/** @file
Class for arbitrary sized FIFO queues.
The FIFO is empty if both the Read and Write indexes are equal.
The FIFO is full if the next write would make the Read and Write indexes equal.
Member variable NumElements is the maximum number of elements that can be
contained in the FIFO.
If NumElements is ZERO, there is an error.
NumElements should be in the range 1:N.
Members WriteIndex and ReadIndex are indexes into the array implementing the
FIFO. They should be in the range 0:(NumElements - 1).
One element of the FIFO is always reserved as the "terminator" element. Thus,
the capacity of a FIFO is actually NumElements-1.
Copyright (c) 2012 - 2014, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available
under the terms and conditions of the BSD License which accompanies this
distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/** Determine number of items available to read from the FIFO.
The number of items are either the number of bytes, or the number of elements
depending upon the value of the As enumerator.
@param[in] Self Pointer to the FIFO instance.
@param[in] As An enumeration variable whose value determines whether the
returned value is the number of bytes or the number of elements
currently contained by the FIFO.
@retval 0 The FIFO is empty.
@retval >=0 The number of items contained by the FIFO.
**/
static
size_t
EFIAPI
FIFO_NumInQueue (
cFIFO *Self,
FIFO_ElemBytes As
)
{
size_t Count;
if(Self->ReadIndex <= Self->WriteIndex) {
Count = Self->WriteIndex - Self->ReadIndex;
}
else {
Count = Self->NumElements - (Self->ReadIndex - Self->WriteIndex);
}
if(As == AsBytes) {
Count *= Self->ElementSize;
}
return Count;
}
/** Determine amount of free space in the FIFO that can be written into.
The number of items are either the number of bytes, or the number of elements
depending upon the value of the As enumerator.
@param[in] Self Pointer to the FIFO instance.
@param[in] As An enumeration variable whose value determines whether the
returned value is the number of bytes or the number of elements
currently available in the FIFO.
@retval 0 The FIFO is full.
@retval >=0 The number of items which can be accepted by the FIFO.
**/
static
size_t
EFIAPI
FIFO_FreeSpace (
cFIFO *Self,
FIFO_ElemBytes As
)
{
size_t Count;
UINT32 RDex;
UINT32 WDex;
RDex = Self->ReadIndex;
WDex = Self->WriteIndex;
if(RDex <= WDex) {
Count = (Self->NumElements - (WDex - RDex)) - 1;
}
else {
Count = (RDex - WDex)-1;
}
if(As == AsBytes) {
Count *= Self->ElementSize;
}
return Count;
}
/** Reduce the FIFO contents by NumElem elements.
@param[in] Self Pointer to the FIFO instance.
@param[in] NumElem Number of elements to delete from the FIFO.
@retval 0 FIFO is now empty.
@retval N>0 There are still N elements in the FIFO.
@retval -1 There are fewer than NumElem elements in the FIFO.
**/
static
ssize_t
FIFO_Reduce (
cFIFO *Self,
size_t NumElem
)
{
size_t QCount;
ssize_t RetVal;
assert(Self != NULL);
QCount = FIFO_NumInQueue(Self, AsElements);
if(NumElem > QCount) {
RetVal = -1;
errno = EINVAL;
}
else {
RetVal = (ssize_t)ModuloAdd(Self->ReadIndex, (UINT32)NumElem, Self->NumElements);
Self->ReadIndex = (UINT32)RetVal;
RetVal = (ssize_t)(QCount - NumElem);
}
return RetVal;
}
/** Test whether the FIFO is empty.
@param[in] Self Pointer to the FIFO instance.
@retval TRUE The FIFO is empty.
@retval FALSE There is data in the FIFO.
**/
static
BOOLEAN
EFIAPI
FIFO_IsEmpty (
cFIFO *Self
)
{
assert(Self != NULL);
return (BOOLEAN)(Self->WriteIndex == Self->ReadIndex);
}
/** Test whether the FIFO is full.
@param[in] Self Pointer to the FIFO instance.
@retval TRUE The FIFO is full.
@retval FALSE There is free space in the FIFO.
**/
static
BOOLEAN
EFIAPI
FIFO_IsFull (
cFIFO *Self
)
{
assert(Self != NULL);
return (BOOLEAN)(ModuloIncrement(Self->WriteIndex, Self->NumElements) == (INT32)Self->ReadIndex);
}
/** Add one or more elements to the FIFO.
This function allows one to add one or more elements, as specified by Count,
to the FIFO. Each element is of the size specified when the FIFO object
was instantiated (FIFO.ElementSize).
pElement points to the first byte of the first element to be added.
If multiple elements are to be added, the elements are expected to be
organized as a packed array.
@param[in] Self Pointer to the FIFO instance.
