/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ ///////////////////////////////////////////////////////////////////////// /* * This module contains vector math utilities for the following datatypes: * -) Vec3 structures for 3-dimensional vectors * -) Vec4 structures for 4-dimensional vectors * -) floating point arrays for N-dimensional vectors. * * Note that the Vec3 and Vec4 utilties were ported from the Android * repository and maintain dependenices in that separate codebase. As a * result, the function signatures were left untouched for compatibility with * this legacy code, despite certain style violations. In particular, for this * module the function argument ordering is outputs before inputs. This style * violation will be addressed once the full set of dependencies in Android * have been brought into this repository. */ #ifndef LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_ #define LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_ #ifdef NANOHUB_NON_CHRE_API #include #else #include #endif // NANOHUB_NON_CHRE_API #include #include "util/nano_assert.h" #ifdef __cplusplus extern "C" { #endif struct Vec3 { float x, y, z; }; struct Vec4 { float x, y, z, w; }; #define NANO_PI (3.14159265359f) #define NANO_ABS(x) ((x) > 0 ? (x) : -(x)) #define NANO_MAX(a, b) ((a) > (b)) ? (a) : (b) #define NANO_MIN(a, b) ((a) < (b)) ? (a) : (b) // 3-DIMENSIONAL VECTOR MATH /////////////////////////////////////////// static inline void initVec3(struct Vec3 *v, float x, float y, float z) { ASSERT_NOT_NULL(v); v->x = x; v->y = y; v->z = z; } // Updates v as the sum of v and w. static inline void vec3Add(struct Vec3 *v, const struct Vec3 *w) { ASSERT_NOT_NULL(v); ASSERT_NOT_NULL(w); v->x += w->x; v->y += w->y; v->z += w->z; } // Updates v as the subtraction of w from v. static inline void vec3Sub(struct Vec3 *v, const struct Vec3 *w) { ASSERT_NOT_NULL(v); ASSERT_NOT_NULL(w); v->x -= w->x; v->y -= w->y; v->z -= w->z; } // Scales v by the scalar c, i.e. v = c * v. static inline void vec3ScalarMul(struct Vec3 *v, float c) { ASSERT_NOT_NULL(v); v->x *= c; v->y *= c; v->z *= c; } // Returns the dot product of v and w. static inline float vec3Dot(const struct Vec3 *v, const struct Vec3 *w) { ASSERT_NOT_NULL(v); ASSERT_NOT_NULL(w); return v->x * w->x + v->y * w->y + v->z * w->z; } // Returns the square of the L2-norm of the given vector. static inline float vec3NormSquared(const struct Vec3 *v) { ASSERT_NOT_NULL(v); return vec3Dot(v, v); } // Returns the L2-norm of the given vector. static inline float vec3Norm(const struct Vec3 *v) { ASSERT_NOT_NULL(v); return sqrtf(vec3NormSquared(v)); } // Normalizes the provided vector to unit norm. If the provided vector has a // norm of zero, the vector will be unchanged. static inline void vec3Normalize(struct Vec3 *v) { ASSERT_NOT_NULL(v); float norm = vec3Norm(v); ASSERT(norm > 0); // Only normalize if norm is non-zero. if (norm > 0) { float invNorm = 1.0f / norm; v->x *= invNorm; v->y *= invNorm; v->z *= invNorm; } } // Updates u as the cross product of v and w. static inline void vec3Cross(struct Vec3 *u, const struct Vec3 *v, const struct Vec3 *w) { ASSERT_NOT_NULL(u); ASSERT_NOT_NULL(v); ASSERT_NOT_NULL(w); u->x = v->y * w->z - v->z * w->y; u->y = v->z * w->x - v->x * w->z; u->z = v->x * w->y - v->y * w->x; } // Finds a vector orthogonal to the vector [inX, inY, inZ] and returns // this in the components [outX, outY, outZ]. The vector is chosen such // that the smallest component of [inX, inY, inZ] is set to zero in the // output vector. For example, for the in vector [0.01, 4.0, 5.0], this // function will return [0, 5.0, -4.0]. void findOrthogonalVector(float inX, float inY, float inZ, float *outX, float *outY, float *outZ); // 4-DIMENSIONAL VECTOR MATH /////////////////////////////////////////// // Initialize the Vec4 structure with the provided component values. static inline void initVec4(struct Vec4 *v, float x, float y, float z, float w) { ASSERT_NOT_NULL(v); v->x = x; v->y = y; v->z = z; v->w = w; } // N-DIMENSIONAL VECTOR MATH /////////////////////////////////////////// // Dimension specified by the last argument in all functions below. // Adds two vectors and returns the sum in the provided vector, i.e. // u = v + w. void vecAdd(float *u, const float *v, const float *w, int dim); // Adds two vectors and returns the sum in the first vector, i.e. // v = v + w. void vecAddInPlace(float *v, const float *w, int dim); // Subtracts two vectors and returns in the provided vector, i.e. // u = v - w. void vecSub(float *u, const float *v, const float *w, int dim); // Scales vector by a scalar and returns in the provided vector, i.e. // u = c * v. void vecScalarMul(float *u, const float *v, float c, int dim); // Scales vector by a scalar and returns in the same vector, i.e. // v = c * v. void vecScalarMulInPlace(float *v, float c, int dim); // Returns the L2-norm of the given vector. float vecNorm(const float *v, int dim); // Returns the square of the L2-norm of the given vector. float vecNormSquared(const float *v, int dim); // Returns the dot product of v and w. float vecDot(const float *v, const float *w, int dim); // Returns the maximum absolute value in vector. float vecMaxAbsoluteValue(const float *v, int dim); #ifdef __cplusplus } #endif #endif // LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_VEC_H_