// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #ifndef V8_ASSEMBLER_H_ #define V8_ASSEMBLER_H_ #include "src/allocation.h" #include "src/builtins/builtins.h" #include "src/deoptimize-reason.h" #include "src/globals.h" #include "src/isolate.h" #include "src/log.h" #include "src/register-configuration.h" #include "src/runtime/runtime.h" namespace v8 { // Forward declarations. class ApiFunction; namespace internal { // Forward declarations. class SourcePosition; class StatsCounter; // ----------------------------------------------------------------------------- // Platform independent assembler base class. enum class CodeObjectRequired { kNo, kYes }; class AssemblerBase: public Malloced { public: AssemblerBase(Isolate* isolate, void* buffer, int buffer_size); virtual ~AssemblerBase(); Isolate* isolate() const { return isolate_; } int jit_cookie() const { return jit_cookie_; } bool emit_debug_code() const { return emit_debug_code_; } void set_emit_debug_code(bool value) { emit_debug_code_ = value; } bool serializer_enabled() const { return serializer_enabled_; } void enable_serializer() { serializer_enabled_ = true; } bool predictable_code_size() const { return predictable_code_size_; } void set_predictable_code_size(bool value) { predictable_code_size_ = value; } uint64_t enabled_cpu_features() const { return enabled_cpu_features_; } void set_enabled_cpu_features(uint64_t features) { enabled_cpu_features_ = features; } // Features are usually enabled by CpuFeatureScope, which also asserts that // the features are supported before they are enabled. bool IsEnabled(CpuFeature f) { return (enabled_cpu_features_ & (static_cast(1) << f)) != 0; } void EnableCpuFeature(CpuFeature f) { enabled_cpu_features_ |= (static_cast(1) << f); } bool is_constant_pool_available() const { if (FLAG_enable_embedded_constant_pool) { return constant_pool_available_; } else { // Embedded constant pool not supported on this architecture. UNREACHABLE(); return false; } } // Overwrite a host NaN with a quiet target NaN. Used by mksnapshot for // cross-snapshotting. static void QuietNaN(HeapObject* nan) { } int pc_offset() const { return static_cast(pc_ - buffer_); } // This function is called when code generation is aborted, so that // the assembler could clean up internal data structures. virtual void AbortedCodeGeneration() { } // Debugging void Print(); static const int kMinimalBufferSize = 4*KB; static void FlushICache(Isolate* isolate, void* start, size_t size); protected: // The buffer into which code and relocation info are generated. It could // either be owned by the assembler or be provided externally. byte* buffer_; int buffer_size_; bool own_buffer_; void set_constant_pool_available(bool available) { if (FLAG_enable_embedded_constant_pool) { constant_pool_available_ = available; } else { // Embedded constant pool not supported on this architecture. UNREACHABLE(); } } // The program counter, which points into the buffer above and moves forward. byte* pc_; private: Isolate* isolate_; int jit_cookie_; uint64_t enabled_cpu_features_; bool emit_debug_code_; bool predictable_code_size_; bool serializer_enabled_; // Indicates whether the constant pool can be accessed, which is only possible // if the pp register points to the current code object's constant pool. bool constant_pool_available_; // Constant pool. friend class FrameAndConstantPoolScope; friend class ConstantPoolUnavailableScope; }; // Avoids emitting debug code during the lifetime of this scope object. class DontEmitDebugCodeScope BASE_EMBEDDED { public: explicit DontEmitDebugCodeScope(AssemblerBase* assembler) : assembler_(assembler), old_value_(assembler->emit_debug_code()) { assembler_->set_emit_debug_code(false); } ~DontEmitDebugCodeScope() { assembler_->set_emit_debug_code(old_value_); } private: AssemblerBase* assembler_; bool old_value_; }; // Avoids using instructions that vary in size in unpredictable ways between the // snapshot and the running VM. class PredictableCodeSizeScope { public: explicit PredictableCodeSizeScope(AssemblerBase* assembler); PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size); ~PredictableCodeSizeScope(); void ExpectSize(int expected_size) { expected_size_ = expected_size; } private: AssemblerBase* assembler_; int expected_size_; int start_offset_; bool old_value_; }; // Enable a specified feature within a scope. class CpuFeatureScope BASE_EMBEDDED { public: enum CheckPolicy { kCheckSupported, kDontCheckSupported, }; #ifdef DEBUG CpuFeatureScope(AssemblerBase* assembler, CpuFeature f, CheckPolicy check = kCheckSupported); ~CpuFeatureScope(); private: AssemblerBase* assembler_; uint64_t old_enabled_; #else CpuFeatureScope(AssemblerBase* assembler, CpuFeature f, CheckPolicy check = kCheckSupported) {} #endif }; // CpuFeatures keeps track of which features are supported by the target CPU. // Supported features must be enabled by a CpuFeatureScope before use. // Example: // if (assembler->IsSupported(SSE3)) { // CpuFeatureScope fscope(assembler, SSE3); // // Generate code containing SSE3 instructions. // } else { // // Generate