@param[in] pElement Pointer to the element(s) to enqueue (add).
@param[in] Count Number of elements to add.
@retval 0 The FIFO is full.
@retval >=0 The number of elements added to the FIFO.
**/
static
size_t
EFIAPI
FIFO_Enqueue (
cFIFO *Self,
const void *pElement,
size_t Count
)
{
uintptr_t ElemPtr;
uintptr_t QPtr;
size_t i;
UINT32 SizeOfElement;
UINT32 Windex;
assert(Self != NULL);
assert(pElement != NULL);
if(FIFO_IsFull(Self)) { // FIFO is full so can't add to it
Count = 0; // Zero characters added
}
else { // Otherwise, FIFO is not full...
Count = MIN(Count, Self->FreeSpace(Self, AsElements)); // Smaller of requested or available space
SizeOfElement = Self->ElementSize; // Size of Elements, in bytes
Windex = Self->WriteIndex; // Index of first writable slot in FIFO
ElemPtr = (uintptr_t)pElement; // Addr. of element to add, as an integer
QPtr = (uintptr_t)Self->Queue + (SizeOfElement * Windex); // Addr. in FIFO to write, as an integer
for(i = 0; i < Count; ++i) { // For Count elements...
(void)CopyMem((void *)QPtr, (const void *)ElemPtr, SizeOfElement); // Copy an element into the FIFO
Windex = (UINT32)ModuloIncrement(Windex, Self->NumElements); // Increment the Write index, wrap if necessary
if(Windex == 0) { // If the index wrapped
QPtr = (uintptr_t)Self->Queue; // Go to the beginning
}
else {
QPtr += SizeOfElement; // Otherwise, point to next in FIFO
}
ElemPtr += SizeOfElement; // And also point to next Element to add
}
Self->WriteIndex = Windex; // Finally, save the new Write Index
}
return Count; // Number of elements added to FIFO
}
/** Read or copy elements from the FIFO.
This function allows one to read one or more elements, as specified by Count,
from the FIFO. Each element is of the size specified when the FIFO object
was instantiated (FIFO.ElementSize).
pElement points to the destination of the first byte of the first element
to be read. If multiple elements are to be read, the elements are expected
to be organized as a packed array.
@param[in] Self Pointer to the FIFO instance.
@param[out] pElement Pointer to where to store the element(s) read from the FIFO.
@param[in] Count Number of elements to dequeue.
@param[in] Consume If TRUE, consume read elements. Otherwise, preserve.
@retval 0 The FIFO is empty.
@retval >=0 The number of elements read from the FIFO.
**/
static
size_t
EFIAPI
FIFO_Dequeue (
cFIFO *Self,
void *pElement,
size_t Count,
BOOLEAN Consume
)
{
UINTN QPtr;
UINT32 RDex;
UINT32 SizeOfElement;
UINT32 i;
assert(Self != NULL);
assert(pElement != NULL);
if(FIFO_IsEmpty(Self)) {
Count = 0;
}
else {
RDex = Self->ReadIndex; // Get this FIFO's Read Index
SizeOfElement = Self->ElementSize; // Get size of this FIFO's elements
Count = MIN(Count, Self->Count(Self, AsElements)); // Lesser of requested or actual
QPtr = (UINTN)Self->Queue + (RDex * SizeOfElement); // Point to Read location in FIFO
for(i = 0; i < Count; ++i) { // Iterate Count times...
(void)CopyMem(pElement, (const void *)QPtr, SizeOfElement); // Copy element from FIFO to caller's buffer
RDex = (UINT32)ModuloIncrement(RDex, Self->NumElements); // Increment Read Index
if(RDex == 0) { // If the index wrapped
QPtr = (UINTN)Self->Queue; // Point back to beginning of data
}
else { // Otherwise
QPtr += SizeOfElement; // Point to the next element in FIFO
}
pElement = (char*)pElement + SizeOfElement; // Point to next element in caller's buffer
} // Iterate: for loop
if(Consume) { // If caller requests data consumption
Self->ReadIndex = RDex; // Set FIFO's Read Index to new Index
}
}
return Count; // Return number of elements actually read
}
/** Read elements from the FIFO.
Read the specified number of elements from the FIFO, removing each element read.
The number of elements actually read from the FIFO is returned. This number can differ
from the Count requested if more elements are requested than are in the FIFO.
@param[in] Self Pointer to the FIFO instance.
@param[out] pElement Pointer to where to store the element read from the FIFO.
@param[in] Count Number of elements to dequeue.
@retval 0 The FIFO is empty.
@retval >=0 The number of elements read from the FIFO.
**/
static
size_t
EFIAPI
FIFO_Read (
cFIFO *Self,
void *pElement,
size_t Count
)
{
return FIFO_Dequeue(Self, pElement, Count, TRUE);
}
/** Make a copy of the FIFO's data.
