// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/code-generator.h" #include "src/compilation-info.h" #include "src/compiler/code-generator-impl.h" #include "src/compiler/gap-resolver.h" #include "src/compiler/node-matchers.h" #include "src/compiler/osr.h" #include "src/mips/macro-assembler-mips.h" namespace v8 { namespace internal { namespace compiler { #define __ masm()-> // TODO(plind): Possibly avoid using these lithium names. #define kScratchReg kLithiumScratchReg #define kCompareReg kLithiumScratchReg2 #define kScratchReg2 kLithiumScratchReg2 #define kScratchDoubleReg kLithiumScratchDouble // TODO(plind): consider renaming these macros. #define TRACE_MSG(msg) \ PrintF("code_gen: \'%s\' in function %s at line %d\n", msg, __FUNCTION__, \ __LINE__) #define TRACE_UNIMPL() \ PrintF("UNIMPLEMENTED code_generator_mips: %s at line %d\n", __FUNCTION__, \ __LINE__) // Adds Mips-specific methods to convert InstructionOperands. class MipsOperandConverter final : public InstructionOperandConverter { public: MipsOperandConverter(CodeGenerator* gen, Instruction* instr) : InstructionOperandConverter(gen, instr) {} FloatRegister OutputSingleRegister(size_t index = 0) { return ToSingleRegister(instr_->OutputAt(index)); } FloatRegister InputSingleRegister(size_t index) { return ToSingleRegister(instr_->InputAt(index)); } FloatRegister ToSingleRegister(InstructionOperand* op) { // Single (Float) and Double register namespace is same on MIPS, // both are typedefs of FPURegister. return ToDoubleRegister(op); } Register InputOrZeroRegister(size_t index) { if (instr_->InputAt(index)->IsImmediate()) { DCHECK((InputInt32(index) == 0)); return zero_reg; } return InputRegister(index); } DoubleRegister InputOrZeroDoubleRegister(size_t index) { if (instr_->InputAt(index)->IsImmediate()) return kDoubleRegZero; return InputDoubleRegister(index); } DoubleRegister InputOrZeroSingleRegister(size_t index) { if (instr_->InputAt(index)->IsImmediate()) return kDoubleRegZero; return InputSingleRegister(index); } Operand InputImmediate(size_t index) { Constant constant = ToConstant(instr_->InputAt(index)); switch (constant.type()) { case Constant::kInt32: return Operand(constant.ToInt32()); case Constant::kFloat32: return Operand( isolate()->factory()->NewNumber(constant.ToFloat32(), TENURED)); case Constant::kFloat64: return Operand( isolate()->factory()->NewNumber(constant.ToFloat64(), TENURED)); case Constant::kInt64: case Constant::kExternalReference: case Constant::kHeapObject: // TODO(plind): Maybe we should handle ExtRef & HeapObj here? // maybe not done on arm due to const pool ?? break; case Constant::kRpoNumber: UNREACHABLE(); // TODO(titzer): RPO immediates on mips? break; } UNREACHABLE(); return Operand(zero_reg); } Operand InputOperand(size_t index) { InstructionOperand* op = instr_->InputAt(index); if (op->IsRegister()) { return Operand(ToRegister(op)); } return InputImmediate(index); } MemOperand MemoryOperand(size_t* first_index) { const size_t index = *first_index; switch (AddressingModeField::decode(instr_->opcode())) { case kMode_None: break; case kMode_MRI: *first_index += 2; return MemOperand(InputRegister(index + 0), InputInt32(index + 1)); case kMode_MRR: // TODO(plind): r6 address mode, to be implemented ... UNREACHABLE(); } UNREACHABLE(); return MemOperand(no_reg); } MemOperand MemoryOperand(size_t index = 0) { return MemoryOperand(&index); } MemOperand ToMemOperand(InstructionOperand* op) const { DCHECK_NOT_NULL(op); DCHECK(op->IsStackSlot() || op->IsFPStackSlot()); return SlotToMemOperand(AllocatedOperand::cast(op)->index()); } MemOperand SlotToMemOperand(int slot) const { FrameOffset offset = frame_access_state()->GetFrameOffset(slot); return