\"@%p has no version", si->get_realpath(), si); #else PRINT("warning: soinfo for \"%s\"@%p has no version", si->get_realpath(), si); for_each_dt_needed(si, [&] (const char* library_name) { TRACE("deprecated (old format of soinfo): %s needs to unload %s", si->get_realpath(), library_name); soinfo* needed = find_library(si->get_primary_namespace(), library_name, RTLD_NOLOAD, nullptr, nullptr); if (needed != nullptr) { // Not found: for example if symlink was deleted between dlopen and dlclose // Since we cannot really handle errors at this point - print and continue. PRINT("warning: couldn't find %s needed by %s on unload.", library_name, si->get_realpath()); return; } else if (local_unload_list.contains(needed)) { // already visited return; } else if (needed->is_linked() && needed->get_local_group_root() != root) { // external group external_unload_list.push_back(needed); } else { // local group unload_list.push_front(needed); } }); #endif } } local_unload_list.for_each([](soinfo* si) { si->call_destructors(); }); while ((si = local_unload_list.pop_front()) != nullptr) { notify_gdb_of_unload(si); get_cfi_shadow()->BeforeUnload(si); soinfo_free(si); } while ((si = external_unload_list.pop_front()) != nullptr) { soinfo_unload(si); } } static std::string symbol_display_name(const char* sym_name, const char* sym_ver) { if (sym_ver == nullptr) { return sym_name; } return std::string(sym_name) + ", version " + sym_ver; } static android_namespace_t* get_caller_namespace(soinfo* caller) { return caller != nullptr ? caller->get_primary_namespace() : g_anonymous_namespace; } void do_android_get_LD_LIBRARY_PATH(char* buffer, size_t buffer_size) { // Use basic string manipulation calls to avoid snprintf. // snprintf indirectly calls pthread_getspecific to get the size of a buffer. // When debug malloc is enabled, this call returns 0. This in turn causes // snprintf to do nothing, which causes libraries to fail to load. // See b/17302493 for further details. // Once the above bug is fixed, this code can be modified to use // snprintf again. const auto& default_ld_paths = g_default_namespace.get_default_library_paths(); size_t required_size = 0; for (const auto& path : default_ld_paths) { required_size += path.size() + 1; } if (buffer_size < required_size) { __libc_fatal("android_get_LD_LIBRARY_PATH failed, buffer too small: " "buffer len %zu, required len %zu", buffer_size, required_size); } char* end = buffer; for (size_t i = 0; i < default_ld_paths.size(); ++i) { if (i > 0) *end++ = ':'; end = stpcpy(end, default_ld_paths[i].c_str()); } } void do_android_update_LD_LIBRARY_PATH(const char* ld_library_path) { parse_LD_LIBRARY_PATH(ld_library_path); } static std::string android_dlextinfo_to_string(const android_dlextinfo* info) { if (info == nullptr) { return "(null)"; } return android::base::StringPrintf("[flags=0x%" PRIx64 "," " reserved_addr=%p," " reserved_size=0x%zx," " relro_fd=%d," " library_fd=%d," " library_fd_offset=0x%" PRIx64 "," " library_namespace=%s@%p]", info->flags, info->reserved_addr, info->reserved_size, info->relro_fd, info->library_fd, info->library_fd_offset, (info->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0 ? (info->library_namespace != nullptr ? info->library_namespace->get_name() : "(null)") : "(n/a)", (info->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0 ? info->library_namespace : nullptr); } void* do_dlopen(const char* name, int flags, const android_dlextinfo* extinfo, const void* caller_addr) { std::string trace_prefix = std::string("dlopen: ") + (name == nullptr ? "(nullptr)" : name); ScopedTrace trace(trace_prefix.c_str()); ScopedTrace loading_trace((trace_prefix + " - loading and linking").c_str()); soinfo* const caller = find_containing_library(caller_addr); android_namespace_t* ns = get_caller_namespace(caller); LD_LOG(kLogDlopen, "dlopen(name=\"%s\", flags=0x%x, extinfo=%s, caller=\"%s\", caller_ns=%s@%p) ...", name, flags, android_dlextinfo_to_string(extinfo).c_str(), caller == nullptr ? "(null)" : caller->get_realpath(), ns == nullptr ? "(null)" : ns->get_name(), ns); auto failure_guard = make_scope_guard([&]() { LD_LOG(kLogDlopen, "... dlopen failed: %s", linker_get_error_buffer()); }); if ((flags & ~(RTLD_NOW|RTLD_LAZY|RTLD_LOCAL|RTLD_GLOBAL|RTLD_NODELETE|RTLD_NOLOAD)) != 0) { DL_ERR("invalid flags to dlopen: %x", flags); return nullptr; } if (extinfo != nullptr) { if ((extinfo->flags & ~(ANDROID_DLEXT_VALID_FLAG_BITS)) != 0) { DL_ERR("invalid extended flags to android_dlopen_ext: 0x%" PRIx64, extinfo->flags); return nullptr; } if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) == 0 && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) { DL_ERR("invalid extended flag combination (ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET without " "ANDROID_DLEXT_USE_LIBRARY_FD): 0x%" PRIx64, extinfo->flags); return nullptr; } if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0 && (extinfo->flags & (ANDROID_DLEXT_RESERVED_ADDRESS | ANDROID_DLEXT_RESERVED_ADDRESS_HINT)) != 0) { DL_ERR("invalid extended flag combination: ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS is not " "compatible with ANDROID_DLEXT_RESERVED_ADDRESS/ANDROID_DLEXT_RESERVED_ADDRESS_HINT"); return nullptr; } if ((extinfo->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0) { if (extinfo->library_namespace == nullptr) { DL_ERR("ANDROID_DLEXT_USE_NAMESPACE is set but extinfo->library_namespace is null"); return nullptr; } ns = extinfo->library_namespace; } } std::string asan_name_holder; const char* translated_name = name; if (g_is_asan && translated_name != nullptr && translated_name[0] == '/') { char translated_path[PATH_MAX]; if (realpath(translated_name, translated_path) != nullptr) { asan_name_holder = std::string(kAsanLibDirPrefix) + translated_path; if (file_exists(asan_name_holder.c_str())) { translated_name = asan_name_holder.c_str(); PRINT("linker_asan dlopen translating \"%s\" -> \"%s\"", name, translated_name); } } } ProtectedDataGuard