/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" template int icvCompressPoints( T* ptr, const uchar* mask, int mstep, int count ) { int i, j; for( i = j = 0; i < count; i++ ) if( mask[i*mstep] ) { if( i > j ) ptr[j] = ptr[i]; j++; } return j; } class CvModelEstimator2 { public: CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions); virtual ~CvModelEstimator2(); virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model )=0; virtual bool runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model, CvMat* mask, double confidence=0.99, int maxIters=1000 ); virtual bool runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model, CvMat* mask, double threshold, double confidence=0.99, int maxIters=1000 ); virtual bool refine( const CvMat*, const CvMat*, CvMat*, int ) { return true; } virtual void setSeed( int64 seed ); protected: virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ) = 0; virtual int findInliers( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error, CvMat* mask, double threshold ); virtual bool getSubset( const CvMat* m1, const CvMat* m2, CvMat* ms1, CvMat* ms2, int maxAttempts=1000 ); virtual bool checkSubset( const CvMat* ms1, int count ); CvRNG rng; int modelPoints; CvSize modelSize; int maxBasicSolutions; bool checkPartialSubsets; }; CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions) { modelPoints = _modelPoints; modelSize = _modelSize; maxBasicSolutions = _maxBasicSolutions; checkPartialSubsets = true; rng = cvRNG(-1); } CvModelEstimator2::~CvModelEstimator2() { } void CvModelEstimator2::setSeed( int64 seed ) { rng = cvRNG(seed); } int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* _err, CvMat* _mask, double threshold ) { int i, count = _err->rows*_err->cols, goodCount = 0; const float* err = _err->data.fl; uchar* mask = _mask->data.ptr; computeReprojError( m1, m2, model, _err ); threshold *= threshold; for( i = 0; i < count; i++ ) goodCount += mask[i] = err[i] <= threshold; return goodCount; } CV_IMPL int cvRANSACUpdateNumIters( double p, double ep, int model_points, int max_iters ) { int result = 0; CV_FUNCNAME( "cvRANSACUpdateNumIters" ); __BEGIN__; double num, denom; if( model_points <= 0 ) CV_ERROR( CV_StsOutOfRange, "the number of model points should be positive" ); p = MAX(p, 0.); p = MIN(p, 1.); ep = MAX(ep, 0.); ep = MIN(ep, 1.); // avoid inf's & nan's num = MAX(1. - p, DBL_MIN); denom = 1. - pow(1. - ep,model_points); if( denom < DBL_MIN ) EXIT; num = log(num); denom = log(denom); result = denom >= 0 || -num >= max_iters*(-denom) ? max_iters : cvRound(num/denom); __END__; return result; } bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model, CvMat* mask, double reprojThreshold, double confidence, int maxIters ) { bool result = false; CvMat* mask0 = mask, *tmask = 0, *t; CvMat* models = 0, *err = 0; CvMat *ms1 = 0, *ms2 = 0; CV_FUNCNAME( "CvModelEstimator2::estimateRansac" ); __BEGIN__; int iter, niters = maxIters; int count = m1->rows*m1->cols, maxGoodCount = 0; CV_ASSERT( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); if( count < modelPoints ) EXIT; models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); err = cvCreateMat( 1, count, CV_32FC1 ); tmask = cvCreateMat( 1, count, CV_8UC1 ); if( count > modelPoints ) { ms1 = cvCreateMat( 1, modelPoints, m1->type ); ms2 = cvCreateMat( 1, modelPoints, m2->type ); } else { niters = 1; ms1 = (CvMat*)m1; ms2 = (CvMat*)m2; } for( iter = 0; iter < niters; iter++ ) { int i, goodCount, nmodels; if( count > modelPoints ) { bool found = getSubset( m1, m2, ms1, ms2, modelPoints ); if( !found ) { if( iter == 0 ) EXIT; break; } } nmodels = runKernel( ms1, ms2, models ); if( nmodels <= 0 ) continue; for( i = 0; i < nmodels; i++ ) { CvMat model_i; cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold ); if( goodCount > MAX(maxGoodCount, modelPoints-1) ) { CV_SWAP( tmask, mask, t ); cvCopy( &model_i, model ); maxGoodCount = goodCount; niters = cvRANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters ); } } } if( maxGoodCount > 0 ) { if( mask != mask0 ) { CV_SWAP( tmask, mask, t ); cvCopy( tmask, mask ); } result = true; } __END__; if( ms1 != m1 ) cvReleaseMat( &ms1 ); if( ms2 != m2 ) cvReleaseMat( &ms2 ); cvReleaseMat( &models ); cvReleaseMat( &err ); cvReleaseMat( &tmask ); return result; } static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT ) bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model, CvMat* mask, double confidence, int maxIters ) { const double outlierRatio = 0.45; bool result = false; CvMat* models = 0; CvMat *ms1 = 0, *ms2 = 0; CvMat* err = 0; CV_FUNCNAME( "CvModelEstimator2::estimateLMeDS" ); __BEGIN__; int iter, niters = maxIters; int count = m1->rows*m1->cols; double minMedian = DBL_MAX, sigma; CV_ASSERT( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) ); if( count < modelPoints ) EXIT; models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 ); err = cvCreateMat( 1, count, CV_32FC1 ); if( count > modelPoints ) { ms1 = cvCreateMat( 1, modelPoints, m1->type ); ms2 = cvCreateMat( 1, modelPoints, m2->type ); } else { niters = 1; ms1 = (CvMat*)m1; ms2 = (CvMat*)m2; } niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints))); niters = MIN( MAX(niters, 3), maxIters ); for( iter = 0; iter < niters; iter++ ) { int i, nmodels; if( count > modelPoints ) { bool found = getSubset( m1, m2, ms1, ms2, 300 ); if( !found ) { if( iter == 0 ) EXIT; break; } } nmodels = runKernel( ms1, ms2, models ); if( nmodels <= 0 ) continue; for( i = 0; i < nmodels; i++ ) { CvMat model_i; cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height ); computeReprojError( m1, m2, &model_i, err ); icvSortDistances( err->data.i, count, 0 ); double median = count % 2 != 0 ? err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5; if( median < minMedian ) { minMedian = median; cvCopy( &model_i, model ); } } } if( minMedian < DBL_MAX ) { sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*sqrt(minMedian); sigma = MAX( sigma, FLT_EPSILON*100 ); count = findInliers( m1, m2, model, err, mask, sigma ); result = count >= modelPoints; } __END__; if( ms1 != m1 ) cvReleaseMat( &ms1 ); if( ms2 != m2 ) cvReleaseMat( &ms2 ); cvReleaseMat( &models ); cvReleaseMat( &err ); return result; } bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2, CvMat* ms1, CvMat* ms2, int maxAttempts ) { int* idx = (int*)cvStackAlloc( modelPoints*sizeof(idx[0]) ); int i, j, k, idx_i, iters = 0; int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type); const int *m1ptr = m1->data.i, *m2ptr = m2->data.i; int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i; int count = m1->cols*m1->rows; assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) ); elemSize /= sizeof(int); for(;;) { for( i = 0; i < modelPoints && iters < maxAttempts; iters++ ) { idx[i] = idx_i = cvRandInt(&rng) % count; for( j = 0; j < i; j++ ) if( idx_i == idx[j] ) break; if( j < i ) continue; for( k = 0; k < elemSize; k++ ) { ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k]; ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k]; } if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 ))) continue; i++; iters = 0; } if( !checkPartialSubsets && i == modelPoints && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 ))) continue; break; } return i == modelPoints; } bool CvModelEstimator2::checkSubset( const CvMat* m, int count ) { int j, k, i = count-1; CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr; assert( CV_MAT_TYPE(m->type) == CV_64FC2 ); // check that the i-th selected point does not belong // to a line connecting some previously selected points for( j = 0; j < i; j++ ) { double dx1 = ptr[j].x - ptr[i].x; double dy1 = ptr[j].y - ptr[i].y; for( k = 0; k < j; k++ ) { double dx2 = ptr[k].x - ptr[i].x; double dy2 = ptr[k].y - ptr[i].y; if( fabs(dx2*dy1 - dy2*dx1) < FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2))) break; } if( k < j ) break; } return j == i; } class CvHomographyEstimator : public CvModelEstimator2 { public: CvHomographyEstimator( int modelPoints ); virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ); virtual bool refine( const CvMat* m1, const CvMat* m2, CvMat* model, int maxIters ); protected: virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ); }; CvHomographyEstimator::CvHomographyEstimator(int _modelPoints) : CvModelEstimator2(_modelPoints, cvSize(3,3), 