/** @file Common Lib function for QNC internal network access. Copyright (c) 2013-2015 Intel Corporation. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ // // The package level header files this module uses // #include #include #include #include #include UINT32 EFIAPI QNCPortRead( UINT8 Port, UINT32 RegAddress ) { McD0PciCfg32 (QNC_ACCESS_PORT_MEA) = (RegAddress & 0xFFFFFF00); McD0PciCfg32 (QNC_ACCESS_PORT_MCR) = MESSAGE_READ_DW (Port, RegAddress); return McD0PciCfg32 (QNC_ACCESS_PORT_MDR); } VOID EFIAPI QNCPortWrite ( UINT8 Port, UINT32 RegAddress, UINT32 WriteValue ) { McD0PciCfg32 (QNC_ACCESS_PORT_MDR) = WriteValue; McD0PciCfg32 (QNC_ACCESS_PORT_MEA) = (RegAddress & 0xFFFFFF00); McD0PciCfg32 (QNC_ACCESS_PORT_MCR) = MESSAGE_WRITE_DW (Port, RegAddress); } UINT32 EFIAPI QNCAltPortRead ( UINT8 Port, UINT32 RegAddress ) { McD0PciCfg32 (QNC_ACCESS_PORT_MEA) = (RegAddress & 0xFFFFFF00); McD0PciCfg32 (QNC_ACCESS_PORT_MCR) = ALT_MESSAGE_READ_DW (Port, RegAddress); return McD0PciCfg32 (QNC_ACCESS_PORT_MDR); } VOID EFIAPI QNCAltPortWrite ( UINT8 Port, UINT32 RegAddress, UINT32 WriteValue ) { McD0PciCfg32 (QNC_ACCESS_PORT_MDR) = WriteValue; McD0PciCfg32 (QNC_ACCESS_PORT_MEA) = (RegAddress & 0xFFFFFF00); McD0PciCfg32 (QNC_ACCESS_PORT_MCR) = ALT_MESSAGE_WRITE_DW (Port, RegAddress); } UINT32 EFIAPI QNCPortIORead( UINT8 Port, UINT32 RegAddress ) { McD0PciCfg32 (QNC_ACCESS_PORT_MEA) = (RegAddress & 0xFFFFFF00); McD0PciCfg32 (QNC_ACCESS_PORT_MCR) = MESSAGE_IO_READ_DW (Port, RegAddress); return McD0PciCfg32 (QNC_ACCESS_PORT_MDR); } VOID EFIAPI QNCPortIOWrite ( UINT8 Port, UINT32 RegAddress, UINT32 WriteValue ) { McD0PciCfg32 (QNC_ACCESS_PORT_MDR) = WriteValue; McD0PciCfg32 (QNC_ACCESS_PORT_MEA) = (RegAddress & 0xFFFFFF00); McD0PciCfg32 (QNC_ACCESS_PORT_MCR) = MESSAGE_IO_WRITE_DW (Port, RegAddress); } RETURN_STATUS EFIAPI QNCMmIoWrite ( UINT32 MmIoAddress, QNC_MEM_IO_WIDTH Width, UINT32 DataNumber, VOID *pData ) /*++ Routine Description: This is for the special consideration for QNC MMIO write, as required by FWG, a reading must be performed after MMIO writing to ensure the expected write is processed and data is flushed into chipset Arguments: Row -- row number to be cleared ( start from 1 ) Returns: EFI_SUCCESS --*/ { RETURN_STATUS Status; UINTN Index; Status = RETURN_SUCCESS; for (Index =0; Index < DataNumber; Index++) { switch (Width) { case QNCMmioWidthUint8: QNCMmio8 (MmIoAddress, 0) = ((UINT8 *)pData)[Index]; if (QNCMmio8 (MmIoAddress, 0) != ((UINT8*)pData)[Index]) { Status = RETURN_DEVICE_ERROR; break; } break; case QNCMmioWidthUint16: QNCMmio16 (MmIoAddress, 0) = ((UINT16 *)pData)[Index]; if (QNCMmio16 (MmIoAddress, 0) != ((UINT16 *)pData)[Index]) { Status = RETURN_DEVICE_ERROR; break; } break; case QNCMmioWidthUint32: QNCMmio32 (MmIoAddress, 0) = ((UINT32 *)pData)[Index]; if (QNCMmio32 (MmIoAddress, 0) != ((UINT32 *)pData)[Index]) { Status = RETURN_DEVICE_ERROR; break; } break; case QNCMmioWidthUint64: QNCMmio64 (MmIoAddress, 0) = ((UINT64 *)pData)[Index]; if (QNCMmio64 (MmIoAddress, 0) != ((UINT64 *)pData)[Index]) { Status = RETURN_DEVICE_ERROR; break; } break; default: break; } } return Status; } UINT32 EFIAPI QncHsmmcRead ( VOID ) { return QNCPortRead (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HSMMC); } VOID EFIAPI QncHsmmcWrite ( UINT32 WriteValue ) { UINT16 DeviceId; UINT32 Data32; // // Check what Soc we are running on (read Host bridge DeviceId) // DeviceId = QNCMmPci16(0, MC_BUS, MC_DEV, MC_FUN, PCI_DEVICE_ID_OFFSET); if (DeviceId == QUARK2_MC_DEVICE_ID) { // // Disable