/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" /* Creates new histogram */ CvHistogram * cvCreateHist( int dims, int *sizes, CvHistType type, float** ranges, int uniform ) { CvHistogram *hist = 0; CV_FUNCNAME( "cvCreateHist" ); __BEGIN__; if( (unsigned)dims > CV_MAX_DIM ) CV_ERROR( CV_BadOrder, "Number of dimensions is out of range" ); if( !sizes ) CV_ERROR( CV_HeaderIsNull, "Null pointer" ); CV_CALL( hist = (CvHistogram *)cvAlloc( sizeof( CvHistogram ))); hist->type = CV_HIST_MAGIC_VAL; hist->thresh2 = 0; hist->bins = 0; if( type == CV_HIST_ARRAY ) { CV_CALL( hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, CV_HIST_DEFAULT_TYPE )); CV_CALL( cvCreateData( hist->bins )); } else if( type == CV_HIST_SPARSE ) { CV_CALL( hist->bins = cvCreateSparseMat( dims, sizes, CV_HIST_DEFAULT_TYPE )); } else { CV_ERROR( CV_StsBadArg, "Invalid histogram type" ); } if( ranges ) CV_CALL( cvSetHistBinRanges( hist, ranges, uniform )); __END__; if( cvGetErrStatus() < 0 ) cvReleaseHist( &hist ); return hist; } /* Creates histogram wrapping header for given array */ CV_IMPL CvHistogram* cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist, float *data, float **ranges, int uniform ) { CvHistogram* result = 0; CV_FUNCNAME( "cvMakeHistHeaderForArray" ); __BEGIN__; if( !hist ) CV_ERROR( CV_StsNullPtr, "Null histogram header pointer" ); if( !data ) CV_ERROR( CV_StsNullPtr, "Null data pointer" ); hist->thresh2 = 0; hist->type = CV_HIST_MAGIC_VAL; CV_CALL( hist->bins = cvInitMatNDHeader( &hist->mat, dims, sizes, CV_HIST_DEFAULT_TYPE, data )); if( ranges ) { if( !uniform ) CV_ERROR( CV_StsBadArg, "Only uniform bin ranges can be used here " "(to avoid memory allocation)" ); CV_CALL( cvSetHistBinRanges( hist, ranges, uniform )); } result = hist; __END__; if( cvGetErrStatus() < 0 && hist ) { hist->type = 0; hist->bins = 0; } return result; } CV_IMPL void cvReleaseHist( CvHistogram **hist ) { CV_FUNCNAME( "cvReleaseHist" ); __BEGIN__; if( !hist ) CV_ERROR( CV_StsNullPtr, "" ); if( *hist ) { CvHistogram* temp = *hist; if( !CV_IS_HIST(temp)) CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); *hist = 0; if( CV_IS_SPARSE_HIST( temp )) cvRelease( &temp->bins ); else { cvReleaseData( temp->bins ); temp->bins = 0; } if( temp->thresh2 ) cvFree( &temp->thresh2 ); cvFree( &temp ); } __END__; } CV_IMPL void cvClearHist( CvHistogram *hist ) { CV_FUNCNAME( "cvClearHist" ); __BEGIN__; if( !CV_IS_HIST(hist) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); cvZero( hist->bins ); __END__; } // Clears histogram bins that are below than threshold CV_IMPL void cvThreshHist( CvHistogram* hist, double thresh ) { CV_FUNCNAME( "cvThreshHist" ); __BEGIN__; if( !CV_IS_HIST(hist) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); if( !CV_IS_SPARSE_MAT(hist->bins) ) { CvMat mat; CV_CALL( cvGetMat( hist->bins, &mat, 0, 1 )); CV_CALL( cvThreshold( &mat, &mat, thresh, 0, CV_THRESH_TOZERO )); } else { CvSparseMat* mat = (CvSparseMat*)hist->bins; CvSparseMatIterator iterator; CvSparseNode *node; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { float* val = (float*)CV_NODE_VAL( mat, node ); if( *val <= thresh ) *val = 0; } } __END__; } // Normalizes histogram (make sum of the histogram bins == factor) CV_IMPL void cvNormalizeHist( CvHistogram* hist, double factor ) { double sum = 0; CV_FUNCNAME( "cvNormalizeHist" ); __BEGIN__; if( !CV_IS_HIST(hist) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); if( !CV_IS_SPARSE_HIST(hist) ) { CvMat mat; CV_CALL( cvGetMat( hist->bins, &mat, 0, 1 )); CV_CALL( sum = cvSum( &mat ).val[0] ); if( fabs(sum) < DBL_EPSILON ) sum = 1; CV_CALL( cvScale( &mat, &mat, factor/sum, 0 )); } else { CvSparseMat* mat = (CvSparseMat*)hist->bins; CvSparseMatIterator iterator; CvSparseNode *node; float scale; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { sum += *(float*)CV_NODE_VAL(mat,node); } if( fabs(sum) < DBL_EPSILON ) sum = 1; scale = (float)(factor/sum); for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { *(float*)CV_NODE_VAL(mat,node) *= scale; } } __END__; } // Retrieves histogram global min, max and their positions CV_IMPL void cvGetMinMaxHistValue( const CvHistogram* hist, float *value_min, float* value_max, int* idx_min, int* idx_max ) { double minVal, maxVal; CV_FUNCNAME( "cvGetMinMaxHistValue" ); __BEGIN__; int i, dims, size[CV_MAX_DIM]; if( !CV_IS_HIST(hist) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); dims = cvGetDims( hist->bins, size ); if( !CV_IS_SPARSE_HIST(hist) ) { CvMat mat; CvPoint minPt, maxPt; CV_CALL( cvGetMat( hist->bins, &mat, 0, 1 )); CV_CALL( cvMinMaxLoc( &mat, &minVal, &maxVal, &minPt, &maxPt )); if( dims == 1 ) { if( idx_min ) *idx_min = minPt.y + minPt.x; if( idx_max ) *idx_max = maxPt.y + maxPt.x; } else if( dims == 2 ) { if( idx_min ) idx_min[0] = minPt.y, idx_min[1] = minPt.x; if( idx_max ) idx_max[0] = maxPt.y, idx_max[1] = maxPt.x; } else if( idx_min || idx_max ) { int imin = minPt.y*mat.cols + minPt.x; int imax = maxPt.y*mat.cols + maxPt.x; int i; for( i = dims - 1; i >= 0; i-- ) { if( idx_min ) { int t = imin / size[i]; idx_min[i] = imin - t*size[i]; imin = t; } if( idx_max ) { int t = imax / size[i]; idx_max[i] = imax - t*size[i]; imax = t; } } } } else { CvSparseMat* mat = (CvSparseMat*)hist->bins; CvSparseMatIterator iterator; CvSparseNode *node; int minv = INT_MAX; int maxv = INT_MIN; CvSparseNode* minNode = 0; CvSparseNode* maxNode = 0; const int *_idx_min = 0, *_idx_max = 0; Cv32suf m; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { int value = *(int*)CV_NODE_VAL(mat,node); value = CV_TOGGLE_FLT(value); if( value < minv ) { minv = value; minNode = node; } if( value > maxv ) { maxv = value; maxNode = node; } } if( minNode ) { _idx_min = CV_NODE_IDX(mat,minNode); _idx_max = CV_NODE_IDX(mat,maxNode); m.i = CV_TOGGLE_FLT(minv); minVal = m.f; m.i = CV_TOGGLE_FLT(maxv); maxVal = m.f; } else { minVal = maxVal = 0; } for( i = 0; i < dims; i++ ) { if( idx_min ) idx_min[i] = _idx_min ? _idx_min[i] : -1; if( idx_max ) idx_max[i] = _idx_max ? _idx_max[i] : -1; } } if( value_min ) *value_min = (float)minVal; if( value_max ) *value_max = (float)maxVal; __END__; } // Compares two histograms using one of a few methods CV_IMPL double cvCompareHist( const CvHistogram* hist1, const CvHistogram* hist2, int method ) { double _result = -1; CV_FUNCNAME( "cvCompareHist" ); __BEGIN__; int i, dims1, dims2; int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1; double result = 0; if( !CV_IS_HIST(hist1) || !CV_IS_HIST(hist2) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header[s]" ); if( CV_IS_SPARSE_MAT(hist1->bins) != CV_IS_SPARSE_MAT(hist2->bins)) CV_ERROR(CV_StsUnmatchedFormats, "One of histograms is sparse and other is not"); CV_CALL( dims1 = cvGetDims( hist1->bins, size1 )); CV_CALL( dims2 = cvGetDims( hist2->bins, size2 )); if( dims1 != dims2 ) CV_ERROR( CV_StsUnmatchedSizes, "The histograms have different numbers of dimensions" ); for( i = 0; i < dims1; i++ ) { if( size1[i] != size2[i] ) CV_ERROR( CV_StsUnmatchedSizes, "The histograms have different sizes" ); total *= size1[i]; } if( !CV_IS_SPARSE_MAT(hist1->bins)) { union { float* fl; uchar* ptr; } v; float *ptr1, *ptr2; v.fl = 0; CV_CALL( cvGetRawData( hist1->bins, &v.ptr )); ptr1 = v.fl; CV_CALL( cvGetRawData( hist2->bins, &v.ptr )); ptr2 = v.fl; switch( method ) { case CV_COMP_CHISQR: for( i = 0; i < total; i++ ) { double a = ptr1[i] - ptr2[i]; double b = ptr1[i] + ptr2[i]; if( fabs(b) > DBL_EPSILON ) result += a*a/b; } break; case CV_COMP_CORREL: { double s1 = 0, s11 = 0; double s2 = 0, s22 = 0; double s12 = 0; double num, denom2, scale = 1./total; for( i = 0; i < total; i++ ) { double a = ptr1[i]; double b = ptr2[i]; s12 += a*b; s1 += a; s11 += a*a; s2 += b; s22 += b*b; } num = s12 - s1*s2*scale; denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1; } break; case CV_COMP_INTERSECT: for( i = 0; i < total; i++ ) { float a = ptr1[i]; float b = ptr2[i]; if( a <= b ) result += a; else result += b; } break; case CV_COMP_BHATTACHARYYA: { double s1 = 0, s2 = 0; for( i = 0; i < total; i++ ) { double a = ptr1[i]; double b = ptr2[i]; result += sqrt(a*b); s1 += a; s2 += b; } s1 *= s2; s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.; result = 1. - result*s1; result = sqrt(MAX(result,0.)); } break; default: CV_ERROR( CV_StsBadArg, "Unknown comparison method" ); } } else { CvSparseMat* mat1 = (CvSparseMat*)(hist1->bins); CvSparseMat* mat2 = (CvSparseMat*)(hist2->bins); CvSparseMatIterator iterator; CvSparseNode *node1, *node2; if( mat1->heap->active_count > mat2->heap->active_count ) { CvSparseMat* t; CV_SWAP( mat1, mat2, t ); } switch( method ) { case CV_COMP_CHISQR: for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); if( !node2_data ) result += v1; else { double v2 = *(float*)node2_data; double a = v1 - v2; double b = v1 + v2; if( fabs(b) > DBL_EPSILON ) result += a*a/b; } } for( node2 = cvInitSparseMatIterator( mat2, &iterator ); node2 != 0; node2 = cvGetNextSparseNode( &iterator )) { double v2 = *(float*)CV_NODE_VAL(mat2,node2); if( !cvPtrND( mat1, CV_NODE_IDX(mat2,node2), 0, 0, &node2->hashval )) result += v2; } break; case CV_COMP_CORREL: { double s1 = 0, s11 = 0; double s2 = 0, s22 = 0; double s12 = 0; double num, denom2, scale = 1./total; for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); if( node2_data ) { double v2 = *(float*)node2_data; s12 += v1*v2; } s1 += v1; s11 += v1*v1; } for( node2 = cvInitSparseMatIterator( mat2, &iterator ); node2 != 0; node2 = cvGetNextSparseNode( &iterator )) { double v2 = *(float*)CV_NODE_VAL(mat2,node2); s2 += v2; s22 += v2*v2; } num = s12 - s1*s2*scale; denom2 = (s11 - s1*s1*scale)*(s22 - s2*s2*scale); result = fabs(denom2) > DBL_EPSILON ? num/sqrt(denom2) : 1; } break; case CV_COMP_INTERSECT: { for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { float v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); if( node2_data ) { float v2 = *(float*)node2_data; if( v1 <= v2 ) result += v1; else result += v2; } } } break; case CV_COMP_BHATTACHARYYA: { double s1 = 0, s2 = 0; for( node1 = cvInitSparseMatIterator( mat1, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v1 = *(float*)CV_NODE_VAL(mat1,node1); uchar* node2_data = cvPtrND( mat2, CV_NODE_IDX(mat1,node1), 0, 0, &node1->hashval ); s1 += v1; if( node2_data ) { double v2 = *(float*)node2_data; result += sqrt(v1 * v2); } } for( node1 = cvInitSparseMatIterator( mat2, &iterator ); node1 != 0; node1 = cvGetNextSparseNode( &iterator )) { double v2 = *(float*)CV_NODE_VAL(mat2,node1); s2 += v2; } s1 *= s2; s1 = fabs(s1) > FLT_EPSILON ? 1./sqrt(s1) : 1.; result = 1. - result*s1; result = sqrt(MAX(result,0.)); } break; default: CV_ERROR( CV_StsBadArg, "Unknown comparison method" ); } } _result = result; __END__; return _result; } // copies one histogram to another CV_IMPL void cvCopyHist( const CvHistogram* src, CvHistogram** _dst ) { CV_FUNCNAME( "cvCopyHist" ); __BEGIN__; int eq = 0; int is_sparse; int i, dims1, dims2; int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1; float* ranges[CV_MAX_DIM]; float** thresh = 0; CvHistogram* dst; if( !