//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // \brief This file exposes an interface to building/using memory SSA to // walk memory instructions using a use/def graph. // // Memory SSA class builds an SSA form that links together memory access // instructions such as loads, stores, atomics, and calls. Additionally, it does // a trivial form of "heap versioning" Every time the memory state changes in // the program, we generate a new heap version. It generates MemoryDef/Uses/Phis // that are overlayed on top of the existing instructions. // // As a trivial example, // define i32 @main() #0 { // entry: // %call = call noalias i8* @_Znwm(i64 4) #2 // %0 = bitcast i8* %call to i32* // %call1 = call noalias i8* @_Znwm(i64 4) #2 // %1 = bitcast i8* %call1 to i32* // store i32 5, i32* %0, align 4 // store i32 7, i32* %1, align 4 // %2 = load i32* %0, align 4 // %3 = load i32* %1, align 4 // %add = add nsw i32 %2, %3 // ret i32 %add // } // // Will become // define i32 @main() #0 { // entry: // ; 1 = MemoryDef(0) // %call = call noalias i8* @_Znwm(i64 4) #3 // %2 = bitcast i8* %call to i32* // ; 2 = MemoryDef(1) // %call1 = call noalias i8* @_Znwm(i64 4) #3 // %4 = bitcast i8* %call1 to i32* // ; 3 = MemoryDef(2) // store i32 5, i32* %2, align 4 // ; 4 = MemoryDef(3) // store i32 7, i32* %4, align 4 // ; MemoryUse(3) // %7 = load i32* %2, align 4 // ; MemoryUse(4) // %8 = load i32* %4, align 4 // %add = add nsw i32 %7, %8 // ret i32 %add // } // // Given this form, all the stores that could ever effect the load at %8 can be // gotten by using the MemoryUse associated with it, and walking from use to def // until you hit the top of the function. // // Each def also has a list of users associated with it, so you can walk from // both def to users, and users to defs. Note that we disambiguate MemoryUses, // but not the RHS of MemoryDefs. You can see this above at %7, which would // otherwise be a MemoryUse(4). Being disambiguated means that for a given // store, all the MemoryUses on its use lists are may-aliases of that store (but // the MemoryDefs on its use list may not be). // // MemoryDefs are not disambiguated because it would require multiple reaching // definitions, which would require multiple phis, and multiple memoryaccesses // per instruction. //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_UTILS_MEMORYSSA_H #define LLVM_TRANSFORMS_UTILS_MEMORYSSA_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/ilist_node.h" #include "llvm/ADT/iterator.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/PHITransAddr.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Module.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Pass.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include #include #include namespace llvm { class DominatorTree; class Function; class Instruction; class MemoryAccess; class LLVMContext; class raw_ostream; template class memoryaccess_def_iterator_base; using memoryaccess_def_iterator = memoryaccess_def_iterator_base; using const_memoryaccess_def_iterator = memoryaccess_def_iterator_base; // \brief The base for all memory accesses. All memory accesses in a block are // linked together using an intrusive list. class MemoryAccess : public User, public ilist_node { void *operator new(size_t, unsigned) = delete; void *operator new(size_t) = delete; public: // Methods for support type inquiry through isa, cast, and // dyn_cast static inline bool classof(const MemoryAccess *) { return true; } static inline bool classof(const Value *V) { unsigned ID = V->getValueID(); return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal; } ~MemoryAccess() override; BasicBlock *getBlock() const { return Block; } virtual void print(raw_ostream &OS) const = 0; virtual void dump() const; /// \brief The user iterators for a memory access typedef user_iterator iterator; typedef const_user_iterator const_iterator; /// \brief This iterator walks over all of the defs in a given /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For /// MemoryUse/MemoryDef, this walks the defining access. memoryaccess_def_iterator defs_begin(); const_memoryaccess_def_iterator defs_begin() const; memoryaccess_def_iterator defs_end(); const_memoryaccess_def_iterator defs_end() const; protected: friend class MemorySSA; friend class MemoryUseOrDef; friend class MemoryUse; friend class MemoryDef; friend class MemoryPhi; /// \brief Used internally to give IDs to MemoryAccesses for printing virtual unsigned getID() const = 0; MemoryAccess(LLVMContext &C, unsigned Vty, BasicBlock *BB, unsigned NumOperands) : User(Type::getVoidTy(C), Vty, nullptr, NumOperands), Block(BB) {} private: MemoryAccess(const MemoryAccess &); void operator=(const MemoryAccess &); BasicBlock *Block; }; template <> struct ilist_traits : public ilist_default_traits { /// See details of the instruction class for why this trick works // FIXME: This downcast is UB. See llvm.org/PR26753. LLVM_NO_SANITIZE("object-size") MemoryAccess *createSentinel() const { return static_cast(&Sentinel); } static void destroySentinel(MemoryAccess *) {} MemoryAccess *provideInitialHead() const { return createSentinel(); } MemoryAccess *ensureHead(MemoryAccess *) const { return createSentinel(); } static void noteHead(MemoryAccess *, MemoryAccess *) {} private: mutable ilist_half_node Sentinel; }; inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) { MA.print(OS); return OS; } /// \brief Class that has the common methods + fields of memory uses/defs. It's /// a little awkward to have, but there are many cases where we want either a /// use or def, and there are many cases where uses are needed (defs aren't /// acceptable), and vice-versa. /// /// This class should never be instantiated directly; make a MemoryUse or /// MemoryDef instead. class MemoryUseOrDef : public MemoryAccess { void *operator new(size_t, unsigned) = delete; void *operator new(size_t) = delete; public: DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); /// \brief Get the instruction that this MemoryUse represents. Instruction *getMemoryInst() const { return MemoryInst; } /// \brief Get the access that produces the memory state used by this Use. MemoryAccess *getDefiningAccess() const { return getOperand(0); } static inline bool classof(const MemoryUseOrDef *) { return true; } static inline bool classof(const Value *MA) { return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal; } protected: friend class MemorySSA; MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty, Instruction *MI, BasicBlock *BB) : MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) { setDefiningAccess(DMA); } void setDefiningAccess(MemoryAccess *DMA) { setOperand(0, DMA); } private: Instruction *MemoryInst; }; template <> struct OperandTraits : public FixedNumOperandTraits {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess) /// \brief Represents read-only accesses to memory /// /// In particular, the set of Instructions that will be represented by /// MemoryUse's is exactly the set of Instructions for which /// AliasAnalysis::getModRefInfo returns "Ref". class MemoryUse final : public MemoryUseOrDef { void *operator new(size_t, unsigned) = delete; public: DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB) : MemoryUseOrDef(C, DMA, MemoryUseVal, MI, BB) {} static inline bool classof(const MemoryUse *) { return true; } static inline bool classof(const Value *MA) { return MA->getValueID() == MemoryUseVal; } void print(raw_ostream &OS) const override; protected: friend class MemorySSA; unsigned getID() const override { llvm_unreachable("MemoryUses do not have IDs"); } }; template <> struct OperandTraits : public FixedNumOperandTraits {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess) /// \brief Represents a read-write access to memory, whether it is a must-alias, /// or a may-alias. /// /// In particular, the set of Instructions that will be represented by /// MemoryDef's is exactly the set of Instructions for which /// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef". /// Note that, in order to provide def-def chains, all defs also have a use /// associated with them. This use points to the nearest reaching /// MemoryDef/MemoryPhi. class MemoryDef final : public MemoryUseOrDef { void *operator new(size_t, unsigned) = delete; public: DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB, unsigned Ver) : MemoryUseOrDef(C, DMA, MemoryDefVal, MI, BB), ID(Ver) {} static inline bool classof(const MemoryDef *) { return true; } static inline bool classof(const Value *MA) { return MA->getValueID() == MemoryDefVal; } void print(raw_ostream &OS) const override; protected: friend class MemorySSA; // For debugging only. This gets used to give memory accesses pretty numbers // when printing them out unsigned getID() const override { return ID; } private: const unsigned ID; }; template <> struct OperandTraits : public FixedNumOperandTraits {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess) /// \brief Represents phi nodes for memory accesses. /// /// These have the same semantic as regular phi nodes, with the exception that /// only one phi will ever exist in a given basic block. /// Guaranteeing one phi per block means guaranteeing there is only ever one /// valid reaching MemoryDef/MemoryPHI along each path to the phi node. /// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or /// a MemoryPhi's operands. /// That is, given /// if (a) { /// store %a /// store %b /// } /// it *must* be transformed into /// if (a) { /// 1 = MemoryDef(liveOnEntry) /// store %a /// 2 = MemoryDef(1) /// store %b /// } /// and *not* /// if (a) { /// 1 = MemoryDef(liveOnEntry) /// store %a /// 2 = MemoryDef(liveOnEntry) /// store %b /// } /// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the /// end of the branch, and if there are not two phi nodes, one will be /// disconnected completely from the SSA graph below that point. /// Because MemoryUse's do not generate new definitions, they do not have this /// issue. class MemoryPhi final : public MemoryAccess { void *operator new(size_t, unsigned) = delete; // allocate space for exactly zero operands void *operator new(size_t s) { return User::operator new(s); } public: /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess); MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0) : MemoryAccess(C, MemoryPhiVal, BB, 0), ID(Ver), ReservedSpace(NumPreds) { allocHungoffUses(ReservedSpace); } // Block iterator interface. This provides access to the list of incoming // basic blocks, which parallels the list of incoming values. typedef BasicBlock **block_iterator; typedef BasicBlock *const *const_block_iterator; block_iterator block_begin() { auto *Ref = reinterpret_cast(op_begin() + ReservedSpace); return reinterpret_cast(Ref + 1); } const_block_iterator block_begin() const { const auto *Ref = reinterpret_cast(op_begin() + ReservedSpace); return reinterpret_cast(Ref + 1); } block_iterator block_end() { return block_begin() + getNumOperands(); } const_block_iterator block_end() const { return block_begin() + getNumOperands(); } op_range incoming_values() { return operands(); } const_op_range incoming_values() const { return operands(); } /// \brief Return the number of incoming edges unsigned getNumIncomingValues() const { return getNumOperands(); } /// \brief Return incoming value number x MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); } void setIncomingValue(unsigned I, MemoryAccess *V) { assert(V && "PHI node got a null value!"); setOperand(I, V); } static unsigned getOperandNumForIncomingValue(unsigned I) { return I; } static unsigned getIncomingValueNumForOperand(unsigned I) { return I; } /// \brief Return incoming basic block number @p i. BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; } /// \brief Return incoming basic block corresponding /// to an operand of the PHI. BasicBlock *getIncomingBlock(const Use &U) const { assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); return getIncomingBlock(unsigned(&U - op_begin())); } /// \brief Return incoming basic block corresponding /// to value use iterator. BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const { return getIncomingBlock(I.getUse()); } void setIncomingBlock(unsigned I, BasicBlock *BB) { assert(BB && "PHI node got a null basic block!"); block_begin()[I] = BB; } /// \brief Add an incoming value to the end of the PHI list void addIncoming(MemoryAccess *V, BasicBlock *BB) { if (getNumOperands() == ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. setNumHungOffUseOperands(getNumOperands() + 1); setIncomingValue(getNumOperands() - 1, V); setIncomingBlock(getNumOperands() - 1, BB); } /// \brief Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. int getBasicBlockIndex(const BasicBlock *BB) const { for (unsigned I = 0, E = getNumOperands(); I != E; ++I) if (block_begin()[I] == BB) return I; return -1; } Value *getIncomingValueForBlock(const BasicBlock *BB) const { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument!"); return getIncomingValue(Idx); } static inline bool classof(const MemoryPhi *) { return true; } static inline bool classof(const Value *V) { return V->getValueID() == MemoryPhiVal; } void print(raw_ostream &OS) const override; protected: friend class MemorySSA; /// \brief this is more complicated than the generic /// User::allocHungoffUses, because we have to allocate Uses for the incoming /// values and pointers to the incoming blocks, all in one allocation. void allocHungoffUses(unsigned N) { User::allocHungoffUses(N, /* IsPhi */ true); } /// For debugging only. This gets used to give memory accesses pretty numbers /// when printing them out unsigned getID() const final { return ID; } private: // For debugging only const unsigned ID; unsigned ReservedSpace; /// \brief This grows the operand list in response to a push_back style of /// operation. This grows the number of ops by 1.5 times. void growOperands() { unsigned E = getNumOperands(); // 2 op PHI nodes are VERY common, so reserve at least enough for that. ReservedSpace = std::max(E + E / 2, 2u); growHungoffUses(ReservedSpace, /* IsPhi */ true); } }; template <> struct OperandTraits : public HungoffOperandTraits<2> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess) class MemorySSAWalker; /// \brief Encapsulates MemorySSA, including all data associated with memory /// accesses. class MemorySSA { public: MemorySSA(Function &, AliasAnalysis *, DominatorTree *); MemorySSA(MemorySSA &&); ~MemorySSA(); MemorySSAWalker *getWalker(); /// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA /// access associated with it. If passed a basic block gets the memory phi /// node that exists for that block, if there is one. Otherwise, this will get /// a MemoryUseOrDef. MemoryAccess *getMemoryAccess(const Value *) const; MemoryPhi *getMemoryAccess(const BasicBlock *BB) const; void dump() const; void print(raw_ostream &) const; /// \brief Return true if \p MA represents the live on entry value /// /// Loads and stores from pointer arguments and other global values may be /// defined by memory operations that do not occur in the current function, so /// they may be live on entry to the function. MemorySSA represents such /// memory state by the live on entry definition, which is guaranteed to occur /// before any other memory access in the function. inline bool isLiveOnEntryDef(const MemoryAccess *MA) const { return MA == LiveOnEntryDef.get(); } inline MemoryAccess *getLiveOnEntryDef() const { return LiveOnEntryDef.get(); } using AccessList = iplist; /// \brief Return the list of MemoryAccess's for a given basic block. /// /// This list is not modifiable by the user. const AccessList *getBlockAccesses(const BasicBlock *BB) const { auto It = PerBlockAccesses.find(BB); return It == PerBlockAccesses.end() ? nullptr : It->second.get(); } /// \brief Create an empty MemoryPhi in MemorySSA MemoryPhi *createMemoryPhi(BasicBlock *BB); enum InsertionPlace { Beginning, End }; /// \brief Create a MemoryAccess in MemorySSA at a specified point in a block, /// with a specified clobbering definition. /// /// Returns the new MemoryAccess. /// This should be called when a memory instruction is created that is being /// used to replace an existing memory instruction. It will *not* create PHI /// nodes, or verify the clobbering definition. The insertion place is used /// solely to determine where in the memoryssa access lists the instruction /// will be placed. The caller is expected to keep ordering the same as /// instructions. /// It will return the new MemoryAccess. MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, InsertionPlace Point); /// \brief Create a MemoryAccess in MemorySSA before or after an existing /// MemoryAccess. /// /// Returns the new MemoryAccess. /// This should be called when a memory instruction is created that is being /// used to replace an existing memory instruction. It will *not* create PHI /// nodes, or verify the clobbering definition. The clobbering definition /// must be non-null. MemoryAccess *createMemoryAccessBefore(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt); MemoryAccess *createMemoryAccessAfter(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt); /// \brief Remove a MemoryAccess from MemorySSA, including updating all /// definitions and uses. /// This should be called when a memory instruction that has a MemoryAccess /// associated with it is erased from the program. For example, if a store or /// load is simply erased (not replaced), removeMemoryAccess should be called /// on the MemoryAccess for that store/load. void removeMemoryAccess(MemoryAccess *); /// \brief Given two memory accesses in the same basic block, determine /// whether MemoryAccess \p A dominates MemoryAccess \p B. bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const; /// \brief Verify that MemorySSA is self consistent (IE definitions dominate /// all uses, uses appear in the right places). This is used by unit tests. void verifyMemorySSA() const; protected: // Used by Memory SSA annotater, dumpers, and wrapper pass friend class MemorySSAAnnotatedWriter; friend class MemorySSAPrinterLegacyPass; void verifyDefUses(Function &F) const; void verifyDomination(Function &F) const; void verifyOrdering(Function &F) const; private: class CachingWalker; void buildMemorySSA(); void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const; using AccessMap = DenseMap>; void determineInsertionPoint(const SmallPtrSetImpl &DefiningBlocks); void computeDomLevels(DenseMap &DomLevels); void markUnreachableAsLiveOnEntry(BasicBlock *BB); bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const; MemoryUseOrDef *createNewAccess(Instruction *); MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *); MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace); void removeFromLookups(MemoryAccess *); MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *); void renamePass(DomTreeNode *, MemoryAccess *IncomingVal, SmallPtrSet &Visited); AccessList *getOrCreateAccessList(const BasicBlock *); AliasAnalysis *AA; DominatorTree *DT; Function &F; // Memory SSA mappings DenseMap ValueToMemoryAccess; AccessMap PerBlockAccesses; std::unique_ptr LiveOnEntryDef; // Memory SSA building info std::unique_ptr Walker; unsigned NextID; }; // This pass does eager building and then printing of MemorySSA. It is used by // the tests to be able to build, dump, and verify Memory SSA. class MemorySSAPrinterLegacyPass : public FunctionPass { public: MemorySSAPrinterLegacyPass(); static char ID; bool