guard; soinfo* si = find_library(ns, translated_name, flags, extinfo, caller); loading_trace.End(); if (si != nullptr) { void* handle = si->to_handle(); LD_LOG(kLogDlopen, "... dlopen calling constructors: realpath=\"%s\", soname=\"%s\", handle=%p", si->get_realpath(), si->get_soname(), handle); si->call_constructors(); failure_guard.disable(); LD_LOG(kLogDlopen, "... dlopen successful: realpath=\"%s\", soname=\"%s\", handle=%p", si->get_realpath(), si->get_soname(), handle); return handle; } return nullptr; } int do_dladdr(const void* addr, Dl_info* info) { // Determine if this address can be found in any library currently mapped. soinfo* si = find_containing_library(addr); if (si == nullptr) { return 0; } memset(info, 0, sizeof(Dl_info)); info->dli_fname = si->get_realpath(); // Address at which the shared object is loaded. info->dli_fbase = reinterpret_cast(si->base); // Determine if any symbol in the library contains the specified address. ElfW(Sym)* sym = si->find_symbol_by_address(addr); if (sym != nullptr) { info->dli_sname = si->get_string(sym->st_name); info->dli_saddr = reinterpret_cast(si->resolve_symbol_address(sym)); } return 1; } static soinfo* soinfo_from_handle(void* handle) { if ((reinterpret_cast(handle) & 1) != 0) { auto it = g_soinfo_handles_map.find(reinterpret_cast(handle)); if (it == g_soinfo_handles_map.end()) { return nullptr; } else { return it->second; } } return static_cast(handle); } bool do_dlsym(void* handle, const char* sym_name, const char* sym_ver, const void* caller_addr, void** symbol) { ScopedTrace trace("dlsym"); #if !defined(__LP64__) if (handle == nullptr) { DL_ERR("dlsym failed: library handle is null"); return false; } #endif soinfo* found = nullptr; const ElfW(Sym)* sym = nullptr; soinfo* caller = find_containing_library(caller_addr); android_namespace_t* ns = get_caller_namespace(caller); soinfo* si = nullptr; if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) { si = soinfo_from_handle(handle); } LD_LOG(kLogDlsym, "dlsym(handle=%p(\"%s\"), sym_name=\"%s\", sym_ver=\"%s\", caller=\"%s\", caller_ns=%s@%p) ...", handle, si != nullptr ? si->get_realpath() : "n/a", sym_name, sym_ver, caller == nullptr ? "(null)" : caller->get_realpath(), ns == nullptr ? "(null)" : ns->get_name(), ns); auto failure_guard = make_scope_guard([&]() { LD_LOG(kLogDlsym, "... dlsym failed: %s", linker_get_error_buffer()); }); if (sym_name == nullptr) { DL_ERR("dlsym failed: symbol name is null"); return false; } version_info vi_instance; version_info* vi = nullptr; if (sym_ver != nullptr) { vi_instance.name = sym_ver; vi_instance.elf_hash = calculate_elf_hash(sym_ver); vi = &vi_instance; } if (handle == RTLD_DEFAULT || handle == RTLD_NEXT) { sym = dlsym_linear_lookup(ns, sym_name, vi, &found, caller, handle); } else { if (si == nullptr) { DL_ERR("dlsym failed: invalid handle: %p", handle); return false; } sym = dlsym_handle_lookup(si, &found, sym_name, vi); } if (sym != nullptr) { uint32_t bind = ELF_ST_BIND(sym->st_info); if ((bind == STB_GLOBAL || bind == STB_WEAK) && sym->st_shndx != 0) { *symbol = reinterpret_cast(found->resolve_symbol_address(sym)); failure_guard.disable(); LD_LOG(kLogDlsym, "... dlsym successful: sym_name=\"%s\", sym_ver=\"%s\", found in=\"%s\", address=%p", sym_name, sym_ver, found->get_soname(), *symbol); return true; } DL_ERR("symbol \"%s\" found but not global", symbol_display_name(sym_name, sym_ver).c_str()); return false; } DL_ERR("undefined symbol: %s", symbol_display_name(sym_name, sym_ver).c_str()); return false; } int do_dlclose(void* handle) { ScopedTrace trace("dlclose"); ProtectedDataGuard guard; soinfo* si = soinfo_from_handle(handle); if (si == nullptr) { DL_ERR("invalid handle: %p", handle); return -1; } soinfo_unload(si); return 0; } bool init_anonymous_namespace(const char* shared_lib_sonames, const char* library_search_path) { if (g_anonymous_namespace_initialized) { DL_ERR("anonymous namespace has already been initialized."); return false; } ProtectedDataGuard guard; // create anonymous namespace // When the caller is nullptr - create_namespace will take global group // from the anonymous namespace, which is fine because anonymous namespace // is still pointing to the default one. android_namespace_t* anon_ns = create_namespace(nullptr, "(anonymous)", nullptr, library_search_path, ANDROID_NAMESPACE_TYPE_ISOLATED, nullptr, &g_default_namespace); if (anon_ns == nullptr) { return false; } if (!link_namespaces(anon_ns, &g_default_namespace, shared_lib_sonames)) { return false; } g_anonymous_namespace = anon_ns; g_anonymous_namespace_initialized = true; return true; } static void add_soinfos_to_namespace(const soinfo_list_t& soinfos, android_namespace_t* ns) { ns->add_soinfos(soinfos); for (auto si : soinfos) { si->add_secondary_namespace(ns); } } android_namespace_t* create_namespace(const void* caller_addr, const char* name, const char* ld_library_path, const char* default_library_path, uint64_t type, const char* permitted_when_isolated_path, android_namespace_t* parent_namespace) { if (parent_namespace == nullptr) { // if parent_namespace is nullptr -> set it to the caller namespace soinfo* caller_soinfo = find_containing_library(caller_addr); parent_namespace = caller_soinfo != nullptr ? caller_soinfo->get_primary_namespace() : g_anonymous_namespace; } ProtectedDataGuard guard; std::vector ld_library_paths; std::vector default_library_paths; std::vector permitted_paths; parse_path(ld_library_path, ":", &ld_library_paths); parse_path(default_library_path, ":", &default_library_paths); parse_path(permitted_when_isolated_path, ":", &permitted_paths); android_namespace_t* ns = new (g_namespace_allocator.alloc()) android_namespace_t(); ns->set_name(name); ns->set_isolated((type & ANDROID_NAMESPACE_TYPE_ISOLATED) != 0); ns->set_greylist_enabled((type & ANDROID_NAMESPACE_TYPE_GREYLIST_ENABLED) != 0); if ((type & ANDROID_NAMESPACE_TYPE_SHARED) != 0) { // append parent namespace