/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #if defined(__linux__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Arch.h" #include "DeclarationDatabase.h" #include "Driver.h" #include "Preprocessor.h" #include "SymbolDatabase.h" #include "Utils.h" #include "VFS.h" #include "versioner.h" using namespace std::chrono_literals; using namespace std::string_literals; bool strict; bool verbose; bool add_include; static int getCpuCount(); static int max_thread_count = getCpuCount(); static int getCpuCount() { #if defined(__linux__) cpu_set_t cpu_set; int rc = sched_getaffinity(getpid(), sizeof(cpu_set), &cpu_set); if (rc != 0) { err(1, "sched_getaffinity failed"); } return CPU_COUNT(&cpu_set); #else return 1; #endif } static CompilationRequirements collectRequirements(const Arch& arch, const std::string& header_dir, const std::string& dependency_dir) { std::vector headers = collectHeaders(header_dir); std::vector dependencies = { header_dir }; if (!dependency_dir.empty()) { auto collect_children = [&dependencies, &dependency_dir](const std::string& dir_path) { DIR* dir = opendir(dir_path.c_str()); if (!dir) { err(1, "failed to open dependency directory '%s'", dir_path.c_str()); } struct dirent* dent; while ((dent = readdir(dir))) { if (dent->d_name[0] == '.') { continue; } // TODO: Resolve symlinks. std::string dependency = dir_path + "/" + dent->d_name; struct stat st; if (stat(dependency.c_str(), &st) != 0) { err(1, "failed to stat dependency '%s'", dependency.c_str()); } if (!S_ISDIR(st.st_mode)) { errx(1, "'%s' is not a directory", dependency.c_str()); } dependencies.push_back(dependency); } closedir(dir); }; collect_children(dependency_dir + "/common"); collect_children(dependency_dir + "/" + to_string(arch)); } auto new_end = std::remove_if(headers.begin(), headers.end(), [&arch](llvm::StringRef header) { for (const auto& it : header_blacklist) { if (it.second.find(arch) == it.second.end()) { continue; } if (header.endswith("/" + it.first)) { return true; } } return false; }); headers.erase(new_end, headers.end()); CompilationRequirements result = { .headers = headers, .dependencies = dependencies }; return result; } static std::set generateCompilationTypes(const std::set selected_architectures, const std::set& selected_levels) { std::set result; for (const auto& arch : selected_architectures) { int min_api = arch_min_api[arch]; for (int api_level : selected_levels) { if (api_level < min_api) { continue; } for (int file_offset_bits : { 32, 64 }) { CompilationType type = { .arch = arch, .api_level = api_level, .file_offset_bits = file_offset_bits }; result.insert(type); } } } return result; } static std::unique_ptr compileHeaders(const std::set& types, const std::string& header_dir, const std::string& dependency_dir) { if (types.empty()) { errx(1, "compileHeaders received no CompilationTypes"); } auto vfs = createCommonVFS(header_dir, dependency_dir, add_include); size_t thread_count = max_thread_count; std::vector threads; std::map header_databases; std::unordered_map requirements; auto result = std::make_unique(); for (const auto& type : types) { if (requirements.count(type.arch) == 0) { requirements[type.arch] = collectRequirements(type.arch, header_dir, dependency_dir); } } initializeTargetCC1FlagCache(vfs, types, requirements); std::vector> jobs; std::atomic job_index(0); for (CompilationType type : types) { CompilationRequirements& req = requirements[type.arch]; for (const std::string& header : req.headers) { jobs.emplace_back(type, header); } } thread_count = std::min(thread_count, jobs.size()); if (thread_count == 1) { for (const auto& job : jobs) { compileHeader(vfs, result.get(), job.first, job.second); } } else { // Spawn threads. size_t cpu_count = getCpuCount(); for (size_t i = 0; i < thread_count; ++i) { threads.emplace_back([&jobs, &job_index, &result, &header_dir, vfs, cpu_count, i]() { while (true) { size_t idx = job_index++; if (idx >= jobs.size()) { return; } const auto& job = jobs[idx]; compileHeader(vfs, result.get(), job.first, job.second); } }); } // Reap them. for (auto& thread : threads) { thread.join(); } threads.clear(); } return result; } static std::set getCompilationTypes(const Declaration* decl) { std::set result; for (const auto& it : decl->availability) { result.insert(it.first); } return result; } template static std::vector Intersection(const std::set& a, const std::set& b) { std::vector intersection; std::set_intersection(a.begin(), a.end(), b.begin(), b.end(), std::back_inserter(intersection)); return intersection; } // Perform a sanity check on a symbol's declarations, enforcing the following invariants: // 1. At most one inline definition of the function exists. // 2. All of the availability declarations for a symbol are compatible. // If a function is declared as an inline before a certain version, the inline definition // should have no version tag. // 3. Each availability type must only be present globally or on a per-arch basis. // (e.g. __INTRODUCED_IN_ARM(9) __INTRODUCED_IN_X86(10) __DEPRECATED_IN(11) is fine, // but not __INTRODUCED_IN(9) __INTRODUCED_IN_X86(10)) static bool checkSymbol(const Symbol& symbol) { std::string cwd = getWorkingDir() + "/"; std::unordered_map> inline_definitions; for (const auto& decl_it : symbol.declarations) { const Declaration* decl = &decl_it.second; if (decl->is_definition) { std::set compilation_types = getCompilationTypes(decl); for (const auto& inline_def_it : inline_definitions) { auto intersection = Intersection(compilation_types, inline_def_it.second); if (!intersection.empty()) { fprintf(stderr, "versioner: conflicting inline definitions:\n"); fprintf(stderr, " declarations visible in: %s\n", Join(intersection, ", ").c_str()); decl->dump(cwd, stderr, 4); inline_def_it.first->dump(cwd, stderr, 4); return false; } } inline_definitions[decl] = std::move(compilation_types); } DeclarationAvailability availability; if (!decl->calculateAvailability(&availability)) { fprintf(stderr, "versioner: failed to calculate availability for declaration:\n"); decl->dump(cwd, stderr, 2); return false; } if (decl->is_definition && !availability.empty()) { fprintf(stderr, "versioner: inline definition has non-empty versioning information:\n"); decl->dump(cwd, stderr, 2); return false; } } DeclarationAvailability availability; if (!symbol.calculateAvailability(&availability)) { fprintf(stderr, "versioner: inconsistent availability for symbol '%s'\n", symbol.name.c_str()); symbol.dump(cwd); return false; } // TODO: Check invariant #3. return true; } static bool sanityCheck(const HeaderDatabase* database) { bool error = false; std::string cwd = getWorkingDir() + "/"; for (const auto& symbol_it : database->symbols) { if (!checkSymbol(symbol_it.second)) { error = true; } } return !error; } // Check that our symbol availability declarations match the actual NDK // platform symbol availability. static bool checkVersions(const std::set& types, const HeaderDatabase* header_database, const NdkSymbolDatabase& symbol_database) { std::string cwd = getWorkingDir() + "/"; bool failed = false; std::map> arch_types; for (const CompilationType& type : types) { arch_types[type.arch].insert(type); } std::set completely_unavailable; std::map> missing_availability; std::map> extra_availability; for (const auto& symbol_it : header_database->symbols) { const auto& symbol_name = symbol_it.first; DeclarationAvailability symbol_availability; if (!symbol_it.second.calculateAvailability(&symbol_availability)) { errx(1, "failed to calculate symbol availability"); } const auto platform_availability_it = symbol_database.find(symbol_name); if (platform_availability_it == symbol_database.end()) { completely_unavailable.insert(symbol_name); continue; } const