MemOperand(offset.from_stack_pointer() ? sp : fp, offset.offset()); } }; static inline bool HasRegisterInput(Instruction* instr, size_t index) { return instr->InputAt(index)->IsRegister(); } namespace { class OutOfLineLoadSingle final : public OutOfLineCode { public: OutOfLineLoadSingle(CodeGenerator* gen, FloatRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ Move(result_, std::numeric_limits::quiet_NaN()); } private: FloatRegister const result_; }; class OutOfLineLoadDouble final : public OutOfLineCode { public: OutOfLineLoadDouble(CodeGenerator* gen, DoubleRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ Move(result_, std::numeric_limits::quiet_NaN()); } private: DoubleRegister const result_; }; class OutOfLineLoadInteger final : public OutOfLineCode { public: OutOfLineLoadInteger(CodeGenerator* gen, Register result) : OutOfLineCode(gen), result_(result) {} void Generate() final { __ mov(result_, zero_reg); } private: Register const result_; }; class OutOfLineRound : public OutOfLineCode { public: OutOfLineRound(CodeGenerator* gen, DoubleRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { // Handle rounding to zero case where sign has to be preserved. // High bits of double input already in kScratchReg. __ srl(at, kScratchReg, 31); __ sll(at, at, 31); __ Mthc1(at, result_); } private: DoubleRegister const result_; }; class OutOfLineRound32 : public OutOfLineCode { public: OutOfLineRound32(CodeGenerator* gen, DoubleRegister result) : OutOfLineCode(gen), result_(result) {} void Generate() final { // Handle rounding to zero case where sign has to be preserved. // High bits of float input already in kScratchReg. __ srl(at, kScratchReg, 31); __ sll(at, at, 31); __ mtc1(at, result_); } private: DoubleRegister const result_; }; class OutOfLineRecordWrite final : public OutOfLineCode { public: OutOfLineRecordWrite(CodeGenerator* gen, Register object, Register index, Register value, Register scratch0, Register scratch1, RecordWriteMode mode) : OutOfLineCode(gen), object_(object), index_(index), value_(value), scratch0_(scratch0), scratch1_(scratch1), mode_(mode), must_save_lr_(!gen->frame_access_state()->has_frame()) {} void Generate() final { if (mode_ > RecordWriteMode::kValueIsPointer) { __ JumpIfSmi(value_, exit()); } __ CheckPageFlag(value_, scratch0_, MemoryChunk::kPointersToHereAreInterestingMask, eq, exit()); RememberedSetAction const remembered_set_action = mode_ > RecordWriteMode::kValueIsMap ? EMIT_REMEMBERED_SET : OMIT_REMEMBERED_SET; SaveFPRegsMode const save_fp_mode = frame()->DidAllocateDoubleRegisters() ? kSaveFPRegs : kDontSaveFPRegs; if (must_save_lr_) { // We need to save and restore ra if the frame was elided. __ Push(ra); } RecordWriteStub stub(isolate(), object_, scratch0_, scratch1_, remembered_set_action, save_fp_mode); __ Addu(scratch1_, object_, index_); __ CallStub(&stub); if (must_save_lr_) { __ Pop(ra); } } private: Register const object_; Register const index_; Register const value_; Register const scratch0_; Register const scratch1_; RecordWriteMode const mode_; bool must_save_lr_; }; Condition FlagsConditionToConditionCmp(FlagsCondition condition) { switch (condition) { case kEqual: return eq; case kNotEqual: return ne; case kSignedLessThan: return lt; case kSignedGreaterThanOrEqual: return ge; case kSignedLessThanOrEqual: return le; case kSignedGreaterThan: return gt; case kUnsignedLessThan: return lo; case kUnsignedGreaterThanOrEqual: return hs; case kUnsignedLessThanOrEqual: return ls; case kUnsignedGreaterThan: return hi; case kUnorderedEqual: case kUnorderedNotEqual: break; default: break; } UNREACHABLE(); return kNoCondition; } Condition FlagsConditionToConditionTst(FlagsCondition