paths. std::copy(parent_namespace->get_ld_library_paths().begin(), parent_namespace->get_ld_library_paths().end(), back_inserter(ld_library_paths)); std::copy(parent_namespace->get_default_library_paths().begin(), parent_namespace->get_default_library_paths().end(), back_inserter(default_library_paths)); std::copy(parent_namespace->get_permitted_paths().begin(), parent_namespace->get_permitted_paths().end(), back_inserter(permitted_paths)); // If shared - clone the parent namespace add_soinfos_to_namespace(parent_namespace->soinfo_list(), ns); // and copy parent namespace links for (auto& link : parent_namespace->linked_namespaces()) { ns->add_linked_namespace(link.linked_namespace(), link.shared_lib_sonames()); } } else { // If not shared - copy only the shared group add_soinfos_to_namespace(get_shared_group(parent_namespace), ns); } ns->set_ld_library_paths(std::move(ld_library_paths)); ns->set_default_library_paths(std::move(default_library_paths)); ns->set_permitted_paths(std::move(permitted_paths)); return ns; } bool link_namespaces(android_namespace_t* namespace_from, android_namespace_t* namespace_to, const char* shared_lib_sonames) { if (namespace_to == nullptr) { namespace_to = &g_default_namespace; } if (namespace_from == nullptr) { DL_ERR("error linking namespaces: namespace_from is null."); return false; } if (shared_lib_sonames == nullptr || shared_lib_sonames[0] == '\0') { DL_ERR("error linking namespaces \"%s\"->\"%s\": the list of shared libraries is empty.", namespace_from->get_name(), namespace_to->get_name()); return false; } auto sonames = android::base::Split(shared_lib_sonames, ":"); std::unordered_set sonames_set(sonames.begin(), sonames.end()); ProtectedDataGuard guard; namespace_from->add_linked_namespace(namespace_to, sonames_set); return true; } ElfW(Addr) call_ifunc_resolver(ElfW(Addr) resolver_addr) { typedef ElfW(Addr) (*ifunc_resolver_t)(void); ifunc_resolver_t ifunc_resolver = reinterpret_cast(resolver_addr); ElfW(Addr) ifunc_addr = ifunc_resolver(); TRACE_TYPE(RELO, "Called ifunc_resolver@%p. The result is %p", ifunc_resolver, reinterpret_cast(ifunc_addr)); return ifunc_addr; } const version_info* VersionTracker::get_version_info(ElfW(Versym) source_symver) const { if (source_symver < 2 || source_symver >= version_infos.size() || version_infos[source_symver].name == nullptr) { return nullptr; } return &version_infos[source_symver]; } void VersionTracker::add_version_info(size_t source_index, ElfW(Word) elf_hash, const char* ver_name, const soinfo* target_si) { if (source_index >= version_infos.size()) { version_infos.resize(source_index+1); } version_infos[source_index].elf_hash = elf_hash; version_infos[source_index].name = ver_name; version_infos[source_index].target_si = target_si; } bool VersionTracker::init_verneed(const soinfo* si_from) { uintptr_t verneed_ptr = si_from->get_verneed_ptr(); if (verneed_ptr == 0) { return true; } size_t verneed_cnt = si_from->get_verneed_cnt(); for (size_t i = 0, offset = 0; i(verneed_ptr + offset); size_t vernaux_offset = offset + verneed->vn_aux; offset += verneed->vn_next; if (verneed->vn_version != 1) { DL_ERR("unsupported verneed[%zd] vn_version: %d (expected 1)", i, verneed->vn_version); return false; } const char* target_soname = si_from->get_string(verneed->vn_file); // find it in dependencies soinfo* target_si = si_from->get_children().find_if([&](const soinfo* si) { return si->get_soname() != nullptr && strcmp(si->get_soname(), target_soname) == 0; }); if (target_si == nullptr) { DL_ERR("cannot find \"%s\" from verneed[%zd] in DT_NEEDED list for \"%s\"", target_soname, i, si_from->get_realpath()); return false; } for (size_t j = 0; jvn_cnt; ++j) { const ElfW(Vernaux)* vernaux = reinterpret_cast(verneed_ptr + vernaux_offset); vernaux_offset += vernaux->vna_next; const ElfW(Word) elf_hash = vernaux->vna_hash; const char* ver_name = si_from->get_string(vernaux->vna_name); ElfW(Half) source_index = vernaux->vna_other; add_version_info(source_index, elf_hash, ver_name, target_si); } } return true; } template static bool for_each_verdef(const soinfo* si, F functor) { if (!si->has_min_version(2)) { return true; } uintptr_t verdef_ptr = si->get_verdef_ptr(); if (verdef_ptr == 0) { return true; } size_t offset = 0; size_t verdef_cnt = si->get_verdef_cnt(); for (size_t i = 0; i(verdef_ptr + offset); size_t verdaux_offset = offset + verdef->vd_aux; offset += verdef->vd_next; if (verdef->vd_version != 1) { DL_ERR("unsupported verdef[%zd] vd_version: %d (expected 1) library: %s", i, verdef->vd_version, si->get_realpath()); return false; } if ((verdef->vd_flags & VER_FLG_BASE) != 0) { // "this is the version of the file itself. It must not be used for // matching a symbol. It can be used to match references." // // http://www.akkadia.org/drepper/symbol-versioning continue; } if (verdef->vd_cnt == 0) { DL_ERR("invalid verdef[%zd] vd_cnt == 0 (version without a name)", i); return false; } const ElfW(Verdaux)* verdaux = reinterpret_cast(verdef_ptr + verdaux_offset); if (functor(i, verdef, verdaux) == true) { break; } } return true; } bool find_verdef_version_index(const soinfo* si, const version_info* vi, ElfW(Versym)* versym) { if (vi == nullptr) { *versym = kVersymNotNeeded; return true; } *versym = kVersymGlobal; return for_each_verdef(si, [&](size_t, const ElfW(Verdef)* verdef, const ElfW(Verdaux)* verdaux) { if (verdef->vd_hash == vi->elf_hash && strcmp(vi->name, si->get_string(verdaux->vda_name)) == 0) { *versym = verdef->vd_ndx; return true; } return false; } ); } bool VersionTracker::init_verdef(const soinfo* si_from) { return for_each_verdef(si_from, [&](size_t, const ElfW(Verdef)* verdef, const ElfW(Verdaux)* verdaux) { add_version_info(verdef->vd_ndx, verdef->vd_hash, si_from->get_string(verdaux->vda_name), si_from); return false; } ); } bool VersionTracker::init(const soinfo* si_from) { if (!si_from->has_min_version(2)) { return true; } return init_verneed(si_from) && init_verdef(si_from); } // TODO (dimitry): Methods below need to be moved out of soinfo // and in more isolated file in order minimize dependencies on // unnecessary object in the linker binary. Consider making them // independent from soinfo (?). bool soinfo::lookup_version_info(const VersionTracker& version_tracker, ElfW(Word) sym, const char* sym_name, const version_info** vi) { const ElfW(Versym)* sym_ver_ptr = get_versym(sym); ElfW(Versym) sym_ver = sym_ver_ptr == nullptr ? 