1) { assert( _modelPoints == 4 || _modelPoints == 5 ); } int CvHomographyEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* H ) { int i, count = m1->rows*m1->cols; const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr; const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr; double LtL[9][9], W[9][9], V[9][9]; CvMat _LtL = cvMat( 9, 9, CV_64F, LtL ); CvMat _W = cvMat( 9, 9, CV_64F, W ); CvMat _V = cvMat( 9, 9, CV_64F, V ); CvMat _H0 = cvMat( 3, 3, CV_64F, V[8] ); CvMat _Htemp = cvMat( 3, 3, CV_64F, V[7] ); CvPoint2D64f cM={0,0}, cm={0,0}, sM={0,0}, sm={0,0}; for( i = 0; i < count; i++ ) { cm.x += m[i].x; cm.y += m[i].y; cM.x += M[i].x; cM.y += M[i].y; } cm.x /= count; cm.y /= count; cM.x /= count; cM.y /= count; for( i = 0; i < count; i++ ) { sm.x += fabs(m[i].x - cm.x); sm.y += fabs(m[i].y - cm.y); sM.x += fabs(M[i].x - cM.x); sM.y += fabs(M[i].y - cM.y); } sm.x = count/sm.x; sm.y = count/sm.y; sM.x = count/sM.x; sM.y = count/sM.y; double invHnorm[9] = { 1./sm.x, 0, cm.x, 0, 1./sm.y, cm.y, 0, 0, 1 }; double Hnorm2[9] = { sM.x, 0, -cM.x*sM.x, 0, sM.y, -cM.y*sM.y, 0, 0, 1 }; CvMat _invHnorm = cvMat( 3, 3, CV_64FC1, invHnorm ); CvMat _Hnorm2 = cvMat( 3, 3, CV_64FC1, Hnorm2 ); cvZero( &_LtL ); for( i = 0; i < count; i++ ) { double x = (m[i].x - cm.x)*sm.x, y = (m[i].y - cm.y)*sm.y; double X = (M[i].x - cM.x)*sM.x, Y = (M[i].y - cM.y)*sM.y; double Lx[] = { X, Y, 1, 0, 0, 0, -x*X, -x*Y, -x }; double Ly[] = { 0, 0, 0, X, Y, 1, -y*X, -y*Y, -y }; int j, k; for( j = 0; j < 9; j++ ) for( k = j; k < 9; k++ ) LtL[j][k] += Lx[j]*Lx[k] + Ly[j]*Ly[k]; } cvCompleteSymm( &_LtL ); cvSVD( &_LtL, &_W, 0, &_V, CV_SVD_MODIFY_A + CV_SVD_V_T ); cvMatMul( &_invHnorm, &_H0, &_Htemp ); cvMatMul( &_Htemp, &_Hnorm2, &_H0 ); cvConvertScale( &_H0, H, 1./_H0.data.db[8] ); return 1; } void CvHomographyEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* _err ) { int i, count = m1->rows*m1->cols; const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr; const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr; const double* H = model->data.db; float* err = _err->data.fl; for( i = 0; i < count; i++ ) { double ww = 1./(H[6]*M[i].x + H[7]*M[i].y + 1.); double dx = (H[0]*M[i].x + H[1]*M[i].y + H[2])*ww - m[i].x; double dy = (H[3]*M[i].x + H[4]*M[i].y + H[5])*ww - m[i].y; err[i] = (float)(dx*dx + dy*dy); } } bool CvHomographyEstimator::refine( const CvMat* m1, const CvMat* m2, CvMat* model, int maxIters ) { CvLevMarq solver(8, 0, cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, maxIters, DBL_EPSILON)); int i, j, k, count = m1->rows*m1->cols; const CvPoint2D64f* M = (const CvPoint2D64f*)m1->data.ptr; const CvPoint2D64f* m = (const CvPoint2D64f*)m2->data.ptr; CvMat modelPart = cvMat( solver.param->rows, solver.param->cols, model->type, model->data.ptr ); cvCopy( &modelPart, solver.param ); for(;;) { const CvMat* _param = 0; CvMat *_JtJ = 0, *_JtErr = 0; double* _errNorm = 0; if( !solver.updateAlt( _param, _JtJ, _JtErr, _errNorm )) break; for( i = 0; i < count; i++ ) { const double* h = _param->data.db; double Mx = M[i].x, My = M[i].y; double ww = 1./(h[6]*Mx + h[7]*My + 1.); double _xi = (h[0]*Mx + h[1]*My + h[2])*ww; double _yi = (h[3]*Mx + h[4]*My + h[5])*ww; double err[] = { _xi - m[i].x, _yi - m[i].y }; if( _JtJ || _JtErr ) { double J[][8] = { { Mx*ww, My*ww, ww, 0, 0, 0, -Mx*ww*_xi, -My*ww*_xi }, { 0, 0, 0, Mx*ww, My*ww, ww, -Mx*ww*_yi, -My*ww*_yi } }; for( j = 0; j < 8; j++ ) { for( k = j; k < 8; k++ ) _JtJ->data.db[j*8+k] += J[0][j]*J[0][k] + J[1][j]*J[1][k]; _JtErr->data.db[j] += J[0][j]*err[0] + J[1][j]*err[1]; } } if( _errNorm ) *_errNorm += err[0]*err[0] + err[1]*err[1]; } } cvCopy( solver.param, &modelPart ); return true; } CV_IMPL int cvFindHomography( const CvMat* objectPoints, const CvMat* imagePoints, CvMat* __H, int method, double ransacReprojThreshold, CvMat* mask ) { const double confidence = 0.99; bool result = false; CvMat *m = 0, *M = 0, *tempMask = 0; CV_FUNCNAME( "cvFindHomography" ); __BEGIN__; double H[9]; CvMat _H = cvMat( 3, 3, CV_64FC1, H ); int count; CV_ASSERT( CV_IS_MAT(imagePoints) && CV_IS_MAT(objectPoints) ); count = MAX(imagePoints->cols, imagePoints->rows); CV_ASSERT( count >= 4 ); m = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( imagePoints, m ); M = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( objectPoints, M ); if( mask ) { CV_ASSERT( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) && (mask->rows == 1 || mask->cols == 1) && mask->rows*mask->cols == count ); tempMask = mask; } else if( count > 4 ) tempMask = cvCreateMat( 1, count, CV_8U ); if( tempMask ) cvSet( tempMask, cvScalarAll(1.) ); { CvHomographyEstimator estimator( MIN(count, 5) ); if( count == 4 ) method = 0; if( method == CV_LMEDS ) result = estimator.runLMeDS( M, m, &_H, tempMask, confidence ); else if( method == CV_RANSAC ) result = estimator.runRANSAC( M, m, &_H, tempMask, ransacReprojThreshold, confidence ); else result = estimator.runKernel( M, m, &_H ) > 0; if( result && count > 4 ) { icvCompressPoints( (CvPoint2D64f*)M->data.ptr, tempMask->data.ptr, 1, count ); count = icvCompressPoints( (CvPoint2D64f*)m->data.ptr, tempMask->data.ptr, 1, count ); M->cols = m->cols = count; estimator.refine( M, m, &_H, 10 ); } } if( result ) cvConvert( &_H, __H ); __END__; cvReleaseMat( &m ); cvReleaseMat( &M ); if( tempMask != mask ) cvReleaseMat( &tempMask ); return (int)result; } /* Evaluation of Fundamental Matrix from point correspondences. The original code has been written by Valery Mosyagin */ /* The algorithms (except for RANSAC) and the notation have been taken from Zhengyou Zhang's research report "Determining the Epipolar Geometry and its Uncertainty: A Review" that can be found at http://www-sop.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html */ /************************************** 7-point algorithm *******************************/ class CvFMEstimator : public CvModelEstimator2 { public: CvFMEstimator( int _modelPoints ); virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ); virtual int run7Point( const CvMat* m1, const CvMat* m2, CvMat* model ); virtual int run8Point( const CvMat* m1, const CvMat* m2, CvMat* model ); protected: virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error ); }; CvFMEstimator::CvFMEstimator( int _modelPoints ) : CvModelEstimator2( _modelPoints, cvSize(3,3), _modelPoints == 7 ? 3 : 1 ) { assert( _modelPoints == 7 || _modelPoints == 8 ); } int CvFMEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model ) { return modelPoints == 7 ? run7Point( m1, m2, model ) : run8Point( m1, m2, model ); } int CvFMEstimator::run7Point( const CvMat* _m1, const CvMat* _m2, CvMat* _fmatrix ) { double a[7*9], w[7], v[9*9], c[4], r[3]; double* f1, *f2; double t0, t1, t2; CvMat A = cvMat( 7, 9, CV_64F, a ); CvMat V = cvMat( 9, 9, CV_64F, v ); CvMat W = cvMat( 7, 1, CV_64F, w ); CvMat coeffs = cvMat( 1, 4, CV_64F, c ); CvMat roots = cvMat( 1, 3, CV_64F, r ); const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr; const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr; double* fmatrix = _fmatrix->data.db; int i, k, n; // form a linear system: i-th row of A(=a) represents // the equation: (m2[i], 1)'*F*(m1[i], 1) = 0 for( i = 0; i < 7; i++ ) { double x0 = m1[i].x, y0 = m1[i].y; double x1 = m2[i].x, y1 = m2[i].y; a[i*9+0] = x1*x0; a[i*9+1] = x1*y0; a[i*9+2] = x1; a[i*9+3] = y1*x0; a[i*9+4] = y1*y0; a[i*9+5] = y1; a[i*9+6] = x0; a[i*9+7] = y0; a[i*9+8] = 1; } // A*(f11 f12 ... f33)' = 0 is singular (7 equations for 9 variables), so // the solution is linear subspace of dimensionality 2. // => use the last two singular vectors as a basis of the space // (according to SVD properties) cvSVD( &A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T ); f1 = v + 7*9; f2 = v + 8*9; // f1, f2 is a basis => lambda*f1 + mu*f2 is an arbitrary f. matrix. // as it is determined up to a scale, normalize lambda & mu (lambda + mu = 1), // so f ~ lambda*f1 + (1 - lambda)*f2. // use the additional constraint det(f) = det(lambda*f1 + (1-lambda)*f2) to find lambda. // it will be a cubic equation. // find c - polynomial coefficients. for( i = 0; i < 9; i++ ) f1[i] -= f2[i]; t0 = f2[4]*f2[8] - f2[5]*f2[7]; t1 = f2[3]*f2[8] - f2[5]*f2[6]; t2 = f2[3]*f2[7] - f2[4]*f2[6]; c[3] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2; c[2] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2 - f1[3]*(f2[1]*f2[8] - f2[2]*f2[7]) + f1[4]*(f2[0]*f2[8] - f2[2]*f2[6]) - f1[5]*(f2[0]*f2[7] - f2[1]*f2[6]) + f1[6]*(f2[1]*f2[5] - f2[2]*f2[4]) - f1[7]*(f2[0]*f2[5] - f2[2]*f2[3]) + f1[8]*(f2[0]*f2[4] - f2[1]*f2[3]); t0 = f1[4]*f1[8] - f1[5]*f1[7]; t1 = f1[3]*f1[8] - f1[5]*f1[6]; t2 = f1[3]*f1[7] - f1[4]*f1[6]; c[1] = f2[0]*t0 - f2[1]*t1 + f2[2]*t2 - f2[3]*(f1[1]*f1[8] - f1[2]*f1[7]) + f2[4]*(f1[0]*f1[8] - f1[2]*f1[6]) - f2[5]*(f1[0]*f1[7] - f1[1]*f1[6]) + f2[6]*(f1[1]*f1[5] - f1[2]*f1[4]) - f2[7]*(f1[0]*f1[5] - f1[2]*f1[3]) + f2[8]*(f1[0]*f1[4] - f1[1]*f1[3]); c[0] = f1[0]*t0 - f1[1]*t1 + f1[2]*t2; // solve the cubic equation; there can be 1 to 3 roots ... n = cvSolveCubic( &coeffs, &roots ); if( n < 1 || n > 3 ) return n; for( k = 0; k < n; k++, fmatrix += 9 ) { // for each root form the fundamental matrix double lambda = r[k], mu = 1.; double s = f1[8]*r[k] + f2[8]; // normalize each matrix, so that F(3,3) (~fmatrix[8]) == 1 if( fabs(s) > DBL_EPSILON ) { mu = 1./s; lambda *= mu; fmatrix[8] = 1.; } else fmatrix[8] = 0.; for( i = 0; i < 8; i++ ) fmatrix[i] = f1[i]*lambda + f2[i]*mu; } return n; } int CvFMEstimator::run8Point( const CvMat* _m1, const CvMat* _m2, CvMat* _fmatrix ) { double a[9*9], w[9], v[9*9]; CvMat W = cvMat( 1, 9, CV_64F, w ); CvMat V = cvMat( 9, 9, CV_64F, v ); CvMat A = cvMat( 9, 9, CV_64F, a ); CvMat U, F0, TF; CvPoint2D64f m0c = {0,0}, m1c = {0,0}; double t, scale0 = 0, scale1 = 0; const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr; const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr; double* fmatrix = _fmatrix->data.db; int i, j, k, count = _m1->cols*_m1->rows; // compute centers and average distances for each of the two point sets for( i = 0; i < count; i++ ) { double x = m1[i].x, y = m1[i].y; m0c.x += x; m0c.y += y; x = m2[i].x, y = m2[i].y; m1c.x += x; m1c.y += y; } // calculate the normalizing transformations for each of the point sets: // after the transformation each set will have the mass center at the coordinate origin // and the average distance from the origin will be ~sqrt(2). t = 1./count; m0c.x *= t; m0c.y *= t; m1c.x *= t; m1c.y *= t; for( i = 0; i < count; i++ ) { double x = m1[i].x - m0c.x, y = m1[i].y - m0c.y; scale0 += sqrt(x*x + y*y); x = fabs(m2[i].x - m1c.x), y = fabs(m2[i].y - m1c.y); scale1 += sqrt(x*x + y*y); } scale0 *= t; scale1 *= t; if( scale0 < FLT_EPSILON || scale1 < FLT_EPSILON ) return 0; scale0 = sqrt(2.)/scale0; scale1 = sqrt(2.)/scale1; cvZero( &A ); // form a linear system Ax=0: for each selected pair of points m1 & m2, // the row of A(=a) represents the coefficients of equation: (m2, 1)'*F*(m1, 1) = 0 // to save computation time, we compute (At*A) instead of A and then solve (At*A)x=0. for( i = 0; i < count; i++ ) { double x0 = (m1[i].x - m0c.x)*scale0; double y0 = (m1[i].y - m0c.y)*scale0; double x1 = (m2[i].x - m1c.x)*scale1; double y1 = (m2[i].y - m1c.y)*scale1; double r[9] = { x1*x0, x1*y0, x1, y1*x0, y1*y0, y1, x0, y0, 1 }; for( j = 0; j < 9; j++ ) for( k = 0; k < 9; k++ ) a[j*9+k] += r[j]*r[k]; } cvSVD( &A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T ); for( i = 0; i < 8; i++ ) { if( fabs(w[i]) < DBL_EPSILON ) break; } if( i < 7 ) return 0; F0 = cvMat( 3, 3, CV_64F, v + 9*8 ); // take the last column of v as a solution of Af = 0 // make F0 singular (of rank 2) by decomposing it with SVD, // zeroing the last diagonal element of W and then composing the matrices back. // use v as a temporary storage for different 3x3 matrices W = U = V = TF = F0; W.data.db = v; U.data.db = v + 9; V.data.db = v + 18; TF.data.db = v + 27; cvSVD( &F0, &W, &U, &V, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T ); W.data.db[8] = 0.; // F0 <- U*diag([W(1), W(2), 0])*V' cvGEMM( &U, &W, 1., 0, 0., &TF, CV_GEMM_A_T ); cvGEMM( &TF, &V, 1., 0, 0., &F0, 0/*CV_GEMM_B_T*/ ); // apply the transformation that is inverse // to what we used to normalize the point coordinates { double tt0[] = { scale0, 0, -scale0*m0c.x, 0, scale0, -scale0*m0c.y, 0, 0, 1 }; double tt1[] = { scale1, 0, -scale1*m1c.x, 0, scale1, -scale1*m1c.y, 0, 0, 1 }; CvMat T0, T1; T0 = T1 = F0; T0.data.db = tt0; T1.data.db = tt1; // F0 <- T1'*F0*T0 cvGEMM( &T1, &F0, 1., 0, 0., &TF, CV_GEMM_A_T ); F0.data.db = fmatrix; cvGEMM( &TF, &T0, 1., 0, 0., &F0, 0 ); // make F(3,3) = 1 if( fabs(F0.data.db[8]) > FLT_EPSILON ) cvScale( &F0, &F0, 1./F0.data.db[8] ); } return 1; } void CvFMEstimator::computeReprojError( const CvMat* _m1, const CvMat* _m2, const CvMat* model, CvMat* _err ) { int i, count = _m1->rows*_m1->cols; const CvPoint2D64f* m1 = (const CvPoint2D64f*)_m1->data.ptr; const CvPoint2D64f* m2 = (const CvPoint2D64f*)_m2->data.ptr; const double* F = model->data.db; float* err = _err->data.fl; for( i = 0; i < count; i++ ) { double a, b, c, d1, d2, s1, s2; a = F[0]*m1[i].x + F[1]*m1[i].y + F[2]; b = F[3]*m1[i].x + F[4]*m1[i].y + F[5]; c = F[6]*m1[i].x + F[7]*m1[i].y + F[8]; s2 = 1./(a*a + b*b); d2 = m2[i].x*a + m2[i].y*b + c; a = F[0]*m2[i].x + F[3]*m2[i].y + F[6]; b = F[1]*m2[i].x + F[4]*m2[i].y + F[7]; c = F[2]*m2[i].x + F[5]*m2[i].y + F[8]; s1 = 1./(a*a + b*b); d1 = m1[i].x*a + m1[i].y*b + c; err[i] = (float)(d1*d1*s1 + d2*d2*s2); } } CV_IMPL int cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, CvMat* fmatrix, int method, double param1, double param2, CvMat* mask ) { int result = 0; CvMat *m1 = 0, *m2 = 0, *tempMask = 0; CV_FUNCNAME( "cvFindFundamentalMat" ); __BEGIN__; double F[3*9]; CvMat _F3x3 = cvMat( 3, 3, CV_64FC1, F ), _F9x3 = cvMat( 9, 3, CV_64FC1, F ); int count; CV_ASSERT( CV_IS_MAT(points1) && CV_IS_MAT(points2) && CV_ARE_SIZES_EQ(points1, points2) ); CV_ASSERT( CV_IS_MAT(fmatrix) && fmatrix->cols == 3 && (fmatrix->rows == 3 || (fmatrix->rows == 9 && method == CV_FM_7POINT)) ); count = MAX(points1->cols, points1->rows); if( count < 7 ) EXIT; m1 = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( points1, m1 ); m2 = cvCreateMat( 1, count, CV_64FC2 ); cvConvertPointsHomogeneous( points2, m2 ); if( mask ) { CV_ASSERT( CV_IS_MASK_ARR(mask) && CV_IS_MAT_CONT(mask->type) && (mask->rows == 1 || mask->cols == 1) && mask->rows*mask->cols == count ); tempMask = mask; } else if( count > 8 ) tempMask = cvCreateMat( 1, count, CV_8U ); if( tempMask ) cvSet( tempMask, cvScalarAll(1.) ); { CvFMEstimator estimator( MIN(count, (method & 3) == CV_FM_7POINT ? 7 : 8) ); if( count == 7 ) result = estimator.run7Point(m1, m2, &_F9x3); else if( count == 8 || method == CV_FM_8POINT ) result = estimator.run8Point(m1, m2, &_F3x3); else if( count > 8 ) { if( param1 <= 0 ) param1 = 3; if( param2 < DBL_EPSILON || param2 > 1 - DBL_EPSILON ) param2 = 0.99; if( (method & ~3) == CV_RANSAC ) result = estimator.runRANSAC(m1, m2, &_F3x3, tempMask, param1, param2 ); else result = estimator.runLMeDS(m1, m2, &_F3x3, tempMask, param2 ); if( result <= 0 ) EXIT; icvCompressPoints( (CvPoint2D64f*)m1->data.ptr, tempMask->data.ptr, 1, count ); count = icvCompressPoints( (CvPoint2D64f*)m2->data.ptr, tempMask->data.ptr, 1, count ); assert( count >= 8 ); m1->cols = m2->cols = count; estimator.run8Point(m1, m2, &_F3x3); } } if( result ) cvConvert( fmatrix->rows == 3 ? &_F3x3 : &_F9x3, fmatrix ); __END__; cvReleaseMat( &m1 ); cvReleaseMat( &m2 ); if( tempMask != mask ) cvReleaseMat( &tempMask ); return result; } CV_IMPL void cvComputeCorrespondEpilines( const CvMat* points, int pointImageID, const CvMat* fmatrix, CvMat* lines ) { CV_FUNCNAME( "cvComputeCorrespondEpilines" ); __BEGIN__; int abc_stride, abc_plane_stride, abc_elem_size; int plane_stride, stride, elem_size; int i, dims, count, depth, cn, abc_dims, abc_count, abc_depth, abc_cn; uchar *ap, *bp, *cp; const uchar *xp, *yp, *zp; double f[9]; CvMat F = cvMat( 3, 3, CV_64F, f ); if( !CV_IS_MAT(points) ) CV_ERROR( !points ? CV_StsNullPtr : CV_StsBadArg, "points parameter is not a valid matrix" ); depth = CV_MAT_DEPTH(points->type); cn = CV_MAT_CN(points->type); if( (depth != CV_32F && depth != CV_64F) || (cn != 1 && cn != 2 && cn != 3) ) CV_ERROR( CV_StsUnsupportedFormat, "The format of point matrix is unsupported" ); if( points->rows > points->cols ) { dims = cn*points->cols; count = points->rows; } else { if( (points->rows > 1 && cn > 1) || (points->rows == 1 && cn == 1) ) CV_ERROR( CV_StsBadSize, "The point matrix does not have a proper layout (2xn, 3xn, nx2 or