// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/task_scheduler/scheduler_lock_impl.h" #include #include #include #include "base/lazy_instance.h" #include "base/logging.h" #include "base/synchronization/condition_variable.h" #include "base/threading/platform_thread.h" #include "base/threading/thread_local_storage.h" namespace base { namespace internal { namespace { class SafeAcquisitionTracker { public: SafeAcquisitionTracker() : tls_acquired_locks_(&OnTLSDestroy) {} void RegisterLock( const SchedulerLockImpl* const lock, const SchedulerLockImpl* const predecessor) { DCHECK_NE(lock, predecessor) << "Reentrant locks are unsupported."; AutoLock auto_lock(allowed_predecessor_map_lock_); allowed_predecessor_map_[lock] = predecessor; AssertSafePredecessor(lock); } void UnregisterLock(const SchedulerLockImpl* const lock) { AutoLock auto_lock(allowed_predecessor_map_lock_); allowed_predecessor_map_.erase(lock); } void RecordAcquisition(const SchedulerLockImpl* const lock) { AssertSafeAcquire(lock); GetAcquiredLocksOnCurrentThread()->push_back(lock); } void RecordRelease(const SchedulerLockImpl* const lock) { LockVector* acquired_locks = GetAcquiredLocksOnCurrentThread(); const auto iter_at_lock = std::find(acquired_locks->begin(), acquired_locks->end(), lock); DCHECK(iter_at_lock != acquired_locks->end()); acquired_locks->erase(iter_at_lock); } private: using LockVector = std::vector; using PredecessorMap = std::unordered_map< const SchedulerLockImpl*, const SchedulerLockImpl*>; // This asserts that the lock is safe to acquire. This means that this should // be run before actually recording the acquisition. void AssertSafeAcquire(const SchedulerLockImpl* const lock) { const LockVector* acquired_locks = GetAcquiredLocksOnCurrentThread(); // If the thread currently holds no locks, this is inherently safe. if (acquired_locks->empty()) return; // Otherwise, make sure that the previous lock acquired is an allowed // predecessor. AutoLock auto_lock(allowed_predecessor_map_lock_); const SchedulerLockImpl* allowed_predecessor = allowed_predecessor_map_.at(lock); DCHECK_EQ(acquired_locks->back(), allowed_predecessor); } void AssertSafePredecessor(const SchedulerLockImpl* lock) const { allowed_predecessor_map_lock_.AssertAcquired(); for (const SchedulerLockImpl* predecessor = allowed_predecessor_map_.at(lock); predecessor != nullptr; predecessor = allowed_predecessor_map_.at(predecessor)) { DCHECK_NE(predecessor, lock) << "Scheduler lock predecessor cycle detected."; } } LockVector* GetAcquiredLocksOnCurrentThread() { if (!tls_acquired_locks_.Get()) tls_acquired_locks_.Set(new LockVector); return reinterpret_cast(tls_acquired_locks_.Get()); } static void OnTLSDestroy(void* value) { delete reinterpret_cast(value); } // Synchronizes access to |allowed_predecessor_map_|. Lock allowed_predecessor_map_lock_; // A map of allowed predecessors. PredecessorMap allowed_predecessor_map_; // A thread-local slot holding a vector of locks currently acquired on the // current thread. ThreadLocalStorage::Slot tls_acquired_locks_; DISALLOW_COPY_AND_ASSIGN(SafeAcquisitionTracker); }; LazyInstance::Leaky g_safe_acquisition_tracker = LAZY_INSTANCE_INITIALIZER; } // namespace SchedulerLockImpl::SchedulerLockImpl() : SchedulerLockImpl(nullptr) {} SchedulerLockImpl::SchedulerLockImpl(const SchedulerLockImpl* predecessor) { g_safe_acquisition_tracker.Get().RegisterLock(this, predecessor); } SchedulerLockImpl::~SchedulerLockImpl() { g_safe_acquisition_tracker.Get().UnregisterLock(this); } void SchedulerLockImpl::Acquire() { lock_.Acquire(); g_safe_acquisition_tracker.Get().RecordAcquisition(this); } void SchedulerLockImpl::Release() { lock_.Release(); g_safe_acquisition_tracker.Get().RecordRelease(this); } void SchedulerLockImpl::AssertAcquired() const { lock_.AssertAcquired(); } std::unique_ptr SchedulerLockImpl::CreateConditionVariable() { return std::unique_ptr(new ConditionVariable(&lock_)); } } // namespace internal } // base