/* * Copyright © 2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_context.h" #include "brw_state.h" #include "brw_defines.h" #include "brw_util.h" #include "main/macros.h" #include "main/fbobject.h" #include "intel_batchbuffer.h" /** * Determine the appropriate attribute override value to store into the * 3DSTATE_SF structure for a given fragment shader attribute. The attribute * override value contains two pieces of information: the location of the * attribute in the VUE (relative to urb_entry_read_offset, see below), and a * flag indicating whether to "swizzle" the attribute based on the direction * the triangle is facing. * * If an attribute is "swizzled", then the given VUE location is used for * front-facing triangles, and the VUE location that immediately follows is * used for back-facing triangles. We use this to implement the mapping from * gl_FrontColor/gl_BackColor to gl_Color. * * urb_entry_read_offset is the offset into the VUE at which the SF unit is * being instructed to begin reading attribute data. It can be set to a * nonzero value to prevent the SF unit from wasting time reading elements of * the VUE that are not needed by the fragment shader. It is measured in * 256-bit increments. */ uint32_t get_attr_override(struct brw_vue_map *vue_map, int urb_entry_read_offset, int fs_attr, bool two_side_color, uint32_t *max_source_attr) { int vs_attr = _mesa_frag_attrib_to_vert_result(fs_attr); if (vs_attr < 0 || vs_attr == VERT_RESULT_HPOS) { /* These attributes will be overwritten by the fragment shader's * interpolation code (see emit_interp() in brw_wm_fp.c), so just let * them reference the first available attribute. */ return 0; } /* Find the VUE slot for this attribute. */ int slot = vue_map->vert_result_to_slot[vs_attr]; /* If there was only a back color written but not front, use back * as the color instead of undefined */ if (slot == -1 && vs_attr == VERT_RESULT_COL0) slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC0]; if (slot == -1 && vs_attr == VERT_RESULT_COL1) slot = vue_map->vert_result_to_slot[VERT_RESULT_BFC1]; if (slot == -1) { /* This attribute does not exist in the VUE--that means that the vertex * shader did not write to it. Behavior is undefined in this case, so * just reference the first available attribute. */ return 0; } /* Compute the location of the attribute relative to urb_entry_read_offset. * Each increment of urb_entry_read_offset represents a 256-bit value, so * it counts for two 128-bit VUE slots. */ int source_attr = slot - 2 * urb_entry_read_offset; assert(source_attr >= 0 && source_attr < 32); /* If we are doing two-sided color, and the VUE slot following this one * represents a back-facing color, then we need to instruct the SF unit to * do back-facing swizzling. */ bool swizzling = two_side_color && ((vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL0 && vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC0) || (vue_map->slot_to_vert_result[slot] == VERT_RESULT_COL1 && vue_map->slot_to_vert_result[slot+1] == VERT_RESULT_BFC1)); /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */ if (*max_source_attr < source_attr + swizzling) *max_source_attr = source_attr + swizzling; if (swizzling) { return source_attr | (ATTRIBUTE_SWIZZLE_INPUTATTR_FACING << ATTRIBUTE_SWIZZLE_SHIFT); } return source_attr; } static void upload_sf_state(struct brw_context *brw) { struct intel_context *intel = &brw->intel; struct gl_context *ctx = &intel->ctx; /* BRW_NEW_FRAGMENT_PROGRAM */ uint32_t num_outputs = _mesa_bitcount_64(brw->fragment_program->Base.InputsRead); /* _NEW_LIGHT */ bool shade_model_flat = ctx->Light.ShadeModel == GL_FLAT; uint32_t dw1, dw2, dw3, dw4, dw16, dw17; int i; /* _NEW_BUFFER */ bool render_to_fbo = _mesa_is_user_fbo(brw->intel.ctx.DrawBuffer); bool multisampled_fbo = ctx->DrawBuffer->Visual.samples > 1; int attr = 0, input_index = 0; int urb_entry_read_offset = 1; float point_size; uint16_t attr_overrides[FRAG_ATTRIB_MAX]; uint32_t point_sprite_origin; dw1 = GEN6_SF_SWIZZLE_ENABLE | num_outputs << GEN6_SF_NUM_OUTPUTS_SHIFT; dw2 = GEN6_SF_STATISTICS_ENABLE | GEN6_SF_VIEWPORT_TRANSFORM_ENABLE; dw3 = 0; dw4 = 0; dw16 = 0; dw17 = 0; /* _NEW_POLYGON */ if ((ctx->Polygon.FrontFace == GL_CCW) ^ render_to_fbo) dw2 |= GEN6_SF_WINDING_CCW; if (ctx->Polygon.OffsetFill) dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_SOLID; if (ctx->Polygon.OffsetLine) dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_WIREFRAME; if (ctx->Polygon.OffsetPoint) dw2 |= GEN6_SF_GLOBAL_DEPTH_OFFSET_POINT; switch (ctx->Polygon.FrontMode) { case GL_FILL: dw2 |= GEN6_SF_FRONT_SOLID; break; case GL_LINE: dw2 |= GEN6_SF_FRONT_WIREFRAME; break; case GL_POINT: dw2 |= GEN6_SF_FRONT_POINT; break; default: assert(0); break; } switch (ctx->Polygon.BackMode) { case GL_FILL: dw2 |= GEN6_SF_BACK_SOLID; break; case GL_LINE: dw2 |= GEN6_SF_BACK_WIREFRAME; break; case GL_POINT: dw2 |= GEN6_SF_BACK_POINT; break; default: assert(0); break; } /* _NEW_SCISSOR */ if (ctx->Scissor.Enabled) dw3 |= GEN6_SF_SCISSOR_ENABLE; /* _NEW_POLYGON */ if (ctx->Polygon.CullFlag) { switch (ctx->Polygon.CullFaceMode) { case GL_FRONT: dw3 |= GEN6_SF_CULL_FRONT; break; case GL_BACK: dw3 |= GEN6_SF_CULL_BACK; break; case GL_FRONT_AND_BACK: dw3 |= GEN6_SF_CULL_BOTH; break; default: assert(0); break; } } else { dw3 |= GEN6_SF_CULL_NONE; } /* _NEW_LINE */ { uint32_t line_width_u3_7 = U_FIXED(CLAMP(ctx->Line.Width, 0.0, 7.99), 7); /* TODO: line width of 0 is not allowed when MSAA enabled */ if (line_width_u3_7 == 0) line_width_u3_7 = 1; dw3 |= line_width_u3_7 << GEN6_SF_LINE_WIDTH_SHIFT; } if (ctx->Line.SmoothFlag) { dw3 |= GEN6_SF_LINE_AA_ENABLE; dw3 |= GEN6_SF_LINE_AA_MODE_TRUE; dw3 |= GEN6_SF_LINE_END_CAP_WIDTH_1_0; } /* _NEW_MULTISAMPLE */ if (multisampled_fbo && ctx->Multisample.Enabled) dw3 |= GEN6_SF_MSRAST_ON_PATTERN; /* _NEW_PROGRAM | _NEW_POINT */ if (!(ctx->VertexProgram.PointSizeEnabled || ctx->Point._Attenuated)) dw4 |= GEN6_SF_USE_STATE_POINT_WIDTH; /* Clamp to ARB_point_parameters user limits */ point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize); /* Clamp to the hardware limits and convert to fixed point */ dw4 |= U_FIXED(CLAMP(point_size, 0.125, 255.875), 3); /* * Window coordinates in an FBO are inverted, which means point * sprite origin must be inverted, too. */ if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) != render_to_fbo) { point_sprite_origin = GEN6_SF_POINT_SPRITE_LOWERLEFT; } else { point_sprite_origin = GEN6_SF_POINT_SPRITE_UPPERLEFT; } dw1 |= point_sprite_origin; /* _NEW_LIGHT */ if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) { dw4 |= (2 << GEN6_SF_TRI_PROVOKE_SHIFT) | (2 << GEN6_SF_TRIFAN_PROVOKE_SHIFT) | (1 << GEN6_SF_LINE_PROVOKE_SHIFT); } else { dw4 |= (1 << GEN6_SF_TRIFAN_PROVOKE_SHIFT); } /* Create the mapping from the FS inputs we produce to the VS outputs * they source from. */ uint32_t max_source_attr = 0; for (; attr < FRAG_ATTRIB_MAX; attr++) { enum glsl_interp_qualifier interp_qualifier = brw->fragment_program->InterpQualifier[attr]; bool is_gl_Color = attr == FRAG_ATTRIB_COL0 || attr == FRAG_ATTRIB_COL1; if (!(brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(attr))) continue; /* _NEW_POINT */ if (ctx->Point.PointSprite && (attr >= FRAG_ATTRIB_TEX0 && attr <= FRAG_ATTRIB_TEX7) && ctx->Point.CoordReplace[attr - FRAG_ATTRIB_TEX0]) { dw16 |= (1 << input_index); } if (attr == FRAG_ATTRIB_PNTC) dw16 |= (1 << input_index); /* flat shading */ if (interp_qualifier == INTERP_QUALIFIER_FLAT || (shade_model_flat && is_gl_Color && interp_qualifier == INTERP_QUALIFIER_NONE)) dw17 |= (1 << input_index); /* The hardware can only do the overrides on 16 overrides at a * time, and the other up to 16 have to be lined up so that the * input index = the output index. We'll need to do some * tweaking to make sure that's the case. */ assert(input_index < 16 || attr == input_index); /* CACHE_NEW_VS_PROG | _NEW_LIGHT | _NEW_PROGRAM */ attr_overrides[input_index++] = get_attr_override(&brw->vs.prog_data->vue_map, urb_entry_read_offset, attr, ctx->VertexProgram._TwoSideEnabled, &max_source_attr); } for (; input_index < FRAG_ATTRIB_MAX; input_index++) attr_overrides[input_index] = 0; /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length": * * "This field should be set to the minimum length required to read the * maximum source attribute. The maximum source attribute is indicated * by the maximum value of the enabled Attribute # Source Attribute if * Attribute Swizzle Enable is set, Number of Output Attributes-1 if * enable is not set. * read_length = ceiling((max_source_attr + 1) / 2) * * [errata] Corruption/Hang possible if length programmed larger than * recommended" */ uint32_t urb_entry_read_length = ALIGN(max_source_attr + 1, 2) / 2; dw1 |= urb_entry_read_length << GEN6_SF_URB_ENTRY_READ_LENGTH_SHIFT | urb_entry_read_offset << GEN6_SF_URB_ENTRY_READ_OFFSET_SHIFT; BEGIN_BATCH(20); OUT_BATCH(_3DSTATE_SF << 16 | (20 - 2)); OUT_BATCH(dw1); OUT_BATCH(dw2); OUT_BATCH(dw3); OUT_BATCH(dw4); OUT_BATCH_F(ctx->Polygon.OffsetUnits * 2); /* constant. copied from gen4 */ OUT_BATCH_F(ctx->Polygon.OffsetFactor); /* scale */ OUT_BATCH_F(0.0); /* XXX: global depth offset clamp */ for (i = 0; i < 8; i++) { OUT_BATCH(attr_overrides[i * 2] | attr_overrides[i * 2 + 1] << 16); } OUT_BATCH(dw16); /* point sprite texcoord bitmask */ OUT_BATCH(dw17); /* constant interp bitmask */ OUT_BATCH(0); /* wrapshortest enables 0-7 */ OUT_BATCH(0); /* wrapshortest enables 8-15 */ ADVANCE_BATCH(); } const struct brw_tracked_state gen6_sf_state = { .dirty = { .mesa = (_NEW_LIGHT | _NEW_PROGRAM | _NEW_POLYGON | _NEW_LINE | _NEW_SCISSOR | _NEW_BUFFERS | _NEW_POINT | _NEW_MULTISAMPLE), .brw = (BRW_NEW_CONTEXT | BRW_NEW_FRAGMENT_PROGRAM), .cache = CACHE_NEW_VS_PROG }, .emit = upload_sf_state, };