alternative code. // } class CpuFeatures : public AllStatic { public: static void Probe(bool cross_compile) { STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt); if (initialized_) return; initialized_ = true; ProbeImpl(cross_compile); } static unsigned SupportedFeatures() { Probe(false); return supported_; } static bool IsSupported(CpuFeature f) { return (supported_ & (1u << f)) != 0; } static inline bool SupportsCrankshaft(); static inline bool SupportsSimd128(); static inline unsigned icache_line_size() { DCHECK(icache_line_size_ != 0); return icache_line_size_; } static inline unsigned dcache_line_size() { DCHECK(dcache_line_size_ != 0); return dcache_line_size_; } static void PrintTarget(); static void PrintFeatures(); private: friend class ExternalReference; friend class AssemblerBase; // Flush instruction cache. static void FlushICache(void* start, size_t size); // Platform-dependent implementation. static void ProbeImpl(bool cross_compile); static unsigned supported_; static unsigned icache_line_size_; static unsigned dcache_line_size_; static bool initialized_; DISALLOW_COPY_AND_ASSIGN(CpuFeatures); }; // ----------------------------------------------------------------------------- // Labels represent pc locations; they are typically jump or call targets. // After declaration, a label can be freely used to denote known or (yet) // unknown pc location. Assembler::bind() is used to bind a label to the // current pc. A label can be bound only once. class Label { public: enum Distance { kNear, kFar }; INLINE(Label()) { Unuse(); UnuseNear(); } INLINE(~Label()) { DCHECK(!is_linked()); DCHECK(!is_near_linked()); } INLINE(void Unuse()) { pos_ = 0; } INLINE(void UnuseNear()) { near_link_pos_ = 0; } INLINE(bool is_bound() const) { return pos_ < 0; } INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; } INLINE(bool is_linked() const) { return pos_ > 0; } INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; } // Returns the position of bound or linked labels. Cannot be used // for unused labels. int pos() const; int near_link_pos() const { return near_link_pos_ - 1; } private: // pos_ encodes both the binding state (via its sign) // and the binding position (via its value) of a label. // // pos_ < 0 bound label, pos() returns the jump target position // pos_ == 0 unused label // pos_ > 0 linked label, pos() returns the last reference position int pos_; // Behaves like |pos_| in the "> 0" case, but for near jumps to this label. int near_link_pos_; void bind_to(int pos) { pos_ = -pos - 1; DCHECK(is_bound()); } void link_to(int pos, Distance distance = kFar) { if (distance == kNear) { near_link_pos_ = pos + 1; DCHECK(is_near_linked()); } else { pos_ = pos + 1; DCHECK(is_linked()); } } friend class Assembler; friend class Displacement; friend class RegExpMacroAssemblerIrregexp; #if V8_TARGET_ARCH_ARM64 // On ARM64, the Assembler keeps track of pointers to Labels to resolve // branches to distant targets. Copying labels would confuse the Assembler. DISALLOW_COPY_AND_ASSIGN(Label); // NOLINT #endif }; enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs }; enum ArgvMode { kArgvOnStack, kArgvInRegister }; // Specifies whether to perform icache flush operations on RelocInfo updates. // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be // skipped (only use this if you will flush the icache manually before it is // executed). enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH }; // ----------------------------------------------------------------------------- // Relocation information // Relocation information consists of the address (pc) of the datum // to which the relocation information applies, the relocation mode // (rmode), and an optional data field. The relocation mode may be // "descriptive" and not indicate a need for relocation, but simply // describe a property of the datum. Such rmodes are useful for GC // and nice disassembly output. class RelocInfo { public: // This string is used to add padding comments to the reloc info in cases // where we are not sure to have enough space for patching in during // lazy deoptimization. This is the case if we have indirect calls for which // we do not normally record relocation info. static const char* const kFillerCommentString; // The minimum size of a comment is equal to two bytes for the extra tagged // pc and kPointerSize for the actual pointer to the comment. static const int kMinRelocCommentSize = 2 + kPointerSize; // The maximum size for a call instruction including pc-jump. static const int kMaxCallSize = 6; // The maximum pc delta that will use the short encoding. static const int kMaxSmallPCDelta; enum Mode { // Please note the order is important (see IsCodeTarget, IsGCRelocMode). CODE_TARGET, // Code target which is not any of the above. CODE_TARGET_WITH_ID, DEBUGGER_STATEMENT, // Code target for the debugger statement. EMBEDDED_OBJECT, // To relocate pointers into the wasm memory embedded in wasm code WASM_MEMORY_REFERENCE, WASM_GLOBAL_REFERENCE, WASM_MEMORY_SIZE_REFERENCE, CELL, // Everything after runtime_entry (inclusive) is