nx3)" ); dims = cn * points->rows; count = points->cols; } if( dims != 2 && dims != 3 ) CV_ERROR( CV_StsOutOfRange, "The dimensionality of points must be 2 or 3" ); if( !CV_IS_MAT(fmatrix) ) CV_ERROR( !fmatrix ? CV_StsNullPtr : CV_StsBadArg, "fmatrix is not a valid matrix" ); if( CV_MAT_TYPE(fmatrix->type) != CV_32FC1 && CV_MAT_TYPE(fmatrix->type) != CV_64FC1 ) CV_ERROR( CV_StsUnsupportedFormat, "fundamental matrix must have 32fC1 or 64fC1 type" ); if( fmatrix->cols != 3 || fmatrix->rows != 3 ) CV_ERROR( CV_StsBadSize, "fundamental matrix must be 3x3" ); if( !CV_IS_MAT(lines) ) CV_ERROR( !lines ? CV_StsNullPtr : CV_StsBadArg, "lines parameter is not a valid matrix" ); abc_depth = CV_MAT_DEPTH(lines->type); abc_cn = CV_MAT_CN(lines->type); if( (abc_depth != CV_32F && abc_depth != CV_64F) || (abc_cn != 1 && abc_cn != 3) ) CV_ERROR( CV_StsUnsupportedFormat, "The format of the matrix of lines is unsupported" ); if( lines->rows > lines->cols ) { abc_dims = abc_cn*lines->cols; abc_count = lines->rows; } else { if( (lines->rows > 1 && abc_cn > 1) || (lines->rows == 1 && abc_cn == 1) ) CV_ERROR( CV_StsBadSize, "The lines matrix does not have a proper layout (3xn or nx3)" ); abc_dims = abc_cn * lines->rows; abc_count = lines->cols; } if( abc_dims != 3 ) CV_ERROR( CV_StsOutOfRange, "The lines matrix does not have a proper layout (3xn or nx3)" ); if( abc_count != count ) CV_ERROR( CV_StsUnmatchedSizes, "The numbers of points and lines are different" ); elem_size = CV_ELEM_SIZE(depth); abc_elem_size = CV_ELEM_SIZE(abc_depth); if( points->rows == dims ) { plane_stride = points->step; stride = elem_size; } else { plane_stride = elem_size; stride = points->rows == 1 ? dims*elem_size : points->step; } if( lines->rows == 3 ) { abc_plane_stride = lines->step; abc_stride = abc_elem_size; } else { abc_plane_stride = abc_elem_size; abc_stride = lines->rows == 1 ? 3*abc_elem_size : lines->step; } CV_CALL( cvConvert( fmatrix, &F )); if( pointImageID == 2 ) cvTranspose( &F, &F ); xp = points->data.ptr; yp = xp + plane_stride; zp = dims == 3 ? yp + plane_stride : 0; ap = lines->data.ptr; bp = ap + abc_plane_stride; cp = bp + abc_plane_stride; for( i = 0; i < count; i++ ) { double x, y, z = 1.; double a, b, c, nu; if( depth == CV_32F ) { x = *(float*)xp; y = *(float*)yp; if( zp ) z = *(float*)zp, zp += stride; } else { x = *(double*)xp; y = *(double*)yp; if( zp ) z = *(double*)zp, zp += stride; } xp += stride; yp += stride; a = f[0]*x + f[1]*y + f[2]*z; b = f[3]*x + f[4]*y + f[5]*z; c = f[6]*x + f[7]*y + f[8]*z; nu = a*a + b*b; nu = nu ? 1./sqrt(nu) : 1.; a *= nu; b *= nu; c *= nu; if( abc_depth == CV_32F ) { *(float*)ap = (float)a; *(float*)bp = (float)b; *(float*)cp = (float)c; } else { *(double*)ap = a; *(double*)bp = b; *(double*)cp = c; } ap += abc_stride; bp += abc_stride; cp += abc_stride; } __END__; } CV_IMPL void cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ) { CvMat* temp = 0; CvMat* denom = 0; CV_FUNCNAME( "cvConvertPointsHomogeneous" ); __BEGIN__; int i, s_count, s_dims, d_count, d_dims; CvMat _src, _dst, _ones; CvMat* ones = 0; if( !CV_IS_MAT(src) ) CV_ERROR( !src ? CV_StsNullPtr : CV_StsBadArg, "The input parameter is not a valid matrix" ); if( !CV_IS_MAT(dst) ) CV_ERROR( !dst ? CV_StsNullPtr : CV_StsBadArg, "The output parameter is not a valid matrix" ); if( src == dst || src->data.ptr == dst->data.ptr ) { if( src != dst && (!CV_ARE_TYPES_EQ(src, dst) || !CV_ARE_SIZES_EQ(src,dst)) ) CV_ERROR( CV_StsBadArg, "Invalid inplace operation" ); EXIT; } if( src->rows > src->cols ) { if( !((src->cols > 1) ^ (CV_MAT_CN(src->type) > 1)) ) CV_ERROR( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" ); s_dims = CV_MAT_CN(src->type)*src->cols; s_count = src->rows; } else { if( !((src->rows > 1) ^ (CV_MAT_CN(src->type) > 1)) ) CV_ERROR( CV_StsBadSize, "Either the number of channels or columns or rows must be =1" ); s_dims = CV_MAT_CN(src->type)*src->rows; s_count = src->cols; } if( src->rows == 1 || src->cols == 1 ) src = cvReshape( src, &_src, 1, s_count ); if( dst->rows > dst->cols ) { if( !((dst->cols > 1) ^ (CV_MAT_CN(dst->type) > 1)) ) CV_ERROR( CV_StsBadSize, "Either the number of channels or columns or rows in the input matrix must be =1" ); d_dims = CV_MAT_CN(dst->type)*dst->cols; d_count = dst->rows; } else { if( !