0 : *sym_ver_ptr; if (sym_ver != VER_NDX_LOCAL && sym_ver != VER_NDX_GLOBAL) { *vi = version_tracker.get_version_info(sym_ver); if (*vi == nullptr) { DL_ERR("cannot find verneed/verdef for version index=%d " "referenced by symbol \"%s\" at \"%s\"", sym_ver, sym_name, get_realpath()); return false; } } else { // there is no version info *vi = nullptr; } return true; } #if !defined(__mips__) #if defined(USE_RELA) static ElfW(Addr) get_addend(ElfW(Rela)* rela, ElfW(Addr) reloc_addr __unused) { return rela->r_addend; } #else static ElfW(Addr) get_addend(ElfW(Rel)* rel, ElfW(Addr) reloc_addr) { if (ELFW(R_TYPE)(rel->r_info) == R_GENERIC_RELATIVE || ELFW(R_TYPE)(rel->r_info) == R_GENERIC_IRELATIVE) { return *reinterpret_cast(reloc_addr); } return 0; } #endif template bool soinfo::relocate(const VersionTracker& version_tracker, ElfRelIteratorT&& rel_iterator, const soinfo_list_t& global_group, const soinfo_list_t& local_group) { for (size_t idx = 0; rel_iterator.has_next(); ++idx) { const auto rel = rel_iterator.next(); if (rel == nullptr) { return false; } ElfW(Word) type = ELFW(R_TYPE)(rel->r_info); ElfW(Word) sym = ELFW(R_SYM)(rel->r_info); ElfW(Addr) reloc = static_cast(rel->r_offset + load_bias); ElfW(Addr) sym_addr = 0; const char* sym_name = nullptr; ElfW(Addr) addend = get_addend(rel, reloc); DEBUG("Processing \"%s\" relocation at index %zd", get_realpath(), idx); if (type == R_GENERIC_NONE) { continue; } const ElfW(Sym)* s = nullptr; soinfo* lsi = nullptr; if (sym != 0) { sym_name = get_string(symtab_[sym].st_name); const version_info* vi = nullptr; if (!lookup_version_info(version_tracker, sym, sym_name, &vi)) { return false; } if (!soinfo_do_lookup(this, sym_name, vi, &lsi, global_group, local_group, &s)) { return false; } if (s == nullptr) { // We only allow an undefined symbol if this is a weak reference... s = &symtab_[sym]; if (ELF_ST_BIND(s->st_info) != STB_WEAK) { DL_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, get_realpath()); return false; } /* IHI0044C AAELF 4.5.1.1: Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain unsatisfied. During linking, the value of an undefined weak reference is: - Zero if the relocation type is absolute - The address of the place if the relocation is pc-relative - The address of nominal base address if the relocation type is base-relative. */ switch (type) { case R_GENERIC_JUMP_SLOT: case R_GENERIC_GLOB_DAT: case R_GENERIC_RELATIVE: case R_GENERIC_IRELATIVE: #if defined(__aarch64__) case R_AARCH64_ABS64: case R_AARCH64_ABS32: case R_AARCH64_ABS16: #elif defined(__x86_64__) case R_X86_64_32: case R_X86_64_64: #elif defined(__arm__) case R_ARM_ABS32: #elif defined(__i386__) case R_386_32: #endif /* * The sym_addr was initialized to be zero above, or the relocation * code below does not care about value of sym_addr. * No need to do anything. */ break; #if defined(__x86_64__) case R_X86_64_PC32: sym_addr = reloc; break; #elif defined(__i386__) case R_386_PC32: sym_addr = reloc; break; #endif default: DL_ERR("unknown weak reloc type %d @ %p (%zu)", type, rel, idx); return false; } } else { // We got a definition. #if !defined(__LP64__) // When relocating dso with text_relocation .text segment is // not executable. We need to restore elf flags before resolving // STT_GNU_IFUNC symbol. bool protect_segments = has_text_relocations && lsi == this && ELF_ST_TYPE(s->st_info) == STT_GNU_IFUNC; if (protect_segments) { if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't protect segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif sym_addr = lsi->resolve_symbol_address(s); #if !defined(__LP64__) if (protect_segments) { if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't unprotect loadable segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif } count_relocation(kRelocSymbol); } switch (type) { case R_GENERIC_JUMP_SLOT: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO JMP_SLOT %16p <- %16p %s\n", reinterpret_cast(reloc), reinterpret_cast(sym_addr + addend), sym_name); *reinterpret_cast(reloc) = (sym_addr + addend); break; case R_GENERIC_GLOB_DAT: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO GLOB_DAT %16p <- %16p %s\n", reinterpret_cast(reloc), reinterpret_cast(sym_addr + addend), sym_name); *reinterpret_cast(reloc) = (sym_addr + addend); break; case R_GENERIC_RELATIVE: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO RELATIVE %16p <- %16p\n", reinterpret_cast(reloc), reinterpret_cast(load_bias + addend)); *reinterpret_cast(reloc) = (load_bias + addend); break; case R_GENERIC_IRELATIVE: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO IRELATIVE %16p <- %16p\n", reinterpret_cast(reloc), reinterpret_cast(load_bias + addend)); { #if !defined(__LP64__) // When relocating dso with text_relocation .text segment is // not executable. We need to restore elf flags for this // particular call. if (has_text_relocations) { if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't protect segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif ElfW(Addr) ifunc_addr = call_ifunc_resolver(load_bias + addend); #if !defined(__LP64__) // Unprotect it afterwards... if (has_text_relocations) { if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't unprotect loadable segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif *reinterpret_cast(reloc) = ifunc_addr; } break; #if defined(__aarch64__) case R_AARCH64_ABS64: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO ABS64 %16llx <- %16llx %s\n", reloc, sym_addr + addend, sym_name); *reinterpret_cast(reloc) = sym_addr + addend; break; case