not GC'ed. RUNTIME_ENTRY, COMMENT, // Additional code inserted for debug break slot. DEBUG_BREAK_SLOT_AT_POSITION, DEBUG_BREAK_SLOT_AT_RETURN, DEBUG_BREAK_SLOT_AT_CALL, DEBUG_BREAK_SLOT_AT_TAIL_CALL, EXTERNAL_REFERENCE, // The address of an external C++ function. INTERNAL_REFERENCE, // An address inside the same function. // Encoded internal reference, used only on MIPS, MIPS64 and PPC. INTERNAL_REFERENCE_ENCODED, // Continuation points for a generator yield. GENERATOR_CONTINUATION, // Marks constant and veneer pools. Only used on ARM and ARM64. // They use a custom noncompact encoding. CONST_POOL, VENEER_POOL, DEOPT_SCRIPT_OFFSET, DEOPT_INLINING_ID, // Deoptimization source position. DEOPT_REASON, // Deoptimization reason index. DEOPT_ID, // Deoptimization inlining id. // This is not an actual reloc mode, but used to encode a long pc jump that // cannot be encoded as part of another record. PC_JUMP, // Pseudo-types NUMBER_OF_MODES, NONE32, // never recorded 32-bit value NONE64, // never recorded 64-bit value CODE_AGE_SEQUENCE, // Not stored in RelocInfo array, used explictly by // code aging. FIRST_REAL_RELOC_MODE = CODE_TARGET, LAST_REAL_RELOC_MODE = VENEER_POOL, LAST_CODE_ENUM = DEBUGGER_STATEMENT, LAST_GCED_ENUM = WASM_MEMORY_SIZE_REFERENCE, FIRST_SHAREABLE_RELOC_MODE = CELL, }; STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt); explicit RelocInfo(Isolate* isolate) : isolate_(isolate) { DCHECK_NOT_NULL(isolate); } RelocInfo(Isolate* isolate, byte* pc, Mode rmode, intptr_t data, Code* host) : isolate_(isolate), pc_(pc), rmode_(rmode), data_(data), host_(host) { DCHECK_NOT_NULL(isolate); } static inline bool IsRealRelocMode(Mode mode) { return mode >= FIRST_REAL_RELOC_MODE && mode <= LAST_REAL_RELOC_MODE; } static inline bool IsCodeTarget(Mode mode) { return mode <= LAST_CODE_ENUM; } static inline bool IsEmbeddedObject(Mode mode) { return mode == EMBEDDED_OBJECT; } static inline bool IsCell(Mode mode) { return mode == CELL; } static inline bool IsRuntimeEntry(Mode mode) { return mode == RUNTIME_ENTRY; } // Is the relocation mode affected by GC? static inline bool IsGCRelocMode(Mode mode) { return mode <= LAST_GCED_ENUM; } static inline bool IsComment(Mode mode) { return mode == COMMENT; } static inline bool IsConstPool(Mode mode) { return mode == CONST_POOL; } static inline bool IsVeneerPool(Mode mode) { return mode == VENEER_POOL; } static inline bool IsDeoptPosition(Mode mode) { return mode == DEOPT_SCRIPT_OFFSET || mode == DEOPT_INLINING_ID; } static inline bool IsDeoptReason(Mode mode) { return mode == DEOPT_REASON; } static inline bool IsDeoptId(Mode mode) { return mode == DEOPT_ID; } static inline bool IsExternalReference(Mode mode) { return mode == EXTERNAL_REFERENCE; } static inline bool IsInternalReference(Mode mode) { return mode == INTERNAL_REFERENCE; } static inline bool IsInternalReferenceEncoded(Mode mode) { return mode == INTERNAL_REFERENCE_ENCODED; } static inline bool IsDebugBreakSlot(Mode mode) { return IsDebugBreakSlotAtPosition(mode) || IsDebugBreakSlotAtReturn(mode) || IsDebugBreakSlotAtCall(mode) || IsDebugBreakSlotAtTailCall(mode); } static inline bool IsDebugBreakSlotAtPosition(Mode mode) { return mode == DEBUG_BREAK_SLOT_AT_POSITION; } static inline bool IsDebugBreakSlotAtReturn(Mode mode) { return mode == DEBUG_BREAK_SLOT_AT_RETURN; } static inline bool IsDebugBreakSlotAtCall(Mode mode) { return mode == DEBUG_BREAK_SLOT_AT_CALL; } static inline bool IsDebugBreakSlotAtTailCall(Mode mode) { return mode == DEBUG_BREAK_SLOT_AT_TAIL_CALL; } static inline bool IsDebuggerStatement(Mode mode) { return mode == DEBUGGER_STATEMENT; } static inline bool IsNone(Mode mode) { return mode == NONE32 || mode == NONE64; } static inline bool IsCodeAgeSequence(Mode mode) { return mode == CODE_AGE_SEQUENCE; } static inline bool IsGeneratorContinuation(Mode mode) { return mode == GENERATOR_CONTINUATION; } static inline bool IsWasmMemoryReference(Mode mode) { return mode == WASM_MEMORY_REFERENCE; } static inline bool IsWasmMemorySizeReference(Mode mode) { return mode == WASM_MEMORY_SIZE_REFERENCE; } static inline bool IsWasmGlobalReference(Mode mode) { return mode == WASM_GLOBAL_REFERENCE; } static inline int ModeMask(Mode mode) { return 1 << mode; } // Accessors Isolate* isolate() const { return isolate_; } byte* pc() const { return pc_; } void set_pc(byte* pc) { pc_ = pc; } Mode rmode() const { return rmode_; } intptr_t data() const { return data_; } Code* host() const { return host_; } void set_host(Code* host) { host_ = host; } // Apply a relocation by delta bytes. When the code object is moved, PC // relative addresses have to be updated as well as absolute addresses // inside the code (internal references). // Do not forget to flush the icache afterwards! INLINE(void apply(intptr_t delta)); // Is the pointer this relocation info refers to coded like a plain pointer // or is it strange in some way (e.g. relative or patched into a series of // instructions). bool IsCodedSpecially(); // If true, the pointer this relocation info refers to is an entry in the // constant pool, otherwise