HSMMC configuration // Data32 = QncHsmmcRead (); Data32 &= ~SMM_CTL_EN; QNCPortWrite (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HSMMC, Data32); // // Validate HSMMC configuration is disabled // Data32 = QncHsmmcRead (); ASSERT((Data32 & SMM_CTL_EN) == 0); // // Enable HSMMC configuration // WriteValue |= SMM_CTL_EN; } // // Write the register value // QNCPortWrite (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HSMMC, WriteValue); if (DeviceId == QUARK2_MC_DEVICE_ID) { // // Validate HSMMC configuration is enabled // Data32 = QncHsmmcRead (); ASSERT((Data32 & SMM_CTL_EN) != 0); } } VOID EFIAPI QncImrWrite ( UINT32 ImrBaseOffset, UINT32 ImrLow, UINT32 ImrHigh, UINT32 ImrReadMask, UINT32 ImrWriteMask ) { UINT16 DeviceId; UINT32 Data32; // // Check what Soc we are running on (read Host bridge DeviceId) // DeviceId = QNCMmPci16(0, MC_BUS, MC_DEV, MC_FUN, PCI_DEVICE_ID_OFFSET); // // Disable IMR protection // if (DeviceId == QUARK2_MC_DEVICE_ID) { // // Disable IMR protection // Data32 = QNCPortRead (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXL); Data32 &= ~IMR_EN; QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXL, Data32); // // Validate IMR protection is disabled // Data32 = QNCPortRead (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXL); ASSERT((Data32 & IMR_EN) == 0); // // Update the IMR (IMRXL must be last as it may enable IMR violation checking) // QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXRM, ImrReadMask); QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXWM, ImrWriteMask); QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXH, ImrHigh); QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXL, ImrLow); // // Validate IMR protection is enabled/disabled // Data32 = QNCPortRead (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXL); ASSERT((Data32 & IMR_EN) == (ImrLow & IMR_EN)); } else { // // Disable IMR protection (allow all access) // QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXRM, (UINT32)IMRX_ALL_ACCESS); QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXWM, (UINT32)IMRX_ALL_ACCESS); // // Update the IMR (IMRXRM/IMRXWM must be last as they restrict IMR access) // QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXL, (ImrLow & ~IMR_EN)); QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXH, ImrHigh); QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXRM, ImrReadMask); QNCPortWrite (QUARK_NC_MEMORY_MANAGER_SB_PORT_ID, ImrBaseOffset+QUARK_NC_MEMORY_MANAGER_IMRXWM, ImrWriteMask); } } VOID EFIAPI QncIClkAndThenOr ( UINT32 RegAddress, UINT32 AndValue, UINT32 OrValue ) { UINT32 RegValue; // // Whenever an iCLK SB register (Endpoint 32h) is being programmed the access // should always consist of a READ from the address followed by 2 identical // WRITEs to that address. // RegValue = QNCAltPortRead (QUARK_ICLK_SB_PORT_ID, RegAddress); RegValue &= AndValue; RegValue |= OrValue; QNCAltPortWrite (QUARK_ICLK_SB_PORT_ID, RegAddress, RegValue); QNCAltPortWrite (QUARK_ICLK_SB_PORT_ID, RegAddress, RegValue); } VOID EFIAPI QncIClkOr ( UINT32 RegAddress, UINT32 OrValue ) { UINT32 RegValue; // // Whenever an iCLK SB register (Endpoint 32h) is being programmed the access // should always consist of a READ from the address followed by 2 identical // WRITEs to that address. // RegValue = QNCAltPortRead (QUARK_ICLK_SB_PORT_ID, RegAddress); RegValue |= OrValue; QNCAltPortWrite (QUARK_ICLK_SB_PORT_ID, RegAddress, RegValue); QNCAltPortWrite (QUARK_ICLK_SB_PORT_ID, RegAddress, RegValue); }