((dst->rows > 1) ^ (CV_MAT_CN(dst->type) > 1)) ) CV_ERROR( CV_StsBadSize, "Either the number of channels or columns or rows in the output matrix must be =1" ); d_dims = CV_MAT_CN(dst->type)*dst->rows; d_count = dst->cols; } if( dst->rows == 1 || dst->cols == 1 ) dst = cvReshape( dst, &_dst, 1, d_count ); if( s_count != d_count ) CV_ERROR( CV_StsUnmatchedSizes, "Both matrices must have the same number of points" ); if( CV_MAT_DEPTH(src->type) < CV_32F || CV_MAT_DEPTH(dst->type) < CV_32F ) CV_ERROR( CV_StsUnsupportedFormat, "Both matrices must be floating-point (single or double precision)" ); if( s_dims < 2 || s_dims > 4 || d_dims < 2 || d_dims > 4 ) CV_ERROR( CV_StsOutOfRange, "Both input and output point dimensionality must be 2, 3 or 4" ); if( s_dims < d_dims - 1 || s_dims > d_dims + 1 ) CV_ERROR( CV_StsUnmatchedSizes, "The dimensionalities of input and output point sets differ too much" ); if( s_dims == d_dims - 1 ) { if( d_count == dst->rows ) { ones = cvGetSubRect( dst, &_ones, cvRect( s_dims, 0, 1, d_count )); dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, s_dims, d_count )); } else { ones = cvGetSubRect( dst, &_ones, cvRect( 0, s_dims, d_count, 1 )); dst = cvGetSubRect( dst, &_dst, cvRect( 0, 0, d_count, s_dims )); } } if( s_dims <= d_dims ) { if( src->rows == dst->rows && src->cols == dst->cols ) { if( CV_ARE_TYPES_EQ( src, dst ) ) cvCopy( src, dst ); else cvConvert( src, dst ); } else { if( !CV_ARE_TYPES_EQ( src, dst )) { CV_CALL( temp = cvCreateMat( src->rows, src->cols, dst->type )); cvConvert( src, temp ); src = temp; } cvTranspose( src, dst ); } if( ones ) cvSet( ones, cvRealScalar(1.) ); } else { int s_plane_stride, s_stride, d_plane_stride, d_stride, elem_size; if( !CV_ARE_TYPES_EQ( src, dst )) { CV_CALL( temp = cvCreateMat( src->rows, src->cols, dst->type )); cvConvert( src, temp ); src = temp; } elem_size = CV_ELEM_SIZE(src->type); if( s_count == src->cols ) s_plane_stride = src->step / elem_size, s_stride = 1; else s_stride = src->step / elem_size, s_plane_stride = 1; if( d_count == dst->cols ) d_plane_stride = dst->step / elem_size, d_stride = 1; else d_stride = dst->step / elem_size, d_plane_stride = 1; CV_CALL( denom = cvCreateMat( 1, d_count, dst->type )); if( CV_MAT_DEPTH(dst->type) == CV_32F ) { const float* xs = src->data.fl; const float* ys = xs + s_plane_stride; const float* zs = 0; const float* ws = xs + (s_dims - 1)*s_plane_stride; float* iw = denom->data.fl; float* xd = dst->data.fl; float* yd = xd + d_plane_stride; float* zd = 0; if( d_dims == 3 ) { zs = ys + s_plane_stride; zd = yd + d_plane_stride; } for( i = 0; i < d_count; i++, ws += s_stride ) { float t = *ws; iw[i] = t ? t : 1.f; } cvDiv( 0, denom, denom ); if( d_dims == 3 ) for( i = 0; i < d_count; i++ ) { float w = iw[i]; float x = *xs * w, y = *ys * w, z = *zs * w; xs += s_stride; ys += s_stride; zs += s_stride; *xd = x; *yd = y; *zd = z; xd += d_stride; yd += d_stride; zd += d_stride; } else for( i = 0; i < d_count; i++ ) { float w = iw[i]; float x = *xs * w, y = *ys * w; xs += s_stride; ys += s_stride; *xd = x; *yd = y; xd += d_stride; yd += d_stride; } } else { const double* xs = src->data.db; const double* ys = xs + s_plane_stride; const double* zs = 0; const double* ws = xs + (s_dims - 1)*s_plane_stride; double* iw = denom->data.db; double* xd = dst->data.db; double* yd = xd + d_plane_stride; double* zd = 0; if( d_dims == 3 ) { zs = ys + s_plane_stride; zd = yd + d_plane_stride; } for( i = 0; i < d_count; i++, ws += s_stride ) { double t = *ws; iw[i] = t ? t : 1.; } cvDiv( 0, denom, denom ); if( d_dims == 3 ) for( i = 0; i < d_count; i++ ) { double w = iw[i]; double x = *xs * w, y = *ys * w, z = *zs * w; xs += s_stride; ys += s_stride; zs += s_stride; *xd = x; *yd = y; *zd = z; xd += d_stride; yd += d_stride; zd += d_stride; } else for( i = 0; i < d_count; i++ ) { double w = iw[i]; double x = *xs * w, y = *ys * w; xs += s_stride; ys += s_stride; *xd = x; *yd = y; xd += d_stride; yd += d_stride; } } } __END__; cvReleaseMat( &denom ); cvReleaseMat( &temp ); } /* End of file. */