the pointer is embedded in the instruction stream. bool IsInConstantPool(); Address wasm_memory_reference(); Address wasm_global_reference(); uint32_t wasm_memory_size_reference(); void update_wasm_memory_reference( Address old_base, Address new_base, uint32_t old_size, uint32_t new_size, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); void update_wasm_global_reference( Address old_base, Address new_base, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); void set_target_address( Address target, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); // this relocation applies to; // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) INLINE(Address target_address()); INLINE(Object* target_object()); INLINE(Handle target_object_handle(Assembler* origin)); INLINE(void set_target_object( Object* target, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); INLINE(Address target_runtime_entry(Assembler* origin)); INLINE(void set_target_runtime_entry( Address target, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); INLINE(Cell* target_cell()); INLINE(Handle target_cell_handle()); INLINE(void set_target_cell( Cell* cell, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); INLINE(Handle code_age_stub_handle(Assembler* origin)); INLINE(Code* code_age_stub()); INLINE(void set_code_age_stub( Code* stub, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); // Returns the address of the constant pool entry where the target address // is held. This should only be called if IsInConstantPool returns true. INLINE(Address constant_pool_entry_address()); // Read the address of the word containing the target_address in an // instruction stream. What this means exactly is architecture-independent. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. Architecture-independent code shouldn't // dereference the pointer it gets back from this. INLINE(Address target_address_address()); // This indicates how much space a target takes up when deserializing a code // stream. For most architectures this is just the size of a pointer. For // an instruction like movw/movt where the target bits are mixed into the // instruction bits the size of the target will be zero, indicating that the // serializer should not step forwards in memory after a target is resolved // and written. In this case the target_address_address function above // should return the end of the instructions to be patched, allowing the // deserializer to deserialize the instructions as raw bytes and put them in // place, ready to be patched with the target. INLINE(int target_address_size()); // Read the reference in the instruction this relocation // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE. INLINE(Address target_external_reference()); // Read the reference in the instruction this relocation // applies to; can only be called if rmode_ is INTERNAL_REFERENCE. INLINE(Address target_internal_reference()); // Return the reference address this relocation applies to; // can only be called if rmode_ is INTERNAL_REFERENCE. INLINE(Address target_internal_reference_address()); // Read/modify the address of a call instruction. This is used to relocate // the break points where straight-line code is patched with a call // instruction. INLINE(Address debug_call_address()); INLINE(void set_debug_call_address(Address target)); // Wipe out a relocation to a fixed value, used for making snapshots // reproducible. INLINE(void WipeOut()); template inline void Visit(Heap* heap); template inline void Visit(Isolate* isolate, ObjectVisitor* v); // Check whether this debug break slot has been patched with a call to the // debugger. bool IsPatchedDebugBreakSlotSequence(); #ifdef DEBUG // Check whether the given code contains relocation information that // either is position-relative or movable by the garbage collector. static bool RequiresRelocation(const CodeDesc& desc); #endif #ifdef ENABLE_DISASSEMBLER // Printing static const char* RelocModeName(Mode rmode); void Print(Isolate* isolate, std::ostream& os); // NOLINT #endif // ENABLE_DISASSEMBLER #ifdef VERIFY_HEAP void Verify(Isolate* isolate); #endif static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1; static const int kDataMask = (1 << CODE_TARGET_WITH_ID) | (1 << COMMENT); static const int kDebugBreakSlotMask = 1 << DEBUG_BREAK_SLOT_AT_POSITION | 1 << DEBUG_BREAK_SLOT_AT_RETURN | 1 << DEBUG_BREAK_SLOT_AT_CALL; static const int kApplyMask; // Modes affected by apply. Depends on arch. private: void unchecked_update_wasm_memory_reference(Address address, ICacheFlushMode flush_mode); void unchecked_update_wasm_memory_size(uint32_t size, ICacheFlushMode flush_mode); Isolate* isolate_; // On ARM, note that pc_ is the address of the constant pool entry // to be relocated and not the address of the instruction // referencing the constant pool entry (except when rmode_ == // comment). byte* pc_; Mode rmode_; intptr_t data_; Code* host_; friend class RelocIterator; }; // RelocInfoWriter serializes a stream of relocation info. It writes towards // lower addresses. class RelocInfoWriter BASE_EMBEDDED { public: RelocInfoWriter() : pos_(NULL), last_pc_(NULL), last_id_(0) {} RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc), last_id_(0) {} byte* pos() const { return pos_; } byte* last_pc() const { return last_pc_; } void Write(const RelocInfo* rinfo); // Update the state of the stream after reloc info buffer // and/or code is moved while the stream is active. void Reposition(byte* pos, byte* pc) { pos_ = pos; last_pc_ = pc; } // Max size (bytes) of a written RelocInfo. Longest encoding is // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta. // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11. // On x64 this is 1 + 4 + 1 + 1 + 8 == 15; // Here we use the maximum of the two. static const int kMaxSize = 15; private: inline uint32_t WriteLongPCJump(uint32_t pc_delta); inline void WriteShortTaggedPC(uint32_t pc_delta, int tag); inline void WriteShortTaggedData(intptr_t data_delta, int tag); inline void WriteMode(RelocInfo::Mode rmode); inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode); inline void WriteIntData(int data_delta); inline void WriteData(intptr_t data_delta); byte* pos_; byte* last_pc_; int last_id_; RelocInfo::Mode last_mode_; DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter); }; // A RelocIterator iterates over relocation information. // Typical use: // // for (RelocIterator it(code); !it.done(); it.next()) { // // do something with it.rinfo() here // } // // A mask can be specified to skip unwanted modes. class RelocIterator: public Malloced { public: // Create a new iterator positioned at // the beginning of the reloc info. // Relocation information with mode k is included in the // iteration iff bit k of mode_mask is set. explicit RelocIterator(Code* code, int mode_mask = -1); explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1); // Iteration bool done() const { return done_; } void next(); // Return pointer valid until next next(). RelocInfo* rinfo() { DCHECK(!done()); return &rinfo_; } private: // Advance* moves the position before/after reading. // *Read* reads from current byte(s) into rinfo_. // *Get* just reads and returns info on current byte. void Advance(int bytes = 1) { pos_ -= bytes; } int AdvanceGetTag(); RelocInfo::Mode GetMode(); void AdvanceReadLongPCJump(); int GetShortDataTypeTag(); void ReadShortTaggedPC(); void ReadShortTaggedId(); void ReadShortTaggedData(); void AdvanceReadPC(); void AdvanceReadId(); void AdvanceReadInt(); void AdvanceReadData(); // If the given mode is wanted, set it in rinfo_ and return true. // Else return false. Used for efficiently skipping unwanted modes. bool SetMode(RelocInfo::Mode mode) { return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false; } byte* pos_; byte* end_; byte* code_age_sequence_; RelocInfo rinfo_; bool done_; int mode_mask_; int last_id_; DISALLOW_COPY_AND_ASSIGN(RelocIterator); }; //------------------------------------------------------------------------------ // External function //---------------------------------------------------------------------------- class SCTableReference; class Debug_Address; // An ExternalReference represents a C++ address used in the generated // code. All references to C++ functions and variables must be encapsulated in // an ExternalReference instance. This is done in order to track the origin of // all external references in the code so that they can be bound to the correct // addresses when deserializing a heap. class ExternalReference BASE_EMBEDDED { public: // Used in the simulator to support different native api calls. enum Type { // Builtin call. // Object* f(v8::internal::Arguments). BUILTIN_CALL, // default // Builtin call returning object pair. // ObjectPair f(v8::internal::Arguments). BUILTIN_CALL_PAIR, // Builtin call that returns . // ObjectTriple f(v8::internal::Arguments). BUILTIN_CALL_TRIPLE, // Builtin that takes float arguments and returns an int. // int f(double, double). BUILTIN_COMPARE_CALL, // Builtin call that returns floating point. // double f(double, double). BUILTIN_FP_FP_CALL, // Builtin call that returns floating point. // double f(double). BUILTIN_FP_CALL, // Builtin call that returns floating point. // double f(double, int). BUILTIN_FP_INT_CALL, // Direct call to API function callback. // void f(v8::FunctionCallbackInfo&) DIRECT_API_CALL, // Call to function callback via InvokeFunctionCallback. // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback) PROFILING_API_CALL, // Direct call to accessor getter callback. // void f(Local property, PropertyCallbackInfo& info) DIRECT_GETTER_CALL, // Call to accessor getter callback via InvokeAccessorGetterCallback. // void f(Local property, PropertyCallbackInfo& info, // AccessorNameGetterCallback callback) PROFILING_GETTER_CALL }; static void SetUp(); typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original, Type type); ExternalReference() : address_(NULL) {} ExternalReference(Address address, Isolate* isolate); ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate); ExternalReference(Builtins::Name name, Isolate* isolate); ExternalReference(Runtime::FunctionId