R_AARCH64_ABS32: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO ABS32 %16llx <- %16llx %s\n", reloc, sym_addr + addend, sym_name); { const ElfW(Addr) min_value = static_cast(INT32_MIN); const ElfW(Addr) max_value = static_cast(UINT32_MAX); if ((min_value <= (sym_addr + addend)) && ((sym_addr + addend) <= max_value)) { *reinterpret_cast(reloc) = sym_addr + addend; } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", sym_addr + addend, min_value, max_value); return false; } } break; case R_AARCH64_ABS16: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO ABS16 %16llx <- %16llx %s\n", reloc, sym_addr + addend, sym_name); { const ElfW(Addr) min_value = static_cast(INT16_MIN); const ElfW(Addr) max_value = static_cast(UINT16_MAX); if ((min_value <= (sym_addr + addend)) && ((sym_addr + addend) <= max_value)) { *reinterpret_cast(reloc) = (sym_addr + addend); } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", sym_addr + addend, min_value, max_value); return false; } } break; case R_AARCH64_PREL64: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO REL64 %16llx <- %16llx - %16llx %s\n", reloc, sym_addr + addend, rel->r_offset, sym_name); *reinterpret_cast(reloc) = sym_addr + addend - rel->r_offset; break; case R_AARCH64_PREL32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO REL32 %16llx <- %16llx - %16llx %s\n", reloc, sym_addr + addend, rel->r_offset, sym_name); { const ElfW(Addr) min_value = static_cast(INT32_MIN); const ElfW(Addr) max_value = static_cast(UINT32_MAX); if ((min_value <= (sym_addr + addend - rel->r_offset)) && ((sym_addr + addend - rel->r_offset) <= max_value)) { *reinterpret_cast(reloc) = sym_addr + addend - rel->r_offset; } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", sym_addr + addend - rel->r_offset, min_value, max_value); return false; } } break; case R_AARCH64_PREL16: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO REL16 %16llx <- %16llx - %16llx %s\n", reloc, sym_addr + addend, rel->r_offset, sym_name); { const ElfW(Addr) min_value = static_cast(INT16_MIN); const ElfW(Addr) max_value = static_cast(UINT16_MAX); if ((min_value <= (sym_addr + addend - rel->r_offset)) && ((sym_addr + addend - rel->r_offset) <= max_value)) { *reinterpret_cast(reloc) = sym_addr + addend - rel->r_offset; } else { DL_ERR("0x%016llx out of range 0x%016llx to 0x%016llx", sym_addr + addend - rel->r_offset, min_value, max_value); return false; } } break; case R_AARCH64_COPY: /* * ET_EXEC is not supported so this should not happen. * * http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf * * Section 4.6.11 "Dynamic relocations" * R_AARCH64_COPY may only appear in executable objects where e_type is * set to ET_EXEC. */ DL_ERR("%s R_AARCH64_COPY relocations are not supported", get_realpath()); return false; case R_AARCH64_TLS_TPREL64: TRACE_TYPE(RELO, "RELO TLS_TPREL64 *** %16llx <- %16llx - %16llx\n", reloc, (sym_addr + addend), rel->r_offset); break; case R_AARCH64_TLS_DTPREL32: TRACE_TYPE(RELO, "RELO TLS_DTPREL32 *** %16llx <- %16llx - %16llx\n", reloc, (sym_addr + addend), rel->r_offset); break; #elif defined(__x86_64__) case R_X86_64_32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO R_X86_64_32 %08zx <- +%08zx %s", static_cast(reloc), static_cast(sym_addr), sym_name); *reinterpret_cast(reloc) = sym_addr + addend; break; case R_X86_64_64: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO R_X86_64_64 %08zx <- +%08zx %s", static_cast(reloc), static_cast(sym_addr), sym_name); *reinterpret_cast(reloc) = sym_addr + addend; break; case R_X86_64_PC32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO R_X86_64_PC32 %08zx <- +%08zx (%08zx - %08zx) %s", static_cast(reloc), static_cast(sym_addr - reloc), static_cast(sym_addr), static_cast(reloc), sym_name); *reinterpret_cast(reloc) = sym_addr + addend - reloc; break; #elif defined(__arm__) case R_ARM_ABS32: count_relocation(kRelocAbsolute); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO ABS %08x <- %08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) += sym_addr; break; case R_ARM_REL32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO REL32 %08x <- %08x - %08x %s", reloc, sym_addr, rel->r_offset, sym_name); *reinterpret_cast(reloc) += sym_addr - rel->r_offset; break; case R_ARM_COPY: /* * ET_EXEC is not supported so this should not happen. * * http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044d/IHI0044D_aaelf.pdf * * Section 4.6.1.10 "Dynamic relocations" * R_ARM_COPY may only appear in executable objects where e_type is * set to ET_EXEC. */ DL_ERR("%s R_ARM_COPY relocations are not supported", get_realpath()); return false; #elif defined(__i386__) case R_386_32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO R_386_32 %08x <- +%08x %s", reloc, sym_addr, sym_name); *reinterpret_cast(reloc) += sym_addr; break; case R_386_PC32: count_relocation(kRelocRelative); MARK(rel->r_offset); TRACE_TYPE(RELO, "RELO R_386_PC32 %08x <- +%08x (%08x - %08x) %s", reloc, (sym_addr - reloc), sym_addr, reloc, sym_name); *reinterpret_cast(reloc) += (sym_addr - reloc); break; #endif default: DL_ERR("unknown reloc type %d @ %p (%zu)", type, rel, idx); return false; } } return true; } #endif // !defined(__mips__) // An empty list of soinfos static soinfo_list_t g_empty_list; bool soinfo::prelink_image() { /* Extract dynamic section */ ElfW(Word) dynamic_flags = 0; phdr_table_get_dynamic_section(phdr, phnum, load_bias, &dynamic, &dynamic_flags); /* We can't log anything until the linker is relocated */ bool relocating_linker = (flags_ & FLAG_LINKER) != 0; if (!relocating_linker) { INFO("[ Linking \"%s\" ]", get_realpath()); DEBUG("si->base = %p si->flags = 0x%08x", reinterpret_cast(base), flags_); } if (dynamic == nullptr) { if (!relocating_linker) { DL_ERR("missing PT_DYNAMIC in \"%s\"", get_realpath()); } return false; } else { if (!relocating_linker) { DEBUG("dynamic = %p", dynamic); } } #if defined(__arm__) (void) phdr_table_get_arm_exidx(phdr, phnum, load_bias, &ARM_exidx, &ARM_exidx_count); #endif // Extract useful information from dynamic section. // Note that: "Except for the DT_NULL element at the end of the array, // and the relative order of DT_NEEDED elements, entries may appear in any order." // // source: http://www.sco.com/developers/gabi/1998-04-29/ch5.dynamic.html uint32_t needed_count = 0; for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) { DEBUG("d = %p, d[0](tag) = %p d[1](val) = %p", d, reinterpret_cast(d->d_tag), reinterpret_cast(d->d_un.d_val)); switch (d->d_tag) { case DT_SONAME: // this is parsed after we have strtab initialized (see below). break; case DT_HASH: nbucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[0]; nchain_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[1]; bucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 8); chain_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 8 + nbucket_ * 4); break; case DT_GNU_HASH: gnu_nbucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[0]; // skip symndx gnu_maskwords_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[2]; gnu_shift2_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[3]; gnu_bloom_filter_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 16); gnu_bucket_ = reinterpret_cast(gnu_bloom_filter_ + gnu_maskwords_); // amend chain for symndx = header[1] gnu_chain_ = gnu_bucket_ + gnu_nbucket_ - reinterpret_cast(load_bias + d->d_un.d_ptr)[1]; if (!powerof2(gnu_maskwords_)) { DL_ERR("invalid maskwords for gnu_hash = 0x%x, in \"%s\" expecting power to two", gnu_maskwords_, get_realpath()); return false; } --gnu_maskwords_; flags_ |= FLAG_GNU_HASH; break; case DT_STRTAB: strtab_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_STRSZ: strtab_size_ = d->d_un.d_val; break; case DT_SYMTAB: symtab_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_SYMENT: if (d->d_un.d_val != sizeof(ElfW(Sym))) { DL_ERR("invalid DT_SYMENT: %zd in \"%s\"", static_cast(d->d_un.d_val), get_realpath()); return false; } break; case DT_PLTREL: #if defined(USE_RELA) if (d->d_un.d_val != DT_RELA) { DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_RELA", get_realpath()); return false; } #else if (d->d_un.d_val != DT_REL) { DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_REL", get_realpath()); return false; } #endif break; case DT_JMPREL: #if defined(USE_RELA) plt_rela_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #else plt_rel_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #endif break; case DT_PLTRELSZ: #if defined(USE_RELA) plt_rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela)); #else plt_rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel)); #endif break; case DT_PLTGOT: #if defined(__mips__) // Used by mips and mips64. plt_got_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #endif // Ignore for other platforms... (because RTLD_LAZY is not supported) break; case DT_DEBUG: // Set the DT_DEBUG entry to the address of _r_debug for GDB // if the dynamic table is writable // FIXME: not working currently for N64 // The flags for the LOAD and DYNAMIC program headers do not agree. // The LOAD section containing the dynamic table has been mapped as // read-only, but the DYNAMIC header claims it is writable. #if !(defined(__mips__) && defined(__LP64__)) if ((dynamic_flags & PF_W) != 0) { d->d_un.d_val = reinterpret_cast(&_r_debug); } #endif break; #if defined(USE_RELA) case DT_RELA: rela_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_RELASZ: rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela)); break; case DT_ANDROID_RELA: android_relocs_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_ANDROID_RELASZ: android_relocs_size_ = d->d_un.d_val; break; case DT_ANDROID_REL: DL_ERR("unsupported DT_ANDROID_REL in \"%s\"", get_realpath()); return false; case DT_ANDROID_RELSZ: DL_ERR("unsupported DT_ANDROID_RELSZ in \"%s\"", get_realpath()); return false; case DT_RELAENT: if (d->d_un.d_val != sizeof(ElfW(Rela))) { DL_ERR("invalid DT_RELAENT: %zd", static_cast(d->d_un.d_val)); return false; } break; // ignored (see DT_RELCOUNT comments for details) case DT_RELACOUNT: break; case DT_REL: DL_ERR("unsupported DT_REL in \"%s\"", get_realpath()); return false; case DT_RELSZ: DL_ERR("unsupported DT_RELSZ in \"%s\"", get_realpath()); return false; #else case DT_REL: rel_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_RELSZ: rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel)); break; case DT_RELENT: if (d->d_un.d_val != sizeof(ElfW(Rel))) { DL_ERR("invalid DT_RELENT: %zd", static_cast(d->d_un.d_val)); return false; } break; case DT_ANDROID_REL: android_relocs_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_ANDROID_RELSZ: android_relocs_size_ = d->d_un.d_val; break; case DT_ANDROID_RELA: DL_ERR("unsupported DT_ANDROID_RELA in \"%s\"", get_realpath()); return false; case DT_ANDROID_RELASZ: DL_ERR("unsupported DT_ANDROID_RELASZ in \"%s\"", get_realpath()); return false; // "Indicates that all RELATIVE relocations have been concatenated together, // and specifies the RELATIVE relocation count." // // TODO: Spec also mentions that this can be used to optimize relocation process; // Not currently used by bionic linker - ignored. case DT_RELCOUNT: break; case DT_RELA: DL_ERR("unsupported DT_RELA in \"%s\"", get_realpath()); return false; case DT_RELASZ: DL_ERR("unsupported DT_RELASZ in \"%s\"", get_realpath()); return false; #endif case DT_INIT: init_func_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT) found at %p", get_realpath(), init_func_); break; case DT_FINI: fini_func_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI) found at %p", get_realpath(), fini_func_); break; case DT_INIT_ARRAY: init_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", get_realpath(), init_array_); break; case DT_INIT_ARRAYSZ: init_array_count_ = static_cast(d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_FINI_ARRAY: fini_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", get_realpath(), fini_array_); break; case