auto& platform_availability = platform_availability_it->second; for (const CompilationType& type : types) { bool should_be_available = true; const auto& global_availability = symbol_availability.global_availability; const auto& arch_availability = symbol_availability.arch_availability[type.arch]; if (global_availability.introduced != 0 && global_availability.introduced > type.api_level) { should_be_available = false; } if (arch_availability.introduced != 0 && arch_availability.introduced > type.api_level) { should_be_available = false; } if (global_availability.obsoleted != 0 && global_availability.obsoleted <= type.api_level) { should_be_available = false; } if (arch_availability.obsoleted != 0 && arch_availability.obsoleted <= type.api_level) { should_be_available = false; } if (arch_availability.future) { continue; } // The function declaration might be (validly) missing for the given CompilationType. if (!symbol_it.second.hasDeclaration(type)) { should_be_available = false; } bool is_available = platform_availability.count(type); if (should_be_available != is_available) { if (is_available) { extra_availability[symbol_name].insert(type); } else { missing_availability[symbol_name].insert(type); } } } } for (const auto& it : symbol_database) { const std::string& symbol_name = it.first; bool symbol_error = false; if (auto missing_it = missing_availability.find(symbol_name); missing_it != missing_availability.end()) { printf("%s: declaration marked available but symbol missing in [%s]\n", symbol_name.c_str(), Join(missing_it->second, ", ").c_str()); symbol_error = true; failed = true; } if (strict) { if (auto extra_it = extra_availability.find(symbol_name); extra_it != extra_availability.end()) { printf("%s: declaration marked unavailable but symbol available in [%s]\n", symbol_name.c_str(), Join(extra_it->second, ", ").c_str()); symbol_error = true; failed = true; } } if (symbol_error) { if (auto symbol_it = header_database->symbols.find(symbol_name); symbol_it != header_database->symbols.end()) { symbol_it->second.dump(cwd); } else { errx(1, "failed to find symbol in header database"); } } } // TODO: Verify that function/variable declarations are actually function/variable symbols. return !failed; } static void usage(bool help = false) { fprintf(stderr, "Usage: versioner [OPTION]... [HEADER_PATH] [DEPS_PATH]\n"); if (!help) { printf("Try 'versioner -h' for more information.\n"); exit(1); } else { fprintf(stderr, "Version headers at HEADER_PATH, with DEPS_PATH/ARCH/* on the include path\n"); fprintf(stderr, "Autodetects paths if HEADER_PATH and DEPS_PATH are not specified\n"); fprintf(stderr, "\n"); fprintf(stderr, "Target specification (defaults to all):\n"); fprintf(stderr, " -a API_LEVEL\tbuild with specified API level (can be repeated)\n"); fprintf(stderr, " \t\tvalid levels are %s\n", Join(supported_levels).c_str()); fprintf(stderr, " -r ARCH\tbuild with specified architecture (can be repeated)\n"); fprintf(stderr, " \t\tvalid architectures are %s\n", Join(supported_archs).c_str()); fprintf(stderr, "\n"); fprintf(stderr, "Validation:\n"); fprintf(stderr, " -p PATH\tcompare against NDK platform at PATH\n"); fprintf(stderr, " -s\t\tenable strict warnings\n"); fprintf(stderr, "\n"); fprintf(stderr, "Preprocessing:\n"); fprintf(stderr, " -o PATH\tpreprocess header files and emit them at PATH\n"); fprintf(stderr, " -f\tpreprocess header files even if validation fails\n"); fprintf(stderr, "\n"); fprintf(stderr, "Miscellaneous:\n"); fprintf(stderr, " -d\t\tdump function availability\n"); fprintf(stderr, " -j THREADS\tmaximum number of threads to use\n"); fprintf(stderr, " -v\t\tenable verbose logging\n"); fprintf(stderr, " -h\t\tdisplay this message\n"); exit(0); } } int main(int argc, char** argv) { std::string cwd = getWorkingDir() + "/"; bool default_args = true; std::string platform_dir; std::set selected_architectures; std::set selected_levels; std::string preprocessor_output_path; bool force = false; bool dump = false; int c; while ((c = getopt(argc, argv, "a:r:p:so:fdj:vhi")) != -1) { default_args = false; switch (c) { case 'a': { char* end; int api_level = strtol(optarg, &end, 10); if (end == optarg || strlen(end) > 0) { usage(); } if (supported_levels.count(api_level) == 0) { errx(1, "unsupported API level %d", api_level); } selected_levels.insert(api_level); break; } case 'r': { Arch arch = arch_from_string(optarg); selected_architectures.insert(arch); break; } case 'p': { if (!platform_dir.empty()) { usage(); } platform_dir = optarg; if (platform_dir.empty()) { usage(); } struct stat st; if (stat(platform_dir.c_str(), &st) != 0) { err(1, "failed to stat platform directory '%s'", platform_dir.c_str()); } if (!S_ISDIR(st.st_mode)) { errx(1, "'%s' is not a directory", optarg); } break; } case 's': strict = true; break; case 'o': if (!preprocessor_output_path.empty()) { usage(); } preprocessor_output_path = optarg; if (preprocessor_output_path.empty()) { usage(); } break; case 'f': force = true; break; case 'd': dump = true; break; case 'j': if (!android::base::ParseInt(optarg, &max_thread_count, 1)) { usage(); } break; case 'v': verbose = true; break; case 'h': usage(true); break; case 'i': // Secret option for tests to -include . add_include = true; break; default: usage(); break; } } if (argc - optind > 2 || optind > argc) { usage(); } std::string header_dir; std::string dependency_dir; const char* top = getenv("ANDROID_BUILD_TOP"); if (!top && (optind == argc || add_include)) { fprintf(stderr, "versioner: failed to autodetect bionic paths. Is ANDROID_BUILD_TOP set?\n"); usage(); } if (optind == argc) { // Neither HEADER_PATH nor DEPS_PATH were specified, so try to figure them out. std::string versioner_dir = to_string(top) + "/bionic/tools/versioner"; header_dir = versioner_dir + "/current"; dependency_dir = versioner_dir + "/dependencies"; if (platform_dir.empty()) { platform_dir = versioner_dir + "/platforms"; } } else { // Intentional leak. header_dir = realpath(argv[optind], nullptr); if (argc - optind == 2) { dependency_dir = argv[optind + 1]; } } if (selected_levels.empty()) { selected_levels = supported_levels; } if (selected_architectures.empty()) { selected_architectures = supported_archs; } struct stat st; if (stat(header_dir.c_str(), &st) != 0) { err(1, "failed to stat '%s'", header_dir.c_str()); } else if (!S_ISDIR(st.st_mode)) { errx(1, "'%s' is not a directory", header_dir.c_str()); } std::set compilation_types; NdkSymbolDatabase symbol_database; compilation_types = generateCompilationTypes(selected_architectures, selected_levels); // Do this before compiling so that we can early exit if the platforms don't match what we // expect. if (!platform_dir.empty()) { symbol_database = parsePlatforms(compilation_types, platform_dir); } auto start = std::chrono::high_resolution_clock::now(); std::unique_ptr declaration_database = compileHeaders(compilation_types, header_dir, dependency_dir); auto end = std::chrono::high_resolution_clock::now(); if (verbose) { auto diff = (end - start) / 1.0ms; printf("Compiled headers for %zu targets in %0.2LFms\n", compilation_types.size(), diff); } bool failed = false; if (dump) { declaration_database->dump(header_dir + "/"); } else { if (!sanityCheck(declaration_database.get())) { printf("versioner: sanity check failed\n"); failed = true; } if (!platform_dir.empty()) { if (!checkVersions(compilation_types, declaration_database.get(), symbol_database)) { printf("versioner: version check failed\n"); failed = true; } } } if (!preprocessor_output_path.empty() && (force || !failed)) { failed = !preprocessHeaders(preprocessor_output_path, header_dir, declaration_database.get()); } return failed; }