id, Isolate* isolate); ExternalReference(const Runtime::Function* f, Isolate* isolate); explicit ExternalReference(StatsCounter* counter); ExternalReference(Isolate::AddressId id, Isolate* isolate); explicit ExternalReference(const SCTableReference& table_ref); // Isolate as an external reference. static ExternalReference isolate_address(Isolate* isolate); // One-of-a-kind references. These references are not part of a general // pattern. This means that they have to be added to the // ExternalReferenceTable in serialize.cc manually. static ExternalReference interpreter_dispatch_table_address(Isolate* isolate); static ExternalReference interpreter_dispatch_counters(Isolate* isolate); static ExternalReference incremental_marking_record_write_function( Isolate* isolate); static ExternalReference incremental_marking_record_write_code_entry_function( Isolate* isolate); static ExternalReference store_buffer_overflow_function( Isolate* isolate); static ExternalReference delete_handle_scope_extensions(Isolate* isolate); static ExternalReference get_date_field_function(Isolate* isolate); static ExternalReference date_cache_stamp(Isolate* isolate); static ExternalReference get_make_code_young_function(Isolate* isolate); static ExternalReference get_mark_code_as_executed_function(Isolate* isolate); // Deoptimization support. static ExternalReference new_deoptimizer_function(Isolate* isolate); static ExternalReference compute_output_frames_function(Isolate* isolate); static ExternalReference wasm_f32_trunc(Isolate* isolate); static ExternalReference wasm_f32_floor(Isolate* isolate); static ExternalReference wasm_f32_ceil(Isolate* isolate); static ExternalReference wasm_f32_nearest_int(Isolate* isolate); static ExternalReference wasm_f64_trunc(Isolate* isolate); static ExternalReference wasm_f64_floor(Isolate* isolate); static ExternalReference wasm_f64_ceil(Isolate* isolate); static ExternalReference wasm_f64_nearest_int(Isolate* isolate); static ExternalReference wasm_int64_to_float32(Isolate* isolate); static ExternalReference wasm_uint64_to_float32(Isolate* isolate); static ExternalReference wasm_int64_to_float64(Isolate* isolate); static ExternalReference wasm_uint64_to_float64(Isolate* isolate); static ExternalReference wasm_float32_to_int64(Isolate* isolate); static ExternalReference wasm_float32_to_uint64(Isolate* isolate); static ExternalReference wasm_float64_to_int64(Isolate* isolate); static ExternalReference wasm_float64_to_uint64(Isolate* isolate); static ExternalReference wasm_int64_div(Isolate* isolate); static ExternalReference wasm_int64_mod(Isolate* isolate); static ExternalReference wasm_uint64_div(Isolate* isolate); static ExternalReference wasm_uint64_mod(Isolate* isolate); static ExternalReference wasm_word32_ctz(Isolate* isolate); static ExternalReference wasm_word64_ctz(Isolate* isolate); static ExternalReference wasm_word32_popcnt(Isolate* isolate); static ExternalReference wasm_word64_popcnt(Isolate* isolate); static ExternalReference wasm_float64_pow(Isolate* isolate); static ExternalReference f64_acos_wrapper_function(Isolate* isolate); static ExternalReference f64_asin_wrapper_function(Isolate* isolate); static ExternalReference f64_mod_wrapper_function(Isolate* isolate); // Log support. static ExternalReference log_enter_external_function(Isolate* isolate); static ExternalReference log_leave_external_function(Isolate* isolate); // Static variable Heap::roots_array_start() static ExternalReference roots_array_start(Isolate* isolate); // Static variable Heap::allocation_sites_list_address() static ExternalReference allocation_sites_list_address(Isolate* isolate); // Static variable StackGuard::address_of_jslimit() V8_EXPORT_PRIVATE static ExternalReference address_of_stack_limit( Isolate* isolate); // Static variable StackGuard::address_of_real_jslimit() static ExternalReference address_of_real_stack_limit(Isolate* isolate); // Static variable RegExpStack::limit_address() static ExternalReference address_of_regexp_stack_limit(Isolate* isolate); // Static variables for RegExp. static ExternalReference address_of_static_offsets_vector(Isolate* isolate); static ExternalReference address_of_regexp_stack_memory_address( Isolate* isolate); static ExternalReference address_of_regexp_stack_memory_size( Isolate* isolate); // Write barrier. static ExternalReference store_buffer_top(Isolate* isolate); // Used for fast allocation in generated code. static ExternalReference new_space_allocation_top_address(Isolate* isolate); static ExternalReference new_space_allocation_limit_address(Isolate* isolate); static ExternalReference old_space_allocation_top_address(Isolate* isolate); static ExternalReference old_space_allocation_limit_address(Isolate* isolate); static ExternalReference mod_two_doubles_operation(Isolate* isolate); static ExternalReference power_double_double_function(Isolate* isolate); static ExternalReference handle_scope_next_address(Isolate* isolate); static ExternalReference handle_scope_limit_address(Isolate* isolate); static ExternalReference handle_scope_level_address(Isolate* isolate); static