DT_FINI_ARRAYSZ: fini_array_count_ = static_cast(d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_PREINIT_ARRAY: preinit_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", get_realpath(), preinit_array_); break; case DT_PREINIT_ARRAYSZ: preinit_array_count_ = static_cast(d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_TEXTREL: #if defined(__LP64__) DL_ERR("\"%s\" has text relocations", get_realpath()); return false; #else has_text_relocations = true; break; #endif case DT_SYMBOLIC: has_DT_SYMBOLIC = true; break; case DT_NEEDED: ++needed_count; break; case DT_FLAGS: if (d->d_un.d_val & DF_TEXTREL) { #if defined(__LP64__) DL_ERR("\"%s\" has text relocations", get_realpath()); return false; #else has_text_relocations = true; #endif } if (d->d_un.d_val & DF_SYMBOLIC) { has_DT_SYMBOLIC = true; } break; case DT_FLAGS_1: set_dt_flags_1(d->d_un.d_val); if ((d->d_un.d_val & ~SUPPORTED_DT_FLAGS_1) != 0) { DL_WARN("\"%s\" has unsupported flags DT_FLAGS_1=%p", get_realpath(), reinterpret_cast(d->d_un.d_val)); } break; #if defined(__mips__) case DT_MIPS_RLD_MAP: // Set the DT_MIPS_RLD_MAP entry to the address of _r_debug for GDB. { r_debug** dp = reinterpret_cast(load_bias + d->d_un.d_ptr); *dp = &_r_debug; } break; case DT_MIPS_RLD_MAP_REL: // Set the DT_MIPS_RLD_MAP_REL entry to the address of _r_debug for GDB. { r_debug** dp = reinterpret_cast( reinterpret_cast(d) + d->d_un.d_val); *dp = &_r_debug; } break; case DT_MIPS_RLD_VERSION: case DT_MIPS_FLAGS: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_UNREFEXTNO: break; case DT_MIPS_SYMTABNO: mips_symtabno_ = d->d_un.d_val; break; case DT_MIPS_LOCAL_GOTNO: mips_local_gotno_ = d->d_un.d_val; break; case DT_MIPS_GOTSYM: mips_gotsym_ = d->d_un.d_val; break; #endif // Ignored: "Its use has been superseded by the DF_BIND_NOW flag" case DT_BIND_NOW: break; case DT_VERSYM: versym_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_VERDEF: verdef_ptr_ = load_bias + d->d_un.d_ptr; break; case DT_VERDEFNUM: verdef_cnt_ = d->d_un.d_val; break; case DT_VERNEED: verneed_ptr_ = load_bias + d->d_un.d_ptr; break; case DT_VERNEEDNUM: verneed_cnt_ = d->d_un.d_val; break; case DT_RUNPATH: // this is parsed after we have strtab initialized (see below). break; default: if (!relocating_linker) { DL_WARN("\"%s\" unused DT entry: type %p arg %p", get_realpath(), reinterpret_cast(d->d_tag), reinterpret_cast(d->d_un.d_val)); } break; } } #if defined(__mips__) && !defined(__LP64__) if (!mips_check_and_adjust_fp_modes()) { return false; } #endif DEBUG("si->base = %p, si->strtab = %p, si->symtab = %p", reinterpret_cast(base), strtab_, symtab_); // Sanity checks. if (relocating_linker && needed_count != 0) { DL_ERR("linker cannot have DT_NEEDED dependencies on other libraries"); return false; } if (nbucket_ == 0 && gnu_nbucket_ == 0) { DL_ERR("empty/missing DT_HASH/DT_GNU_HASH in \"%s\" " "(new hash type from the future?)", get_realpath()); return false; } if (strtab_ == 0) { DL_ERR("empty/missing DT_STRTAB in \"%s\"", get_realpath()); return false; } if (symtab_ == 0) { DL_ERR("empty/missing DT_SYMTAB in \"%s\"", get_realpath()); return false; } // second pass - parse entries relying on strtab for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) { switch (d->d_tag) { case DT_SONAME: set_soname(get_string(d->d_un.d_val)); break; case DT_RUNPATH: set_dt_runpath(get_string(d->d_un.d_val)); break; } } // Before M release linker was using basename in place of soname. // In the case when dt_soname is absent some apps stop working // because they can't find dt_needed library by soname. // This workaround should keep them working. (applies only // for apps targeting sdk version < M). Make an exception for // the main executable and linker; they do not need to have dt_soname if (soname_ == nullptr && this != solist_get_somain() && (flags_ & FLAG_LINKER) == 0 && get_application_target_sdk_version() < __ANDROID_API_M__) { soname_ = basename(realpath_.c_str()); DL_WARN("%s: is missing DT_SONAME will use basename as a replacement: \"%s\"", get_realpath(), soname_); // Don't call add_dlwarning because a missing DT_SONAME isn't important enough to show in the UI } return true; } bool soinfo::link_image(const soinfo_list_t& global_group, const soinfo_list_t& local_group, const android_dlextinfo* extinfo) { local_group_root_ = local_group.front(); if (local_group_root_ == nullptr) { local_group_root_ = this; } if ((flags_ & FLAG_LINKER) == 0 && local_group_root_ == this) { target_sdk_version_ = get_application_target_sdk_version(); } VersionTracker version_tracker; if (!version_tracker.init(this)) { return false; } #if !defined(__LP64__) if (has_text_relocations) { // Fail if app is targeting M or above. if (get_application_target_sdk_version() >= __ANDROID_API_M__) { DL_ERR_AND_LOG("\"%s\" has text relocations", get_realpath()); return false; } // Make segments writable to allow text relocations to work properly. We will later call // phdr_table_protect_segments() after all of them are applied. DL_WARN("\"%s\" has text relocations. This is wasting memory and prevents " "security hardening. Please fix.", get_realpath()); add_dlwarning(get_realpath(), "text relocations"); if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't unprotect loadable segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif if (android_relocs_ != nullptr) { // check signature if (android_relocs_size_ > 3 && android_relocs_[0] == 'A' && android_relocs_[1] == 'P' && android_relocs_[2] == 'S' && android_relocs_[3] == '2') { DEBUG("[ android relocating %s ]", get_realpath()); bool relocated = false; const uint8_t* packed_relocs = android_relocs_ + 4; const size_t packed_relocs_size = android_relocs_size_ - 4; relocated = relocate( version_tracker, packed_reloc_iterator( sleb128_decoder(packed_relocs, packed_relocs_size)), global_group, local_group); if (!relocated) { return false; } } else { DL_ERR("bad android relocation header."); return false; } } #if