page.title=Implementing graphics @jd:body
To implement the Android graphics HAL, review the following requirements, implementation details, and testing advice.
Android graphics support requires the following components:
You must provide drivers for EGL, OpenGL ES 1.x, and OpenGL ES 2.0 (support for OpenGL 3.x is optional). Key considerations include:
GL_OES_texture_external
,
EGL_ANDROID_image_native_buffer
, and
EGL_ANDROID_recordable
. In addition, the
EGL_ANDROID_framebuffer_target
extension is required for
Hardware Composer v1.1 and higher.We highly recommend also supporting EGL_ANDROID_blob_cache
,
EGL_KHR_fence_sync
, EGL_KHR_wait_sync
, and EGL_ANDROID_native_fence_sync
.
Note: The OpenGL API exposed to app developers differs from the OpenGL implemented on the device. Apps cannot directly access the GL driver layer and must go through the interface provided by the APIs.
Many hardware overlays do not support rotation (and even if they do it costs
processing power); the solution is to pre-transform the buffer before it reaches
SurfaceFlinger. Android supports a query hint
(NATIVE_WINDOW_TRANSFORM_HINT
) in ANativeWindow
to
represent the most likely transform to be applied to the buffer by
SurfaceFlinger. GL drivers can use this hint to pre-transform the buffer
before it reaches SurfaceFlinger so when the buffer arrives, it is correctly
transformed.
For example, when receiving a hint to rotate 90 degrees, generate and apply a
matrix to the buffer to prevent it from running off the end of the page. To save
power, do this pre-rotation. For details, see the ANativeWindow
interface defined in system/core/include/system/window.h
.
The graphics memory allocator allocates memory requested by image producers.
You can find the interface definition of the HAL at
hardware/libhardware/include/hardware/gralloc.h
.
The gralloc usage flag GRALLOC_USAGE_PROTECTED
allows the
graphics buffer to be displayed only through a hardware-protected path. These
overlay planes are the only way to display DRM content (DRM-protected buffers
cannot be accessed by SurfaceFlinger or the OpenGL ES driver).
DRM-protected video can be presented only on an overlay plane. Video players that support protected content must be implemented with SurfaceView. Software running on unprotected hardware cannot read or write the buffer; hardware-protected paths must appear on the Hardware Composer overlay (i.e., protected videos will disappear from the display if Hardware Composer switches to OpenGL ES composition).
For details on protected content, see DRM.
The Hardware Composer HAL (HWC) is used by SurfaceFlinger to composite surfaces to the screen. It abstracts objects such as overlays and 2D blitters and helps offload some work that would normally be done with OpenGL. For details on the HWC, see Hardware Composer HAL.
VSYNC synchronizes certain events to the refresh cycle of the display. Applications always start drawing on a VSYNC boundary, and SurfaceFlinger always composites on a VSYNC boundary. This eliminates stutters and improves visual performance of graphics. For details on VSYNC, see Implementing VSYNC.
Vulkan is a low-overhead, cross-platform API for high-performance 3D graphics. Like OpenGL ES, Vulkan provides tools for creating high-quality, real-time graphics in applications. Vulkan advantages include reductions in CPU overhead and support for the SPIR-V Binary Intermediate language. For details on Vulkan, see Implementing Vulkan.
Android added platform support for virtual displays in Hardware Composer v1.3. The virtual display composition is similar to the physical display: Input layers are described in prepare(), SurfaceFlinger conducts GPU composition, and layers and GPU framebuffer are provided to Hardware Composer in set(). For details on virtual displays, see Implementing Virtual Displays.
For benchmarking, use the following flow by phase:
For help deriving device capabilities during the specification phase, use the
Flatland tool at platform/frameworks/native/cmds/flatland/
.
Flatland relies upon fixed clocks and shows the throughput achievable with
composition-based workloads. It uses gralloc buffers to simulate multiple window
scenarios, filling in the window with GL then measuring the compositing.
Note: Flatland uses the synchronization framework to measure time, so your implementation must support the synchronization framework.