ExternalReference scheduled_exception_address(Isolate* isolate); static ExternalReference address_of_pending_message_obj(Isolate* isolate); // Static variables containing common double constants. static ExternalReference address_of_min_int(); static ExternalReference address_of_one_half(); static ExternalReference address_of_minus_one_half(); static ExternalReference address_of_negative_infinity(); static ExternalReference address_of_the_hole_nan(); static ExternalReference address_of_uint32_bias(); // Static variables containing simd constants. static ExternalReference address_of_float_abs_constant(); static ExternalReference address_of_float_neg_constant(); static ExternalReference address_of_double_abs_constant(); static ExternalReference address_of_double_neg_constant(); // IEEE 754 functions. static ExternalReference ieee754_acos_function(Isolate* isolate); static ExternalReference ieee754_acosh_function(Isolate* isolate); static ExternalReference ieee754_asin_function(Isolate* isolate); static ExternalReference ieee754_asinh_function(Isolate* isolate); static ExternalReference ieee754_atan_function(Isolate* isolate); static ExternalReference ieee754_atanh_function(Isolate* isolate); static ExternalReference ieee754_atan2_function(Isolate* isolate); static ExternalReference ieee754_cbrt_function(Isolate* isolate); static ExternalReference ieee754_cos_function(Isolate* isolate); static ExternalReference ieee754_cosh_function(Isolate* isolate); static ExternalReference ieee754_exp_function(Isolate* isolate); static ExternalReference ieee754_expm1_function(Isolate* isolate); static ExternalReference ieee754_log_function(Isolate* isolate); static ExternalReference ieee754_log1p_function(Isolate* isolate); static ExternalReference ieee754_log10_function(Isolate* isolate); static ExternalReference ieee754_log2_function(Isolate* isolate); static ExternalReference ieee754_sin_function(Isolate* isolate); static ExternalReference ieee754_sinh_function(Isolate* isolate); static ExternalReference ieee754_tan_function(Isolate* isolate); static ExternalReference ieee754_tanh_function(Isolate* isolate); static ExternalReference page_flags(Page* page); static ExternalReference ForDeoptEntry(Address entry); static ExternalReference cpu_features(); static ExternalReference is_tail_call_elimination_enabled_address( Isolate* isolate); static ExternalReference debug_is_active_address(Isolate* isolate); static ExternalReference debug_after_break_target_address(Isolate* isolate); static ExternalReference is_profiling_address(Isolate* isolate); static ExternalReference invoke_function_callback(Isolate* isolate); static ExternalReference invoke_accessor_getter_callback(Isolate* isolate); V8_EXPORT_PRIVATE static ExternalReference runtime_function_table_address( Isolate* isolate); Address address() const { return reinterpret_cast
(address_); } // Used to read out the last step action of the debugger. static ExternalReference debug_last_step_action_address(Isolate* isolate); // Used to check for suspended generator, used for stepping across await call. static ExternalReference debug_suspended_generator_address(Isolate* isolate); #ifndef V8_INTERPRETED_REGEXP // C functions called from RegExp generated code. // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16() static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate); // Function RegExpMacroAssembler*::CheckStackGuardState() static ExternalReference re_check_stack_guard_state(Isolate* isolate); // Function NativeRegExpMacroAssembler::GrowStack() static ExternalReference re_grow_stack(Isolate* isolate); // byte NativeRegExpMacroAssembler::word_character_bitmap static ExternalReference re_word_character_map(); #endif // This lets you register a function that rewrites all external references. // Used by the ARM simulator to catch calls to external references. static void set_redirector(Isolate* isolate, ExternalReferenceRedirector* redirector) { // We can't stack them. DCHECK(isolate->external_reference_redirector() == NULL); isolate->set_external_reference_redirector( reinterpret_cast(redirector)); } static ExternalReference stress_deopt_count(Isolate* isolate); static ExternalReference fixed_typed_array_base_data_offset(); private: explicit ExternalReference(void* address) : address_(address) {} static void* Redirect(Isolate* isolate, Address address_arg, Type type = ExternalReference::BUILTIN_CALL) { ExternalReferenceRedirector* redirector = reinterpret_cast( isolate->external_reference_redirector()); void* address = reinterpret_cast(address_arg); void* answer = (redirector == NULL) ? address : (*redirector)(isolate, address, type); return answer; } void* address_; }; V8_EXPORT_PRIVATE bool operator==(ExternalReference, ExternalReference); bool operator!