The contents of the FIFO is copied out and linearized without affecting the
FIFO contents. This function is idempotent.
@param[in] Self Pointer to the FIFO instance.
@param[out] pElement Pointer to where to store the elements copied from the FIFO.
@param[in] Count Number of elements to copy.
@retval 0 The FIFO is empty.
@retval >=0 The number of elements copied from the FIFO.
**/
static
size_t
EFIAPI
FIFO_Copy (
cFIFO *Self,
void *pElement,
size_t Count
)
{
return FIFO_Dequeue(Self, pElement, Count, FALSE);
}
/** Get the FIFO's current Read Index.
@param[in] Self Pointer to the FIFO instance.
**/
static
UINT32
EFIAPI
FIFO_GetRDex (
cFIFO *Self
)
{
assert(Self != NULL);
return Self->ReadIndex;
}
/** Get the FIFO's current Write Index.
@param[in] Self Pointer to the FIFO instance.
@return The current value of the FIFO's WriteIndex member is returned.
**/
static
UINT32
EFIAPI
FIFO_GetWDex (
cFIFO *Self
)
{
assert(Self != NULL);
return Self->WriteIndex;
}
/** Cleanly delete a FIFO instance.
@param[in] Self Pointer to the FIFO instance.
**/
static
void
EFIAPI
FIFO_Delete (
cFIFO *Self
)
{
assert(Self != NULL);
if(Self->Queue != NULL) {
FreePool(Self->Queue);
Self->Queue = NULL; // Zombie catcher
}
FreePool(Self);
}
/** Empty the FIFO, discarding up to NumToFlush elements.
@param[in] Self Pointer to the FIFO instance.
@param[in] NumToFlush Number of elements to flush from the FIFO.
If larger than the number of elements in the
FIFO, the FIFO is emptied.
@return Returns the number of elements remaining in the FIFO after the flush.
**/
static
size_t
EFIAPI
FIFO_Flush (
cFIFO *Self,
size_t NumToFlush
)
{
size_t NumInQ;
size_t Remainder;
assert(Self != NULL);
NumInQ = FIFO_NumInQueue(Self, AsElements);
if(NumToFlush >= NumInQ) {
Self->ReadIndex = 0;
Self->WriteIndex = 0;
Remainder = 0;
}
else {
Remainder = FIFO_Reduce(Self, NumToFlush);
}
return Remainder;
}
/** Remove the most recently added element from the FIFO.
@param[in] Self Pointer to the FIFO instance.
@return Returns the number of elements remaining in the FIFO.
**/
static
size_t
EFIAPI
FIFO_Truncate (
cFIFO *Self
)
{
size_t Remainder;
assert(Self != NULL);
Remainder = FIFO_NumInQueue(Self, AsElements);
if(Remainder > 0) {
Self->WriteIndex = (UINT32)ModuloDecrement(Self->WriteIndex, Self->NumElements);
--Remainder;
}
return Remainder;
}
/** Construct a new instance of a FIFO Queue.
@param[in] NumElements Number of elements to be contained in the new FIFO.
@param[in] ElementSize Size, in bytes, of an element.
@retval NULL Unable to create the instance.
@retval NonNULL Pointer to the new FIFO instance.
**/
cFIFO *
EFIAPI
New_cFIFO(
UINT32 NumElements,
size_t ElementSize
)
{
cFIFO *FIFO;
UINT8 *Queue;
FIFO = NULL;
if((NumElements > 2) && (ElementSize > 0)) {
FIFO = (cFIFO *)AllocatePool(sizeof(cFIFO));
if(FIFO != NULL) {
Queue = (UINT8 *)AllocateZeroPool(NumElements * ElementSize);
if(Queue != NULL) {
FIFO->Write = FIFO_Enqueue;
FIFO->Read = FIFO_Read;
FIFO->Copy = FIFO_Copy;
FIFO->IsEmpty = FIFO_IsEmpty;
FIFO->IsFull = FIFO_IsFull;
FIFO->Count = FIFO_NumInQueue;
FIFO->FreeSpace = FIFO_FreeSpace;
FIFO->Flush = FIFO_Flush;
FIFO->Truncate = FIFO_Truncate;
FIFO->Delete = FIFO_Delete;
FIFO->GetRDex = FIFO_GetRDex;
FIFO->GetWDex = FIFO_GetWDex;
FIFO->Queue = Queue;
FIFO->ElementSize = (UINT32)ElementSize;
FIFO->NumElements = (UINT32)NumElements;
FIFO->ReadIndex = 0;
FIFO->WriteIndex = 0;
}
else {
FreePool(FIFO);
FIFO = NULL;
}
}
}
return FIFO;
}