defined(USE_RELA) if (rela_ != nullptr) { DEBUG("[ relocating %s ]", get_realpath()); if (!relocate(version_tracker, plain_reloc_iterator(rela_, rela_count_), global_group, local_group)) { return false; } } if (plt_rela_ != nullptr) { DEBUG("[ relocating %s plt ]", get_realpath()); if (!relocate(version_tracker, plain_reloc_iterator(plt_rela_, plt_rela_count_), global_group, local_group)) { return false; } } #else if (rel_ != nullptr) { DEBUG("[ relocating %s ]", get_realpath()); if (!relocate(version_tracker, plain_reloc_iterator(rel_, rel_count_), global_group, local_group)) { return false; } } if (plt_rel_ != nullptr) { DEBUG("[ relocating %s plt ]", get_realpath()); if (!relocate(version_tracker, plain_reloc_iterator(plt_rel_, plt_rel_count_), global_group, local_group)) { return false; } } #endif #if defined(__mips__) if (!mips_relocate_got(version_tracker, global_group, local_group)) { return false; } #endif DEBUG("[ finished linking %s ]", get_realpath()); #if !defined(__LP64__) if (has_text_relocations) { // All relocations are done, we can protect our segments back to read-only. if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't protect segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif // We can also turn on GNU RELRO protection if we're not linking the dynamic linker // itself --- it can't make system calls yet, and will have to call protect_relro later. if (!is_linker() && !protect_relro()) { return false; } /* Handle serializing/sharing the RELRO segment */ if (extinfo && (extinfo->flags & ANDROID_DLEXT_WRITE_RELRO)) { if (phdr_table_serialize_gnu_relro(phdr, phnum, load_bias, extinfo->relro_fd) < 0) { DL_ERR("failed serializing GNU RELRO section for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } else if (extinfo && (extinfo->flags & ANDROID_DLEXT_USE_RELRO)) { if (phdr_table_map_gnu_relro(phdr, phnum, load_bias, extinfo->relro_fd) < 0) { DL_ERR("failed mapping GNU RELRO section for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } notify_gdb_of_load(this); return true; } bool soinfo::protect_relro() { if (phdr_table_protect_gnu_relro(phdr, phnum, load_bias) < 0) { DL_ERR("can't enable GNU RELRO protection for \"%s\": %s", get_realpath(), strerror(errno)); return false; } return true; } static void init_default_namespace_no_config(bool is_asan) { g_default_namespace.set_isolated(false); auto default_ld_paths = is_asan ? kAsanDefaultLdPaths : kDefaultLdPaths; char real_path[PATH_MAX]; std::vector ld_default_paths; for (size_t i = 0; default_ld_paths[i] != nullptr; ++i) { if (realpath(default_ld_paths[i], real_path) != nullptr) { ld_default_paths.push_back(real_path); } else { ld_default_paths.push_back(default_ld_paths[i]); } } g_default_namespace.set_default_library_paths(std::move(ld_default_paths)); } void init_default_namespace(const char* executable_path) { g_default_namespace.set_name("(default)"); soinfo* somain = solist_get_somain(); const char *interp = phdr_table_get_interpreter_name(somain->phdr, somain->phnum, somain->load_bias); const char* bname = basename(interp); g_is_asan = bname != nullptr && (strcmp(bname, "linker_asan") == 0 || strcmp(bname, "linker_asan64") == 0); const Config* config = nullptr; std::string error_msg; if (!Config::read_binary_config(kLdConfigFilePath, executable_path, g_is_asan, &config, &error_msg)) { if (!error_msg.empty()) { DL_WARN("error reading config file \"%s\" for \"%s\" (will use default configuration): %s", kLdConfigFilePath, executable_path, error_msg.c_str()); } config = nullptr; } if (config == nullptr) { init_default_namespace_no_config(g_is_asan); return; } const auto& namespace_configs = config->namespace_configs(); std::unordered_map namespaces; // 1. Initialize default namespace const NamespaceConfig* default_ns_config = config->default_namespace_config(); g_default_namespace.set_isolated(default_ns_config->isolated()); g_default_namespace.set_default_library_paths(default_ns_config->search_paths()); g_default_namespace.set_permitted_paths(default_ns_config->permitted_paths()); namespaces[default_ns_config->name()] = &g_default_namespace; // 2. Initialize other namespaces for (auto& ns_config : namespace_configs) { if (namespaces.find(ns_config->name()) != namespaces.end()) { continue; } android_namespace_t* ns = new (g_namespace_allocator.alloc()) android_namespace_t(); ns->set_name(ns_config->name()); ns->set_isolated(ns_config->isolated()); ns->set_default_library_paths(ns_config->search_paths()); ns->set_permitted_paths(ns_config->permitted_paths()); namespaces[ns_config->name()] = ns; if (ns_config->visible()) { g_exported_namespaces[ns_config->name()] = ns; } } // 3. Establish links between namespaces for (auto& ns_config : namespace_configs) { auto it_from = namespaces.find(ns_config->name()); CHECK(it_from != namespaces.end()); android_namespace_t* namespace_from = it_from->second; for (const NamespaceLinkConfig& ns_link : ns_config->links()) { auto it_to = namespaces.find(ns_link.ns_name()); CHECK(it_to != namespaces.end()); android_namespace_t* namespace_to = it_to->second; link_namespaces(namespace_from, namespace_to, ns_link.shared_libs().c_str()); } } // we can no longer rely on the fact that libdl.so is part of default namespace // this is why we want to add ld-android.so to all namespaces from ld.config.txt soinfo* ld_android_so = solist_get_head(); for (auto it : namespaces) { it.second->add_soinfo(ld_android_so); // TODO (dimitry): somain and ld_preloads should probably be added to all of these namespaces too? } set_application_target_sdk_version(config->target_sdk_version()); } // This function finds a namespace exported in ld.config.txt by its name. // A namespace can be exported by setting .visible property to true. android_namespace_t* get_exported_namespace(const char* name) { if (name == nullptr) { return nullptr; } auto it = g_exported_namespaces.find(std::string(name)); if (it == g_exported_namespaces.end()) { return nullptr; } return it->second; }