=(ExternalReference, ExternalReference); size_t hash_value(ExternalReference); V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&, ExternalReference); // ----------------------------------------------------------------------------- // Utility functions inline int NumberOfBitsSet(uint32_t x) { unsigned int num_bits_set; for (num_bits_set = 0; x; x >>= 1) { num_bits_set += x & 1; } return num_bits_set; } // Computes pow(x, y) with the special cases in the spec for Math.pow. double power_helper(Isolate* isolate, double x, double y); double power_double_int(double x, int y); double power_double_double(double x, double y); // Helper class for generating code or data associated with the code // right after a call instruction. As an example this can be used to // generate safepoint data after calls for crankshaft. class CallWrapper { public: CallWrapper() { } virtual ~CallWrapper() { } // Called just before emitting a call. Argument is the size of the generated // call code. virtual void BeforeCall(int call_size) const = 0; // Called just after emitting a call, i.e., at the return site for the call. virtual void AfterCall() const = 0; // Return whether call needs to check for debug stepping. virtual bool NeedsDebugStepCheck() const { return false; } }; class NullCallWrapper : public CallWrapper { public: NullCallWrapper() { } virtual ~NullCallWrapper() { } virtual void BeforeCall(int call_size) const { } virtual void AfterCall() const { } }; class CheckDebugStepCallWrapper : public CallWrapper { public: CheckDebugStepCallWrapper() {} virtual ~CheckDebugStepCallWrapper() {} virtual void BeforeCall(int call_size) const {} virtual void AfterCall() const {} virtual bool NeedsDebugStepCheck() const { return true; } }; // ----------------------------------------------------------------------------- // Constant pool support class ConstantPoolEntry { public: ConstantPoolEntry() {} ConstantPoolEntry(int position, intptr_t value, bool sharing_ok) : position_(position), merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED), value_(value) {} ConstantPoolEntry(int position, double value) : position_(position), merged_index_(SHARING_ALLOWED), value64_(value) {} int position() const { return position_; } bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; } bool is_merged() const { return merged_index_ >= 0; } int merged_index(void) const { DCHECK(is_merged()); return merged_index_; } void set_merged_index(int index) { merged_index_ = index; DCHECK(is_merged()); } int offset(void) const { DCHECK(merged_index_ >= 0); return merged_index_; } void set_offset(int offset) { DCHECK(offset >= 0); merged_index_ = offset; } intptr_t value() const { return value_; } uint64_t value64() const { return bit_cast(value64_); } enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES }; static int size(Type type) { return (type == INTPTR) ? kPointerSize : kDoubleSize; } enum Access { REGULAR, OVERFLOWED }; private: int position_; int merged_index_; union { intptr_t value_; double value64_; }; enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 }; }; // ----------------------------------------------------------------------------- // Embedded constant pool support class ConstantPoolBuilder BASE_EMBEDDED { public: ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits); // Add pointer-sized constant to the embedded constant pool ConstantPoolEntry::Access AddEntry(int position, intptr_t value, bool sharing_ok) { ConstantPoolEntry entry(position, value, sharing_ok); return AddEntry(entry, ConstantPoolEntry::INTPTR); } // Add double constant to the embedded constant pool ConstantPoolEntry::Access AddEntry(int position, double value) { ConstantPoolEntry entry(position, value); return AddEntry(entry, ConstantPoolEntry::DOUBLE); } // Previews the access type required for the next new entry to be added. ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const; bool IsEmpty() { return info_[ConstantPoolEntry::INTPTR].entries.empty() && info_[ConstantPoolEntry::INTPTR].shared_entries.empty() && info_[ConstantPoolEntry::DOUBLE].entries.empty() && info_[ConstantPoolEntry::DOUBLE].shared_entries.empty(); } // Emit the constant pool. Invoke only after all entries have been // added and all instructions have been emitted. // Returns position of the emitted pool (zero implies no constant pool). int Emit(Assembler* assm); // Returns the label associated with the start of the constant pool. // Linking to this label in the function prologue may provide an // efficient means of constant pool pointer register initialization // on some architectures. inline Label* EmittedPosition() { return &emitted_label_; } private: ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry, ConstantPoolEntry::Type type); void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type); void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access, ConstantPoolEntry::Type type); struct PerTypeEntryInfo { PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {} bool overflow() const { return (overflow_start >= 0 && overflow_start < static_cast(entries.size())); } int regular_reach_bits; int regular_count; int overflow_start; std::vector entries; std::vector shared_entries; }; Label emitted_label_; // Records pc_offset of emitted pool PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES]; }; } // namespace internal } // namespace v8 #endif // V8_ASSEMBLER_H_