_dst ) CV_ERROR( CV_StsNullPtr, "Destination double pointer is NULL" ); dst = *_dst; if( !CV_IS_HIST(src) || (dst && !CV_IS_HIST(dst)) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header[s]" ); is_sparse = CV_IS_SPARSE_MAT(src->bins); CV_CALL( dims1 = cvGetDims( src->bins, size1 )); for( i = 0; i < dims1; i++ ) total *= size1[i]; if( dst && is_sparse == CV_IS_SPARSE_MAT(dst->bins)) { CV_CALL( dims2 = cvGetDims( dst->bins, size2 )); if( dims1 == dims2 ) { for( i = 0; i < dims1; i++ ) if( size1[i] != size2[i] ) break; } eq = i == dims1; } if( !eq ) { cvReleaseHist( _dst ); CV_CALL( dst = cvCreateHist( dims1, size1, !is_sparse ? CV_HIST_ARRAY : CV_HIST_SPARSE, 0, 0 )); *_dst = dst; } if( CV_HIST_HAS_RANGES( src )) { if( CV_IS_UNIFORM_HIST( src )) { for( i = 0; i < dims1; i++ ) ranges[i] = (float*)src->thresh[i]; thresh = ranges; } else thresh = src->thresh2; CV_CALL( cvSetHistBinRanges( dst, thresh, CV_IS_UNIFORM_HIST(src))); } CV_CALL( cvCopy( src->bins, dst->bins )); __END__; } // Sets a value range for every histogram bin CV_IMPL void cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform ) { CV_FUNCNAME( "cvSetHistBinRanges" ); __BEGIN__; int dims, size[CV_MAX_DIM], total = 0; int i, j; if( !ranges ) CV_ERROR( CV_StsNullPtr, "NULL ranges pointer" ); if( !CV_IS_HIST(hist) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); CV_CALL( dims = cvGetDims( hist->bins, size )); for( i = 0; i < dims; i++ ) total += size[i]+1; if( uniform ) { for( i = 0; i < dims; i++ ) { if( !ranges[i] ) CV_ERROR( CV_StsNullPtr, "One of elements is NULL" ); hist->thresh[i][0] = ranges[i][0]; hist->thresh[i][1] = ranges[i][1]; } hist->type |= CV_HIST_UNIFORM_FLAG + CV_HIST_RANGES_FLAG; } else { float* dim_ranges; if( !hist->thresh2 ) { CV_CALL( hist->thresh2 = (float**)cvAlloc( dims*sizeof(hist->thresh2[0])+ total*sizeof(hist->thresh2[0][0]))); } dim_ranges = (float*)(hist->thresh2 + dims); for( i = 0; i < dims; i++ ) { float val0 = -FLT_MAX; if( !ranges[i] ) CV_ERROR( CV_StsNullPtr, "One of elements is NULL" ); for( j = 0; j <= size[i]; j++ ) { float val = ranges[i][j]; if( val <= val0 ) CV_ERROR(CV_StsOutOfRange, "Bin ranges should go in ascenting order"); val0 = dim_ranges[j] = val; } hist->thresh2[i] = dim_ranges; dim_ranges += size[i] + 1; } hist->type |= CV_HIST_RANGES_FLAG; hist->type &= ~CV_HIST_UNIFORM_FLAG; } __END__; } #define ICV_HIST_DUMMY_IDX (INT_MIN/3) static CvStatus icvCalcHistLookupTables8u( const CvHistogram* hist, int dims, int* size, int* tab ) { const int lo = 0, hi = 256; int is_sparse = CV_IS_SPARSE_HIST( hist ); int have_range = CV_HIST_HAS_RANGES(hist); int i, j; if( !have_range || CV_IS_UNIFORM_HIST(hist)) { for( i = 0; i < dims; i++ ) { double a = have_range ? hist->thresh[i][0] : 0; double b = have_range ? hist->thresh[i][1] : 256; int sz = size[i]; double scale = sz/(b - a); int step = 1; if( !is_sparse ) step = ((CvMatND*)(hist->bins))->dim[i].step/sizeof(float); for( j = lo; j < hi; j++ ) { int idx = cvFloor((j - a)*scale); if( (unsigned)idx < (unsigned)sz ) idx *= step; else idx = ICV_HIST_DUMMY_IDX; tab[i*(hi - lo) + j - lo] = idx; } } } else { for( i = 0; i < dims; i++ ) { double limit = hist->thresh2[i][0]; int idx = -1, write_idx = ICV_HIST_DUMMY_IDX, sz = size[i]; int step = 1; if( !is_sparse ) step = ((CvMatND*)(hist->bins))->dim[i].step/sizeof(float); if( limit > hi ) limit = hi; j = lo; for(;;) { for( ; j < limit; j++ ) tab[i*(hi - lo) + j - lo] = write_idx; if( (unsigned)(++idx) < (unsigned)sz ) { limit = hist->thresh2[i][idx+1]; if( limit > hi ) limit = hi; write_idx = idx*step; } else { for( ; j < hi; j++ ) tab[i*(hi - lo) + j - lo] = ICV_HIST_DUMMY_IDX; break; } } } } return CV_OK; } /***************************** C A L C H I S T O G R A M *************************/ // Calculates histogram for one or more 8u arrays static CvStatus CV_STDCALL icvCalcHist_8u_C1R( uchar** img, int step, uchar* mask, int maskStep, CvSize size, CvHistogram* hist ) { int* tab; int is_sparse = CV_IS_SPARSE_HIST(hist); int dims, histsize[CV_MAX_DIM]; int i, x; CvStatus status; dims = cvGetDims( hist->bins, histsize ); tab = (int*)cvStackAlloc( dims*256*sizeof(int)); status = icvCalcHistLookupTables8u( hist, dims, histsize, tab ); if( status < 0 ) return status; if( !is_sparse ) { int total = 1; int* bins = ((CvMatND*)(hist->bins))->data.i; for( i = 0; i < dims; i++ ) total *= histsize[i]; if( dims <= 3 && total >= -ICV_HIST_DUMMY_IDX ) return CV_BADSIZE_ERR; // too big histogram switch( dims ) { case 1: { int tab1d[256]; memset( tab1d, 0, sizeof(tab1d)); for( ; size.height--; img[0] += step ) { uchar* ptr = img[0]; if( !mask ) { for( x = 0; x <= size.width - 4; x += 4 ) { int v0 = ptr[x]; int v1 = ptr[x+1]; tab1d[v0]++; tab1d[v1]++; v0 = ptr[x+2]; v1 = ptr[x+3]; tab1d[v0]++; tab1d[v1]++; } for( ; x < size.width; x++ ) tab1d[ptr[x]]++; } else { for( x = 0; x < size.width; x++ ) if( mask[x] ) tab1d[ptr[x]]++; mask += maskStep; } } for( i = 0; i < 256; i++ ) { int idx = tab[i]; if( idx >= 0 ) bins[idx] += tab1d[i]; } } break; case 2: for( ; size.height--; img[0] += step, img[1] += step ) { uchar* ptr0 = img[0]; uchar* ptr1 = img[1]; if( !mask ) { for( x = 0; x < size.width; x++ ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int idx = tab[v0] + tab[256+v1]; if( idx >= 0 ) bins[idx]++; } } else { for( x = 0; x < size.width; x++ ) { if( mask[x] ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int idx = tab[v0] + tab[256+v1]; if( idx >= 0 ) bins[idx]++; } } mask += maskStep; } } break; case 3: for( ; size.height--; img[0] += step, img[1] += step, img[2] += step ) { uchar* ptr0 = img[0]; uchar* ptr1 = img[1]; uchar* ptr2 = img[2]; if( !mask ) { for( x = 0; x < size.width; x++ ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int v2 = ptr2[x]; int idx = tab[v0] + tab[256+v1] + tab[512+v2]; if( idx >= 0 ) bins[idx]++; } } else { for( x = 0; x < size.width; x++ ) { if( mask[x] ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int v2 = ptr2[x]; int idx = tab[v0] + tab[256+v1] + tab[512+v2]; if( idx >= 0 ) bins[idx]++; } } mask += maskStep; } } break; default: for( ; size.height--; ) { if( !mask ) { for( x = 0; x < size.width; x++ ) { int* binptr = bins; for( i = 0; i < dims; i++ ) { int idx = tab[i*256 + img[i][x]]; if( idx < 0 ) break; binptr += idx; } if( i == dims ) binptr[0]++; } } else { for( x = 0; x < size.width; x++ ) { if( mask[x] ) { int* binptr = bins; for( i = 0; i < dims; i++ ) { int idx = tab[i*256 + img[i][x]]; if( idx < 0 ) break; binptr += idx; } if( i == dims ) binptr[0]++; } } mask += maskStep; } for( i = 0; i < dims; i++ ) img[i] += step; } } } else { CvSparseMat* mat = (CvSparseMat*)(hist->bins); int node_idx[CV_MAX_DIM]; for( ; size.height--; ) { if( !mask ) { for( x = 0; x < size.width; x++ ) { for( i = 0; i < dims; i++ ) { int idx = tab[i*256 + img[i][x]]; if( idx < 0 ) break; node_idx[i] = idx; } if( i == dims ) { int* bin = (int*)cvPtrND( mat, node_idx, 0, 1 ); bin[0]++; } } } else { for( x = 0; x < size.width; x++ ) { if( mask[x] ) { for( i = 0; i < dims; i++ ) { int idx = tab[i*256 + img[i][x]]; if( idx < 0 ) break; node_idx[i] = idx; } if( i == dims ) { int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 ); bin[0]++; } } } mask += maskStep; } for( i = 0; i < dims; i++ ) img[i] += step; } } return CV_OK; } // Calculates histogram for one or more 32f arrays static CvStatus CV_STDCALL icvCalcHist_32f_C1R( float** img, int step, uchar* mask, int maskStep, CvSize size, CvHistogram* hist ) { int is_sparse = CV_IS_SPARSE_HIST(hist); int uniform = CV_IS_UNIFORM_HIST(hist); int dims, histsize[CV_MAX_DIM]; double uni_range[CV_MAX_DIM][2]; int i, x; dims = cvGetDims( hist->bins, histsize ); step /= sizeof(img[0][0]); if( uniform ) { for( i = 0; i < dims; i++ ) { double t = histsize[i]/((double)hist->thresh[i][1] - hist->thresh[i][0]); uni_range[i][0] = t; uni_range[i][1] = -t*hist->thresh[i][0]; } } if( !is_sparse ) { CvMatND* mat = (CvMatND*)(hist->bins); int* bins = mat->data.i; if( uniform ) { switch( dims ) { case 1: { double a = uni_range[0][0], b = uni_range[0][1]; int sz = histsize[0]; for( ; size.height--; img[0] += step ) { float* ptr = img[0]; if( !mask ) { for( x = 0; x <= size.width - 4; x += 4 ) { int v0 = cvFloor(ptr[x]*a + b); int v1 = cvFloor(ptr[x+1]*a + b); if( (unsigned)v0 < (unsigned)sz ) bins[v0]++; if( (unsigned)v1 < (unsigned)sz ) bins[v1]++; v0 = cvFloor(ptr[x+2]*a + b); v1 = cvFloor(ptr[x+3]*a + b); if( (unsigned)v0 < (unsigned)sz ) bins[v0]++; if( (unsigned)v1 < (unsigned)sz ) bins[v1]++; } for( ; x < size.width; x++ ) { int v0 = cvFloor(ptr[x]*a + b); if( (unsigned)v0 < (unsigned)sz ) bins[v0]++; } } else { for( x = 0; x < size.width; x++ ) if( mask[x] ) { int v0 = cvFloor(ptr[x]*a + b); if( (unsigned)v0 < (unsigned)sz ) bins[v0]++; } mask += maskStep; } } } break; case 2: { double a0 = uni_range[0][0], b0 = uni_range[0][1]; double a1 = uni_range[1][0], b1 = uni_range[1][1]; int sz0 = histsize[0], sz1 = histsize[1]; int step0 = ((CvMatND*)(hist->bins))->dim[0].step/sizeof(float); for( ; size.height--; img[0] += step, img[1] += step ) { float* ptr0 = img[0]; float* ptr1 = img[1]; if( !mask ) { for( x = 0; x < size.width; x++ ) { int v0 = cvFloor( ptr0[x]*a0 + b0 ); int v1 = cvFloor( ptr1[x]*a1 + b1 ); if( (unsigned)v0 < (unsigned)sz0 && (unsigned)v1 < (unsigned)sz1 ) bins[v0*step0 + v1]++; } } else { for( x = 0; x < size.width; x++ ) { if( mask[x] ) { int v0 = cvFloor( ptr0[x]*a0 + b0 ); int v1 = cvFloor( ptr1[x]*a1 + b1 ); if( (unsigned)v0 < (unsigned)sz0 && (unsigned)v1 < (unsigned)sz1 ) bins[v0*step0 + v1]++; } } mask += maskStep; } } } break; default: for( ; size.height--; ) { if( !mask ) { for( x = 0; x < size.width; x++ ) { int* binptr = bins; for( i = 0; i < dims; i++ ) { int idx = cvFloor((double)img[i][x]*uni_range[i][0] + uni_range[i][1]); if( (unsigned)idx >= (unsigned)histsize[i] ) break; binptr += idx*(mat->dim[i].step/sizeof(float)); } if( i == dims ) binptr[0]++; } } else { for( x = 0; x < size.width; x++ ) { if( mask[x] ) { int* binptr = bins; for( i = 0; i < dims; i++ ) { int idx = cvFloor((double)img[i][x]*uni_range[i][0] + uni_range[i][1]); if( (unsigned)idx >= (unsigned)histsize[i] ) break; binptr += idx*(mat->dim[i].step/sizeof(float)); } if( i == dims ) binptr[0]++; } } mask += maskStep; } for( i = 0; i < dims; i++ ) img[i] += step; } } } else { for( ; size.height--; ) { for( x = 0; x < size.width; x++ ) { if( !mask || mask[x] ) { int* binptr = bins; for( i = 0; i < dims; i++ ) { float v = img[i][x]; float* thresh = hist->thresh2[i]; int idx = -1, sz = histsize[i]; while( v >= thresh[idx+1] && ++idx < sz ) /* nop */; if( (unsigned)idx >= (unsigned)sz ) break; binptr += idx*(mat->dim[i].step/sizeof(float)); } if( i == dims ) binptr[0]++; } } for( i = 0; i < dims; i++ ) img[i] += step; if( mask ) mask += maskStep; } } } else { CvSparseMat* mat = (CvSparseMat*)(hist->bins); int node_idx[CV_MAX_DIM]; for( ; size.height--; ) { if( uniform ) { for( x = 0; x < size.width; x++ ) { if( !mask || mask[x] ) { for( i = 0; i < dims; i++ ) { int idx = cvFloor(img[i][x]*uni_range[i][0] + uni_range[i][1]); if( (unsigned)idx >= (unsigned)histsize[i] ) break; node_idx[i] = idx; } if( i == dims ) { int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 ); bin[0]++; } } } } else { for( x = 0; x < size.width; x++ ) { if( !mask || mask[x] ) { for( i = 0; i < dims; i++ ) { float v = img[i][x]; float* thresh = hist->thresh2[i]; int idx = -1, sz = histsize[i]; while( v >= thresh[idx+1] && ++idx < sz ) /* nop */; if( (unsigned)idx >= (unsigned)sz ) break; node_idx[i] = idx; } if( i == dims ) { int* bin = (int*)cvPtrND( mat, node_idx, 0, 1, 0 ); bin[0]++; } } } } for( i = 0; i < dims; i++ ) img[i] += step; if( mask ) mask += maskStep; } } return CV_OK; } CV_IMPL void cvCalcArrHist( CvArr** img, CvHistogram* hist, int do_not_clear, const CvArr* mask ) { CV_FUNCNAME( "cvCalcHist" ); __BEGIN__; uchar* ptr[CV_MAX_DIM]; uchar* maskptr = 0; int maskstep = 0, step = 0; int i, dims; int cont_flag = -1; CvMat stub0, *mat0 = 0; CvMatND dense; CvSize size; if( !CV_IS_HIST(hist)) CV_ERROR( CV_StsBadArg, "Bad histogram pointer" ); if( !img ) CV_ERROR( CV_StsNullPtr, "Null double array pointer" ); CV_CALL( dims = cvGetDims( hist->bins )); for( i = 0; i < dims; i++ ) { CvMat stub, *mat = (CvMat*)img[i]; CV_CALL( mat = cvGetMat( mat, i == 0 ? &stub0 : &stub, 0, 1 )); if( CV_MAT_CN( mat->type ) != 1 ) CV_ERROR( CV_BadNumChannels, "Only 1-channel arrays are allowed here" ); if( i == 0 ) { mat0 = mat; step = mat0->step; } else { if( !CV_ARE_SIZES_EQ( mat0, mat )) CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal sizes" ); if( mat0->step != mat->step ) CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal steps" ); if( !CV_ARE_TYPES_EQ( mat0, mat )) CV_ERROR( CV_StsUnmatchedFormats, "Not all the planes have equal types" ); } cont_flag &= mat->type; ptr[i] = mat->data.ptr; } if( mask ) { CvMat stub, *mat = (CvMat*)mask; CV_CALL( mat = cvGetMat( mat, &stub, 0, 1 )); if( !CV_IS_MASK_ARR(mat)) CV_ERROR( CV_StsBadMask, "Bad mask array" ); if( !CV_ARE_SIZES_EQ( mat0, mat )) CV_ERROR( CV_StsUnmatchedSizes, "Mask size does not match to other arrays\' size" ); maskptr = mat->data.ptr; maskstep = mat->step; cont_flag &= mat->type; } size = cvGetMatSize(mat0); if( CV_IS_MAT_CONT( cont_flag )) { size.width *= size.height; size.height = 1; maskstep = step = CV_STUB_STEP; } if( !CV_IS_SPARSE_HIST(hist)) { dense = *(CvMatND*)hist->bins; dense.type = (dense.type & ~CV_MAT_TYPE_MASK) | CV_32SC1; } if( !do_not_clear ) { CV_CALL( cvZero( hist->bins )); } else if( !CV_IS_SPARSE_HIST(hist)) { CV_CALL( cvConvert( (CvMatND*)hist->bins, &dense )); } else { CvSparseMat* mat = (CvSparseMat*)(hist->bins); CvSparseMatIterator iterator; CvSparseNode* node; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { Cv32suf* val = (Cv32suf*)CV_NODE_VAL( mat, node ); val->i = cvRound( val->f ); } } if( CV_MAT_DEPTH(mat0->type) > CV_8S && !CV_HIST_HAS_RANGES(hist)) CV_ERROR( CV_StsBadArg, "histogram ranges must be set (via cvSetHistBinRanges) " "before calling the function" ); switch( CV_MAT_DEPTH(mat0->type) ) { case CV_8U: IPPI_CALL( icvCalcHist_8u_C1R( ptr, step, maskptr, maskstep, size, hist )); break; case CV_32F: { union { uchar** ptr; float** fl; } v; v.ptr = ptr; IPPI_CALL( icvCalcHist_32f_C1R( v.fl, step, maskptr, maskstep, size, hist )); } break; default: CV_ERROR( CV_StsUnsupportedFormat, "Unsupported array type" ); } if( !CV_IS_SPARSE_HIST(hist)) { CV_CALL( cvConvert( &dense, (CvMatND*)hist->bins )); } else { CvSparseMat* mat = (CvSparseMat*)(hist->bins); CvSparseMatIterator iterator; CvSparseNode* node; for( node = cvInitSparseMatIterator( mat, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { Cv32suf* val = (Cv32suf*)CV_NODE_VAL( mat, node ); val->f = (float)val->i; } } __END__; } /***************************** B A C K P R O J E C T *****************************/ // Calculates back project for one or more 8u arrays static CvStatus CV_STDCALL icvCalcBackProject_8u_C1R( uchar** img, int step, uchar* dst, int dstStep, CvSize size, const CvHistogram* hist ) { const int small_hist_size = 1<<12; int* tab = 0; int is_sparse = CV_IS_SPARSE_HIST(hist); int dims, histsize[CV_MAX_DIM]; int i, x; CvStatus status; dims = cvGetDims( hist->bins, histsize ); tab = (int*)cvStackAlloc( dims*256*sizeof(int)); status = icvCalcHistLookupTables8u( hist, dims, histsize, tab ); if( status < 0 ) return status; if( !is_sparse ) { int total = 1; CvMatND* mat = (CvMatND*)(hist->bins); float* bins = mat->data.fl; uchar* buffer = 0; for( i = 0; i < dims; i++ ) total *= histsize[i]; if( dims <= 3 && total >= -ICV_HIST_DUMMY_IDX ) return CV_BADSIZE_ERR; // too big histogram if( dims > 1 && total <= small_hist_size && CV_IS_MAT_CONT(mat->type)) { buffer = (uchar*)cvAlloc(total); if( !buffer ) return CV_OUTOFMEM_ERR; for( i = 0; i < total; i++ ) { int v = cvRound(bins[i]); buffer[i] = CV_CAST_8U(v); } } switch( dims ) { case 1: { uchar tab1d[256]; for( i = 0; i < 256; i++ ) { int idx = tab[i]; if( idx >= 0 ) { int v = cvRound(bins[idx]); tab1d[i] = CV_CAST_8U(v); } else tab1d[i] = 0; } for( ; size.height--; img[0] += step, dst += dstStep ) { uchar* ptr = img[0]; for( x = 0; x <= size.width - 4; x += 4 ) { uchar v0 = tab1d[ptr[x]]; uchar v1 = tab1d[ptr[x+1]]; dst[x] = v0; dst[x+1] = v1; v0 = tab1d[ptr[x+2]]; v1 = tab1d[ptr[x+3]]; dst[x+2] = v0; dst[x+3] = v1; } for( ; x < size.width; x++ ) dst[x] = tab1d[ptr[x]]; } } break; case 2: for( ; size.height--; img[0] += step, img[1] += step, dst += dstStep ) { uchar* ptr0 = img[0]; uchar* ptr1 = img[1]; if( buffer ) { for( x = 0; x < size.width; x++ ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int idx = tab[v0] + tab[256+v1]; int v = 0; if( idx >= 0 ) v = buffer[idx]; dst[x] = (uchar)v; } } else { for( x = 0; x < size.width; x++ ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int idx = tab[v0] + tab[256+v1]; int v = 0; if( idx >= 0 ) { v = cvRound(bins[idx]); v = CV_CAST_8U(v); } dst[x] = (uchar)v; } } } break; case 3: for( ; size.height--; img[0] += step, img[1] += step, img[2] += step, dst += dstStep ) { uchar* ptr0 = img[0]; uchar* ptr1 = img[1]; uchar* ptr2 = img[2]; if( buffer ) { for( x = 0; x < size.width; x++ ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int v2 = ptr2[x]; int idx = tab[v0] + tab[256+v1] + tab[512+v2]; int v = 0; if( idx >= 0 ) v = buffer[idx]; dst[x] = (uchar)v; } } else { for( x = 0; x < size.width; x++ ) { int v0 = ptr0[x]; int v1 = ptr1[x]; int v2 = ptr2[x]; int idx = tab[v0] + tab[256+v1] + tab[512+v2]; int v = 0; if( idx >= 0 ) { v = cvRound(bins[idx]); v = CV_CAST_8U(v); } dst[x] = (uchar)v; } } } break; default: for( ; size.height--; dst += dstStep ) { if( buffer ) { for( x = 0; x < size.width; x++ ) { uchar* binptr = buffer; int v = 0; for( i = 0; i < dims; i++ ) { int idx = tab[i*256 + img[i][x]]; if( idx < 0 ) break; binptr += idx; } if( i == dims ) v = binptr[0]; dst[x] = (uchar)v; } } else { for( x = 0; x < size.width; x++ ) { float* binptr = bins; int v = 0; for( i = 0; i < dims; i++ ) { int idx = tab[i*256 + img[i][x]]; if( idx < 0 ) break; binptr += idx; } if( i == dims ) { v = cvRound( binptr[0] ); v = CV_CAST_8U(v); } dst[x] = (uchar)v; } } for( i = 0; i < dims; i++ ) img[i] += step; } } cvFree( &buffer ); } else { CvSparseMat* mat = (CvSparseMat*)(hist->bins); int node_idx[CV_MAX_DIM]; for( ; size.height--; dst += dstStep ) { for( x = 0; x < size.width; x++ ) { int v = 0; for( i = 0; i < dims; i++ ) { int idx = tab[i*256 + img[i][x]]; if( idx < 0 ) break; node_idx[i] = idx; } if( i == dims ) { float* bin = (float*)cvPtrND( mat, node_idx, 0, 1, 0 ); v = cvRound(bin[0]); v = CV_CAST_8U(v); } dst[x] = (uchar)v; } for( i = 0; i < dims; i++ ) img[i] += step; } } return CV_OK; } // Calculates back project for one or more 32f arrays static CvStatus CV_STDCALL icvCalcBackProject_32f_C1R( float** img, int step, float* dst, int dstStep, CvSize size, const CvHistogram* hist ) { int is_sparse = CV_IS_SPARSE_HIST(hist); int uniform = CV_IS_UNIFORM_HIST(hist); int dims, histsize[CV_MAX_DIM]; double uni_range[CV_MAX_DIM][2]; int i, x; dims = cvGetDims( hist->bins, histsize ); step /= sizeof(img[0][0]); dstStep /= sizeof(dst[0]); if( uniform ) { for( i = 0; i < dims; i++ ) { double t = ((double)histsize[i])/ ((double)hist->thresh[i][1] - hist->thresh[i][0]); uni_range[i][0] = t; uni_range[i][1] = -t*hist->thresh[i][0]; } } if( !is_sparse ) { CvMatND* mat = (CvMatND*)(hist->bins); float* bins = mat->data.fl; if( uniform ) { switch( dims ) { case 1: { double a = uni_range[0][0], b = uni_range[0][1]; int sz = histsize[0]; for( ; size.height--; img[0] += step, dst += dstStep ) { float* ptr = img[0]; for( x = 0; x <= size.width - 4; x += 4 ) { int v0 = cvFloor(ptr[x]*a + b); int v1 = cvFloor(ptr[x+1]*a + b); if( (unsigned)v0 < (unsigned)sz ) dst[x] = bins[v0]; else dst[x] = 0; if( (unsigned)v1 < (unsigned)sz ) dst[x+1] = bins[v1]; else dst[x+1] = 0; v0 = cvFloor(ptr[x+2]*a + b); v1 = cvFloor(ptr[x+3]*a + b); if( (unsigned)v0 < (unsigned)sz ) dst[x+2] = bins[v0]; else dst[x+2] = 0; if( (unsigned)v1 < (unsigned)sz ) dst[x+3] = bins[v1]; else dst[x+3] = 0; } for( ; x < size.width; x++ ) { int v0 = cvFloor(ptr[x]*a + b); if( (unsigned)v0 < (unsigned)sz ) dst[x] = bins[v0]; else dst[x] = 0; } } } break; case 2: { double a0 = uni_range[0][0], b0 = uni_range[0][1]; double a1 = uni_range[1][0], b1 = uni_range[1][1]; int sz0 = histsize[0], sz1 = histsize[1]; int step0 = ((CvMatND*)(hist->bins))->dim[0].step/sizeof(float); for( ; size.height--; img[0] += step, img[1] += step, dst += dstStep ) { float* ptr0 = img[0]; float* ptr1 = img[1]; for( x = 0; x < size.width; x++ ) { int v0 = cvFloor( ptr0[x]*a0 + b0 ); int v1 = cvFloor( ptr1[x]*a1 + b1 ); if( (unsigned)v0 < (unsigned)sz0 && (unsigned)v1 < (unsigned)sz1 ) dst[x] = bins[v0*step0 + v1]; else dst[x] = 0; } } } break; default: for( ; size.height--; dst += dstStep ) { for( x = 0; x < size.width; x++ ) { float* binptr = bins; for( i = 0; i < dims; i++ ) { int idx = cvFloor(img[i][x]*uni_range[i][0] + uni_range[i][1]); if( (unsigned)idx >= (unsigned)histsize[i] ) break; binptr += idx*(mat->dim[i].step/sizeof(float)); } if( i == dims ) dst[x] = binptr[0]; else dst[x] = 0; } } for( i = 0; i < dims; i++ ) img[i] += step; } } else { for( ; size.height--; dst += dstStep ) { for( x = 0; x < size.width; x++ ) { float* binptr = bins; for( i = 0; i < dims; i++ ) { float v = img[i][x]; float* thresh = hist->thresh2[i]; int idx = -1, sz = histsize[i]; while( v >= thresh[idx+1] && ++idx < sz ) /* nop */; if( (unsigned)idx >= (unsigned)sz ) break; binptr += idx*(mat->dim[i].step/sizeof(float)); } if( i == dims ) dst[x] = binptr[0]; else dst[x] = 0; } for( i = 0; i < dims; i++ ) img[i] += step; } } } else { CvSparseMat* mat = (CvSparseMat*)(hist->bins); int node_idx[CV_MAX_DIM]; for( ; size.height--; dst += dstStep ) { if( uniform ) { for( x = 0; x < size.width; x++ ) { for( i = 0; i < dims; i++ ) { int idx = cvFloor(img[i][x]*uni_range[i][0] + uni_range[i][1]); if( (unsigned)idx >= (unsigned)histsize[i] ) break; node_idx[i] = idx; } if( i == dims ) { float* bin = (float*)cvPtrND( mat, node_idx, 0, 1, 0 ); dst[x] = bin[0]; } else dst[x] = 0; } } else { for( x = 0; x < size.width; x++ ) { for( i = 0; i < dims; i++ ) { float v = img[i][x]; float* thresh = hist->thresh2[i]; int idx = -1, sz = histsize[i]; while( v >= thresh[idx+1] && ++idx < sz ) /* nop */; if( (unsigned)idx >= (unsigned)sz ) break; node_idx[i] = idx; } if( i == dims ) { float* bin = (float*)cvPtrND( mat, node_idx, 0, 1, 0 ); dst[x] = bin[0]; } else dst[x] = 0; } } for( i = 0; i < dims; i++ ) img[i] += step; } } return CV_OK; } CV_IMPL void cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist ) { CV_FUNCNAME( "cvCalcArrBackProject" ); __BEGIN__; uchar* ptr[CV_MAX_DIM]; uchar* dstptr = 0; int dststep = 0, step = 0; int i, dims; int cont_flag = -1; CvMat stub0, *mat0 = 0; CvSize size; if( !CV_IS_HIST(hist)) CV_ERROR( CV_StsBadArg, "Bad histogram pointer" ); if( !img ) CV_ERROR( CV_StsNullPtr, "Null double array pointer" ); CV_CALL( dims = cvGetDims( hist->bins )); for( i = 0; i <= dims; i++ ) { CvMat stub, *mat = (CvMat*)(i < dims ? img[i] : dst); CV_CALL( mat = cvGetMat( mat, i == 0 ? &stub0 : &stub, 0, 1 )); if( CV_MAT_CN( mat->type ) != 1 ) CV_ERROR( CV_BadNumChannels, "Only 1-channel arrays are allowed here" ); if( i == 0 ) { mat0 = mat; step = mat0->step; } else { if( !CV_ARE_SIZES_EQ( mat0, mat )) CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal sizes" ); if( mat0->step != mat->step ) CV_ERROR( CV_StsUnmatchedSizes, "Not all the planes have equal steps" ); if( !CV_ARE_TYPES_EQ( mat0, mat )) CV_ERROR( CV_StsUnmatchedFormats, "Not all the planes have equal types" ); } cont_flag &= mat->type; if( i < dims ) ptr[i] = mat->data.ptr; else { dstptr = mat->data.ptr; dststep = mat->step; } } size = cvGetMatSize(mat0); if( CV_IS_MAT_CONT( cont_flag )) { size.width *= size.height; size.height = 1; dststep = step = CV_STUB_STEP; } if( CV_MAT_DEPTH(mat0->type) > CV_8S && !CV_HIST_HAS_RANGES(hist)) CV_ERROR( CV_StsBadArg, "histogram ranges must be set (via cvSetHistBinRanges) " "before calling the function" ); switch( CV_MAT_DEPTH(mat0->type) ) { case CV_8U: IPPI_CALL( icvCalcBackProject_8u_C1R( ptr, step, dstptr, dststep, size, hist )); break; case CV_32F: { union { uchar** ptr; float** fl; } v; v.ptr = ptr; IPPI_CALL( icvCalcBackProject_32f_C1R( v.fl, step, (float*)dstptr, dststep, size, hist )); } break; default: CV_ERROR( CV_StsUnsupportedFormat, "Unsupported array type" ); } __END__; } ////////////////////// B A C K P R O J E C T P A T C H ///////////////////////// CV_IMPL void cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogram* hist, int method, double norm_factor ) { CvHistogram* model = 0; CV_FUNCNAME( "cvCalcArrBackProjectPatch" ); __BEGIN__; IplImage imgstub[CV_MAX_DIM], *img[CV_MAX_DIM]; IplROI roi; CvMat dststub, *dstmat; int i, dims; int x, y; CvSize size; if( !CV_IS_HIST(hist)) CV_ERROR( CV_StsBadArg, "Bad histogram pointer" ); if( !arr ) CV_ERROR( CV_StsNullPtr, "Null double array pointer" ); if( norm_factor <= 0 ) CV_ERROR( CV_StsOutOfRange, "Bad normalization factor (set it to 1.0 if unsure)" ); if( patch_size.width <= 0 || patch_size.height <= 0 ) CV_ERROR( CV_StsBadSize, "The patch width and height must be positive" ); CV_CALL( dims = cvGetDims( hist->bins )); CV_CALL( cvCopyHist( hist, &model )); CV_CALL( cvNormalizeHist( hist, norm_factor )); for( i = 0; i < dims; i++ ) { CvMat stub, *mat; CV_CALL( mat = cvGetMat( arr[i], &stub, 0, 0 )); CV_CALL( img[i] = cvGetImage( mat, &imgstub[i] )); img[i]->roi = &roi; } CV_CALL( dstmat = cvGetMat( dst, &dststub, 0, 0 )); if( CV_MAT_TYPE( dstmat->type ) != CV_32FC1 ) CV_ERROR( CV_StsUnsupportedFormat, "Resultant image must have 32fC1 type" ); if( dstmat->cols != img[0]->width - patch_size.width + 1 || dstmat->rows != img[0]->height - patch_size.height + 1 ) CV_ERROR( CV_StsUnmatchedSizes, "The output map must be (W-w+1 x H-h+1), " "where the input images are (W x H) each and the patch is (w x h)" ); size = cvGetMatSize(dstmat); roi.coi = 0; roi.width = patch_size.width; roi.height = patch_size.height; for( y = 0; y < size.height; y++ ) { for( x = 0; x < size.width; x++ ) { double result; roi.xOffset = x; roi.yOffset = y; CV_CALL( cvCalcHist( img, model )); CV_CALL( cvNormalizeHist( model, norm_factor )); CV_CALL( result = cvCompareHist( model, hist, method )); CV_MAT_ELEM( *dstmat, float, y, x ) = (float)result; } } __END__; cvReleaseHist( &model ); } // Calculates Bayes probabilistic histograms CV_IMPL void cvCalcBayesianProb( CvHistogram** src, int count, CvHistogram** dst ) { CV_FUNCNAME( "cvCalcBayesianProb" ); __BEGIN__; int i; if( !src || !dst ) CV_ERROR( CV_StsNullPtr, "NULL histogram array pointer" ); if( count < 2 ) CV_ERROR( CV_StsOutOfRange, "Too small number of histograms" ); for( i = 0; i < count; i++ ) { if( !CV_IS_HIST(src[i]) || !CV_IS_HIST(dst[i]) ) CV_ERROR( CV_StsBadArg, "Invalid histogram header" ); if( !CV_IS_MATND(src[i]->bins) || !CV_IS_MATND(dst[i]->bins) ) CV_ERROR( CV_StsBadArg, "The function supports dense histograms only" ); } cvZero( dst[0]->bins ); // dst[0] = src[0] + ... + src[count-1] for( i = 0; i < count; i++ ) CV_CALL( cvAdd( src[i]->bins, dst[0]->bins, dst[0]->bins )); CV_CALL( cvDiv( 0, dst[0]->bins, dst[0]->bins )); // dst[i] = src[i]*(1/dst[0]) for( i = count - 1; i >= 0; i-- ) CV_CALL( cvMul( src[i]->bins, dst[0]->bins, dst[i]->bins )); __END__; } CV_IMPL void cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask, CvHistogram* hist_dens, double scale ) { CV_FUNCNAME( "cvCalcProbDensity" ); __BEGIN__; if( scale <= 0 ) CV_ERROR( CV_StsOutOfRange, "scale must be positive" ); if( !CV_IS_HIST(hist) || !CV_IS_HIST(hist_mask) || !CV_IS_HIST(hist_dens) ) CV_ERROR( CV_StsBadArg, "Invalid histogram pointer[s]" ); { CvArr* arrs[] = { hist->bins, hist_mask->bins, hist_dens->bins }; CvMatND stubs[3]; CvNArrayIterator iterator; CV_CALL( cvInitNArrayIterator( 3, arrs, 0, stubs, &iterator )); if( CV_MAT_TYPE(iterator.hdr[0]->type) != CV_32FC1 ) CV_ERROR( CV_StsUnsupportedFormat, "All histograms must have 32fC1 type" ); do { const float* srcdata = (const float*)(iterator.ptr[0]); const float* maskdata = (const float*)(iterator.ptr[1]); float* dstdata = (float*)(iterator.ptr[2]); int i; for( i = 0; i < iterator.size.width; i++ ) { float s = srcdata[i]; float m = maskdata[i]; if( s > FLT_EPSILON ) if( m <= s ) dstdata[i] = (float)(m*scale/s); else dstdata[i] = (float)scale; else dstdata[i] = (float)0; } } while( cvNextNArraySlice( &iterator )); } __END__; } CV_IMPL void cvEqualizeHist( const CvArr* src, CvArr* dst ) { CvHistogram* hist = 0; CvMat* lut = 0; CV_FUNCNAME( "cvEqualizeHist" ); __BEGIN__; int i, hist_sz = 256; CvSize img_sz; float scale; float* h; int sum = 0; int type; CV_CALL( type = cvGetElemType( src )); if( type != CV_8UC1 ) CV_ERROR( CV_StsUnsupportedFormat, "Only 8uC1 images are supported" ); CV_CALL( hist = cvCreateHist( 1, &hist_sz, CV_HIST_ARRAY )); CV_CALL( lut = cvCreateMat( 1, 256, CV_8UC1 )); CV_CALL( cvCalcArrHist( (CvArr**)&src, hist )); CV_CALL( img_sz = cvGetSize( src )); scale = 255.f/(img_sz.width*img_sz.height); h = (float*)cvPtr1D( hist->bins, 0 ); for( i = 0; i < hist_sz; i++ ) { sum += cvRound(h[i]); lut->data.ptr[i] = (uchar)cvRound(sum*scale); } lut->data.ptr[0] = 0; CV_CALL( cvLUT( src, dst, lut )); __END__; cvReleaseHist(&hist); cvReleaseMat(&lut); } /* Implementation of RTTI and Generic Functions for CvHistogram */ #define CV_TYPE_NAME_HIST "opencv-hist" static int icvIsHist( const void * ptr ){ return CV_IS_HIST( ((CvHistogram*)ptr) ); } static CvHistogram * icvCloneHist( const CvHistogram * src ){ CvHistogram * dst=NULL; cvCopyHist(src, &dst); return dst; } static void *icvReadHist( CvFileStorage * fs, CvFileNode * node ){ CvHistogram * h = 0; int is_uniform = 0; int have_ranges = 0; CV_FUNCNAME("icvReadHist"); __BEGIN__; CV_CALL( h = (CvHistogram *) cvAlloc( sizeof(CvHistogram) )); is_uniform = cvReadIntByName( fs, node, "is_uniform", 0 ); have_ranges = cvReadIntByName( fs, node, "have_ranges", 0); h->type = CV_HIST_MAGIC_VAL | (is_uniform ? CV_HIST_UNIFORM_FLAG : 0) | (have_ranges ? CV_HIST_RANGES_FLAG : 0); if(is_uniform){ // read histogram bins CvMatND * mat = (CvMatND *) cvReadByName( fs, node, "mat" ); int sizes[CV_MAX_DIM]; int i; if(!CV_IS_MATND(mat)){ CV_ERROR( CV_StsError, "Expected CvMatND"); } for(i=0; idims; i++){ sizes[i] = mat->dim[i].size; } cvInitMatNDHeader( &(h->mat), mat->dims, sizes, mat->type, mat->data.ptr ); h->bins = &(h->mat); // take ownership of refcount pointer as well h->mat.refcount = mat->refcount; // increase refcount so freeing temp header doesn't free data cvIncRefData( mat ); // free temporary header cvReleaseMatND( &mat ); } else{ h->bins = cvReadByName( fs, node, "bins" ); if(!CV_IS_SPARSE_MAT(h->bins)){ CV_ERROR( CV_StsError, "Unknown Histogram type"); } } // read thresholds if(have_ranges){ int i; int dims; int size[CV_MAX_DIM]; int total = 0; CvSeqReader reader; CvFileNode * thresh_node; CV_CALL( dims = cvGetDims( h->bins, size )); for( i = 0; i < dims; i++ ){ total += size[i]+1; } thresh_node = cvGetFileNodeByName( fs, node, "thresh" ); if(!thresh_node){ CV_ERROR( CV_StsError, "'thresh' node is missing"); } cvStartReadRawData( fs, thresh_node, &reader ); if(is_uniform){ for(i=0; ithresh[i], "f" ); } h->thresh2 = NULL; } else{ float* dim_ranges; CV_CALL( h->thresh2 = (float**)cvAlloc( dims*sizeof(h->thresh2[0])+ total*sizeof(h->thresh2[0][0]))); dim_ranges = (float*)(h->thresh2 + dims); for(i=0; i < dims; i++){ h->thresh2[i] = dim_ranges; cvReadRawDataSlice( fs, &reader, size[i]+1, dim_ranges, "f" ); dim_ranges += size[i] + 1; } } } __END__; return h; } static void icvWriteHist( CvFileStorage* fs, const char* name, const void* struct_ptr, CvAttrList /*attributes*/ ){ const CvHistogram * hist = (const CvHistogram *) struct_ptr; int sizes[CV_MAX_DIM]; int dims; int i; int is_uniform, have_ranges; CV_FUNCNAME("icvWriteHist"); __BEGIN__; cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HIST ); is_uniform = (CV_IS_UNIFORM_HIST(hist) ? 1 : 0); have_ranges = (hist->type & CV_HIST_RANGES_FLAG ? 1 : 0); cvWriteInt( fs, "is_uniform", is_uniform ); cvWriteInt( fs, "have_ranges", have_ranges ); if(CV_IS_UNIFORM_HIST(hist)){ cvWrite( fs, "mat", &(hist->mat) ); } else if(CV_IS_SPARSE_HIST(hist)){ cvWrite( fs, "bins", hist->bins ); } else{ CV_ERROR( CV_StsError, "Unknown Histogram Type" ); } // write thresholds if(have_ranges){ dims = cvGetDims( hist->bins, sizes ); cvStartWriteStruct( fs, "thresh", CV_NODE_SEQ + CV_NODE_FLOW ); if(is_uniform){ for(i=0; ithresh[i], 2, "f" ); } } else{ for(i=0; ithresh2[i], sizes[i]+1, "f" ); } } cvEndWriteStruct( fs ); } cvEndWriteStruct( fs ); __END__; } CvType hist_type( CV_TYPE_NAME_HIST, icvIsHist, (CvReleaseFunc)cvReleaseHist, icvReadHist, icvWriteHist, (CvCloneFunc)icvCloneHist ); /* End of file. */