condition) { switch (condition) { case kNotEqual: return ne; case kEqual: return eq; default: break; } UNREACHABLE(); return kNoCondition; } FPUCondition FlagsConditionToConditionCmpFPU(bool& predicate, FlagsCondition condition) { switch (condition) { case kEqual: predicate = true; return EQ; case kNotEqual: predicate = false; return EQ; case kUnsignedLessThan: predicate = true; return OLT; case kUnsignedGreaterThanOrEqual: predicate = false; return ULT; case kUnsignedLessThanOrEqual: predicate = true; return OLE; case kUnsignedGreaterThan: predicate = false; return ULE; case kUnorderedEqual: case kUnorderedNotEqual: predicate = true; break; default: predicate = true; break; } UNREACHABLE(); return kNoFPUCondition; } } // namespace #define ASSEMBLE_CHECKED_LOAD_FLOAT(width, asm_instr) \ do { \ auto result = i.Output##width##Register(); \ auto ool = new (zone()) OutOfLineLoad##width(this, result); \ if (instr->InputAt(0)->IsRegister()) { \ auto offset = i.InputRegister(0); \ __ Branch(USE_DELAY_SLOT, ool->entry(), hs, offset, i.InputOperand(1)); \ __ addu(kScratchReg, i.InputRegister(2), offset); \ __ asm_instr(result, MemOperand(kScratchReg, 0)); \ } else { \ auto offset = i.InputOperand(0).immediate(); \ __ Branch(ool->entry(), ls, i.InputRegister(1), Operand(offset)); \ __ asm_instr(result, MemOperand(i.InputRegister(2), offset)); \ } \ __ bind(ool->exit()); \ } while (0) #define ASSEMBLE_CHECKED_LOAD_INTEGER(asm_instr) \ do { \ auto result = i.OutputRegister(); \ auto ool = new (zone()) OutOfLineLoadInteger(this, result); \ if (instr->InputAt(0)->IsRegister()) { \ auto offset = i.InputRegister(0); \ __ Branch(USE_DELAY_SLOT, ool->entry(), hs, offset, i.InputOperand(1)); \ __ addu(kScratchReg, i.InputRegister(2), offset); \ __ asm_instr(result, MemOperand(kScratchReg, 0)); \ } else { \ auto offset = i.InputOperand(0).immediate(); \ __ Branch(ool->entry(), ls, i.InputRegister(1), Operand(offset)); \ __ asm_instr(result, MemOperand(i.InputRegister(2), offset)); \ } \ __ bind(ool->exit()); \ } while (0) #define ASSEMBLE_CHECKED_STORE_FLOAT(width, asm_instr) \ do { \ Label done; \ if (instr->InputAt(0)->IsRegister()) { \ auto offset = i.InputRegister(0); \ auto value = i.InputOrZero##width##Register(2); \ if (value.is(kDoubleRegZero) && !__ IsDoubleZeroRegSet()) { \ __ Move(kDoubleRegZero, 0.0); \ } \ __ Branch(USE_DELAY_SLOT, &done, hs, offset, i.InputOperand(1)); \ __ addu(kScratchReg, i.InputRegister(3), offset); \ __ asm_instr(value, MemOperand(kScratchReg, 0)); \ } else { \ auto offset = i.InputOperand(0).immediate(); \ auto value = i.InputOrZero##width##Register(2); \ if (value.is(kDoubleRegZero) && !__ IsDoubleZeroRegSet()) { \ __ Move(kDoubleRegZero, 0.0); \ } \ __ Branch(&done, ls, i.InputRegister(1), Operand(offset)); \ __ asm_instr(value, MemOperand(i.InputRegister(3), offset)); \ } \ __ bind(&done); \ } while (0) #define ASSEMBLE_CHECKED_STORE_INTEGER(asm_instr) \ do { \ Label done; \ if (instr->InputAt(0)->IsRegister()) { \ auto offset = i.InputRegister(0); \ auto value = i.InputOrZeroRegister(2); \ __ Branch(USE_DELAY_SLOT, &done, hs, offset, i.InputOperand(1)); \ __ addu(kScratchReg, i.InputRegister(3), offset); \ __ asm_instr(value, MemOperand(kScratchReg, 0)); \ } else { \ auto offset = i.InputOperand(0).immediate(); \ auto value = i.InputOrZeroRegister(2); \ __ Branch(&done, ls, i.InputRegister(1), Operand(offset)); \ __ asm_instr(value, MemOperand(i.InputRegister(3), offset)); \ } \ __ bind(&done); \ } while (0) #define ASSEMBLE_ROUND_DOUBLE_TO_DOUBLE(mode) \ if (IsMipsArchVariant(kMips32r6)) { \ __ cfc1(kScratchReg, FCSR); \ __ li(at, Operand(mode_##mode)); \ __ ctc1(at, FCSR); \ __ rint_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \ __ ctc1(kScratchReg, FCSR); \ } else { \ auto ool = new (zone()) OutOfLineRound(this, i.OutputDoubleRegister()); \ Label done; \ __ Mfhc1(kScratchReg, i.InputDoubleRegister(0)); \ __ Ext(at, kScratchReg, HeapNumber::kExponentShift, \ HeapNumber::kExponentBits); \ __ Branch(USE_DELAY_SLOT, &done, hs, at, \ Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits)); \ __ mov_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \ __ mode##_l_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \ __ Move(at, kScratchReg2, i.OutputDoubleRegister()); \ __ or_(at, at, kScratchReg2); \ __ Branch(USE_DELAY_SLOT, ool->entry(), eq, at, Operand(zero_reg)); \ __ cvt_d_l(i.OutputDoubleRegister(), i.OutputDoubleRegister()); \ __ bind(ool->exit()); \ __ bind(&done); \ } #define ASSEMBLE_ROUND_FLOAT_TO_FLOAT(mode) \ if (IsMipsArchVariant(kMips32r6)) { \ __ cfc1(kScratchReg, FCSR); \ __ li(at, Operand(mode_##mode)); \ __ ctc1(at, FCSR); \ __ rint_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \ __ ctc1(kScratchReg, FCSR); \ } else { \ int32_t kFloat32ExponentBias = 127; \ int32_t kFloat32MantissaBits = 23; \ int32_t kFloat32ExponentBits = 8; \ auto ool = new (zone()) OutOfLineRound32(this, i.OutputDoubleRegister()); \ Label done; \ __ mfc1(kScratchReg, i.InputDoubleRegister(0)); \ __ Ext(at, kScratchReg, kFloat32MantissaBits, kFloat32ExponentBits); \ __ Branch(USE_DELAY_SLOT, &done, hs, at, \ Operand(kFloat32ExponentBias + kFloat32MantissaBits)); \ __ mov_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \ __ mode##_w_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); \ __ mfc1(at, i.OutputDoubleRegister()); \ __ Branch(USE_DELAY_SLOT, ool->entry(), eq, at, Operand(zero_reg)); \ __ cvt_s_w(i.OutputDoubleRegister(), i.OutputDoubleRegister()); \ __ bind(ool->exit()); \ __ bind(&done); \ } #define ASSEMBLE_ATOMIC_LOAD_INTEGER(asm_instr) \ do { \ __ asm_instr(i.OutputRegister(), i.MemoryOperand()); \ __ sync(); \ } while (0) #define ASSEMBLE_ATOMIC_STORE_INTEGER(asm_instr) \ do { \ __ sync(); \ __ asm_instr(i.InputOrZeroRegister(2), i.MemoryOperand()); \ __ sync(); \ } while (0) #define ASSEMBLE_IEEE754_BINOP(name) \ do { \ FrameScope scope(masm(), StackFrame::MANUAL); \ __ PrepareCallCFunction(0, 2, kScratchReg); \ __ MovToFloatParameters(i.InputDoubleRegister(0), \ i.InputDoubleRegister(1)); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(isolate()), \ 0, 2); \ /* Move the result in the double result register. */ \ __ MovFromFloatResult(i.OutputDoubleRegister()); \ } while (0) #define ASSEMBLE_IEEE754_UNOP(name) \ do { \ FrameScope scope(masm(), StackFrame::MANUAL); \ __ PrepareCallCFunction(0, 1, kScratchReg); \ __ MovToFloatParameter(i.InputDoubleRegister(0)); \ __ CallCFunction(ExternalReference::ieee754_##name##_function(isolate()), \ 0, 1); \ /* Move the result in the double result register. */ \ __ MovFromFloatResult(i.OutputDoubleRegister()); \ } while (0) void CodeGenerator::AssembleDeconstructFrame() { __ mov(sp, fp); __ Pop(ra, fp); } void CodeGenerator::AssemblePrepareTailCall() { if (frame_access_state()->has_frame()) { __ lw(ra, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); __ lw(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); } frame_access_state()->SetFrameAccessToSP(); } void CodeGenerator::AssemblePopArgumentsAdaptorFrame(Register args_reg, Register scratch1, Register scratch2, Register scratch3) { DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); Label done; // Check if current frame is an arguments adaptor frame. __ lw(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ Branch(&done, ne, scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Load