runOnFunction(Function &) override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; /// An analysis that produces \c MemorySSA for a function. /// class MemorySSAAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static char PassID; public: typedef MemorySSA Result; MemorySSA run(Function &F, AnalysisManager &AM); }; /// \brief Printer pass for \c MemorySSA. class MemorySSAPrinterPass : public PassInfoMixin { raw_ostream &OS; public: explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, AnalysisManager &AM); }; /// \brief Verifier pass for \c MemorySSA. struct MemorySSAVerifierPass : PassInfoMixin { PreservedAnalyses run(Function &F, AnalysisManager &AM); }; /// \brief Legacy analysis pass which computes \c MemorySSA. class MemorySSAWrapperPass : public FunctionPass { public: MemorySSAWrapperPass(); static char ID; bool runOnFunction(Function &) override; void releaseMemory() override; MemorySSA &getMSSA() { return *MSSA; } const MemorySSA &getMSSA() const { return *MSSA; } void getAnalysisUsage(AnalysisUsage &AU) const override; void verifyAnalysis() const override; void print(raw_ostream &OS, const Module *M = nullptr) const override; private: std::unique_ptr MSSA; }; /// \brief This is the generic walker interface for walkers of MemorySSA. /// Walkers are used to be able to further disambiguate the def-use chains /// MemorySSA gives you, or otherwise produce better info than MemorySSA gives /// you. /// In particular, while the def-use chains provide basic information, and are /// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a /// MemoryUse as AliasAnalysis considers it, a user mant want better or other /// information. In particular, they may want to use SCEV info to further /// disambiguate memory accesses, or they may want the nearest dominating /// may-aliasing MemoryDef for a call or a store. This API enables a /// standardized interface to getting and using that info. class MemorySSAWalker { public: MemorySSAWalker(MemorySSA *); virtual ~MemorySSAWalker() {} using MemoryAccessSet = SmallVector; /// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this /// will give you the nearest dominating MemoryAccess that Mod's the location /// the instruction accesses (by skipping any def which AA can prove does not /// alias the location(s) accessed by the instruction given). /// /// Note that this will return a single access, and it must dominate the /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction, /// this will return the MemoryPhi, not the operand. This means that /// given: /// if (a) { /// 1 = MemoryDef(liveOnEntry) /// store %a /// } else { /// 2 = MemoryDef(liveOnEntry) /// store %b /// } /// 3 = MemoryPhi(2, 1) /// MemoryUse(3) /// load %a /// /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef /// in the if (a) branch. virtual MemoryAccess *getClobberingMemoryAccess(const Instruction *) = 0; /// \brief Given a potentially clobbering memory access and a new location, /// calling this will give you the nearest dominating clobbering MemoryAccess /// (by skipping non-aliasing def links). /// /// This version of the function is mainly used to disambiguate phi translated /// pointers, where the value of a pointer may have changed from the initial /// memory access. Note that this expects to be handed either a MemoryUse, /// or an already potentially clobbering access. Unlike the above API, if /// given a MemoryDef that clobbers the pointer as the starting access, it /// will return that MemoryDef, whereas the above would return the clobber /// starting from the use side of the memory def. virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, MemoryLocation &) = 0; /// \brief Given a memory access, invalidate anything this walker knows about /// that access. /// This API is used by walkers that store information to perform basic cache /// invalidation. This will be called by MemorySSA at appropriate times for /// the walker it uses or returns. virtual void invalidateInfo(MemoryAccess *) {} protected: friend class MemorySSA; // For updating MSSA pointer in MemorySSA move // constructor. MemorySSA *MSSA; }; /// \brief A MemorySSAWalker that does no alias queries, or anything else. It /// simply returns the links as they were constructed by the builder. class DoNothingMemorySSAWalker final : public MemorySSAWalker { public: MemoryAccess *getClobberingMemoryAccess(const Instruction *) override; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, MemoryLocation &) override; }; using MemoryAccessPair = std::pair; using ConstMemoryAccessPair = std::pair; /// \brief Iterator base class used to implement const and non-const iterators /// over the defining accesses of a MemoryAccess. template class memoryaccess_def_iterator_base : public iterator_facade_base, std::forward_iterator_tag, T, ptrdiff_t, T *, T *> { using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base; public: memoryaccess_def_iterator_base(T *Start) : Access(Start), ArgNo(0) {} memoryaccess_def_iterator_base() : Access(nullptr), ArgNo(0) {} bool operator==(const memoryaccess_def_iterator_base &Other) const { return Access == Other.Access && (!Access || ArgNo == Other.ArgNo); } // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the // block from the operand in constant time (In a PHINode, the uselist has // both, so it's just subtraction). We provide it as part of the // iterator to avoid callers having to linear walk to get the block. // If the operation becomes constant time on MemoryPHI's, this bit of // abstraction breaking should be removed. BasicBlock *getPhiArgBlock() const { MemoryPhi *MP = dyn_cast(Access); assert(MP && "Tried to get phi arg block when not iterating over a PHI"); return MP->getIncomingBlock(ArgNo); } typename BaseT::iterator::pointer operator*() const { assert(Access && "Tried to access past the end of our iterator"); // Go to the first argument for phis, and the defining access for everything // else. if (MemoryPhi *MP = dyn_cast(Access)) return MP->getIncomingValue(ArgNo); return cast(Access)->getDefiningAccess(); } using BaseT::operator++; memoryaccess_def_iterator &operator++() { assert(Access && "Hit end of iterator"); if (MemoryPhi *MP = dyn_cast(Access)) { if (++ArgNo >= MP->getNumIncomingValues()) { ArgNo = 0; Access = nullptr; } } else { Access = nullptr; } return *this; } private: T *Access; unsigned ArgNo; }; inline memoryaccess_def_iterator MemoryAccess::defs_begin() { return memoryaccess_def_iterator(this); } inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const { return const_memoryaccess_def_iterator(this); } inline memoryaccess_def_iterator MemoryAccess::defs_end() { return memoryaccess_def_iterator(); } inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const { return const_memoryaccess_def_iterator(); } /// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case, /// and uses in the inverse case. template <> struct GraphTraits { using NodeType = MemoryAccess; using ChildIteratorType = memoryaccess_def_iterator; static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return N->defs_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->defs_end(); } }; template <> struct GraphTraits> { using NodeType = MemoryAccess; using ChildIteratorType = MemoryAccess::iterator; static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return N->user_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->user_end(); } }; /// \brief Provide an iterator that walks defs, giving both the memory access, /// and the current pointer location, updating the pointer location as it /// changes due to phi node translation. /// /// This iterator, while somewhat specialized, is what most clients actually /// want when walking upwards through MemorySSA def chains. It takes a pair of /// , and walks defs, properly translating the /// memory location through phi nodes for the user. class upward_defs_iterator : public iterator_facade_base { using BaseT = upward_defs_iterator::iterator_facade_base; public: upward_defs_iterator(const MemoryAccessPair &Info) : DefIterator(Info.first), Location(Info.second), OriginalAccess(Info.first) { CurrentPair.first = nullptr; WalkingPhi = Info.first && isa(Info.first); fillInCurrentPair(); } upward_defs_iterator() : DefIterator(), Location(), OriginalAccess(), WalkingPhi(false) { CurrentPair.first = nullptr; } bool operator==(const upward_defs_iterator &Other) const { return DefIterator == Other.DefIterator; } BaseT::iterator::reference operator*() const { assert(DefIterator != OriginalAccess->defs_end() && "Tried to access past the end of our iterator"); return CurrentPair; } using BaseT::operator++; upward_defs_iterator &operator++() { assert(DefIterator != OriginalAccess->defs_end() && "Tried to access past the end of the iterator"); ++DefIterator; if (DefIterator != OriginalAccess->defs_end()) fillInCurrentPair(); return *this; } BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); } private: void fillInCurrentPair() { CurrentPair.first = *DefIterator; if (WalkingPhi && Location.Ptr) { PHITransAddr Translator( const_cast(Location.Ptr), OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr); if (!Translator.PHITranslateValue(OriginalAccess->getBlock(), DefIterator.getPhiArgBlock(), nullptr, false)) if (Translator.getAddr() != Location.Ptr) { CurrentPair.second = Location.getWithNewPtr(Translator.getAddr()); return; } } CurrentPair.second = Location; } MemoryAccessPair CurrentPair; memoryaccess_def_iterator DefIterator; MemoryLocation Location; MemoryAccess *OriginalAccess; bool WalkingPhi; }; inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) { return upward_defs_iterator(Pair); } inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); } } // end namespace llvm #endif // LLVM_TRANSFORMS_UTILS_MEMORYSSA_H