arguments count from current arguments adaptor frame (note, it // does not include receiver). Register caller_args_count_reg = scratch1; __ lw(caller_args_count_reg, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); ParameterCount callee_args_count(args_reg); __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, scratch3); __ bind(&done); } namespace { void AdjustStackPointerForTailCall(MacroAssembler* masm, FrameAccessState* state, int new_slot_above_sp, bool allow_shrinkage = true) { int current_sp_offset = state->GetSPToFPSlotCount() + StandardFrameConstants::kFixedSlotCountAboveFp; int stack_slot_delta = new_slot_above_sp - current_sp_offset; if (stack_slot_delta > 0) { masm->Subu(sp, sp, stack_slot_delta * kPointerSize); state->IncreaseSPDelta(stack_slot_delta); } else if (allow_shrinkage && stack_slot_delta < 0) { masm->Addu(sp, sp, -stack_slot_delta * kPointerSize); state->IncreaseSPDelta(stack_slot_delta); } } } // namespace void CodeGenerator::AssembleTailCallBeforeGap(Instruction* instr, int first_unused_stack_slot) { AdjustStackPointerForTailCall(masm(), frame_access_state(), first_unused_stack_slot, false); } void CodeGenerator::AssembleTailCallAfterGap(Instruction* instr, int first_unused_stack_slot) { AdjustStackPointerForTailCall(masm(), frame_access_state(), first_unused_stack_slot); } // Assembles an instruction after register allocation, producing machine code. CodeGenerator::CodeGenResult CodeGenerator::AssembleArchInstruction( Instruction* instr) { MipsOperandConverter i(this, instr); InstructionCode opcode = instr->opcode(); ArchOpcode arch_opcode = ArchOpcodeField::decode(opcode); switch (arch_opcode) { case kArchCallCodeObject: { EnsureSpaceForLazyDeopt(); if (instr->InputAt(0)->IsImmediate()) { __ Call(Handle::cast(i.InputHeapObject(0)), RelocInfo::CODE_TARGET); } else { __ addiu(at, i.InputRegister(0), Code::kHeaderSize - kHeapObjectTag); __ Call(at); } RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); break; } case kArchTailCallCodeObjectFromJSFunction: case kArchTailCallCodeObject: { if (arch_opcode == kArchTailCallCodeObjectFromJSFunction) { AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister, i.TempRegister(0), i.TempRegister(1), i.TempRegister(2)); } if (instr->InputAt(0)->IsImmediate()) { __ Jump(Handle::cast(i.InputHeapObject(0)), RelocInfo::CODE_TARGET); } else { __ addiu(at, i.InputRegister(0), Code::kHeaderSize - kHeapObjectTag); __ Jump(at); } frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } case kArchTailCallAddress: { CHECK(!instr->InputAt(0)->IsImmediate()); __ Jump(i.InputRegister(0)); frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } case kArchCallJSFunction: { EnsureSpaceForLazyDeopt(); Register func = i.InputRegister(0); if (FLAG_debug_code) { // Check the function's context matches the context argument. __ lw(kScratchReg, FieldMemOperand(func, JSFunction::kContextOffset)); __ Assert(eq, kWrongFunctionContext, cp, Operand(kScratchReg)); } __ lw(at, FieldMemOperand(func, JSFunction::kCodeEntryOffset)); __ Call(at); RecordCallPosition(instr); frame_access_state()->ClearSPDelta(); frame_access_state()->SetFrameAccessToDefault(); break; } case kArchTailCallJSFunctionFromJSFunction: { Register func = i.InputRegister(0); if (FLAG_debug_code) { // Check the function's context matches the context argument. __ lw(kScratchReg, FieldMemOperand(func, JSFunction::kContextOffset)); __ Assert(eq, kWrongFunctionContext, cp, Operand(kScratchReg)); } AssemblePopArgumentsAdaptorFrame(kJavaScriptCallArgCountRegister, i.TempRegister(0), i.TempRegister(1), i.TempRegister(2)); __ lw(at, FieldMemOperand(func, JSFunction::kCodeEntryOffset)); __ Jump(at); frame_access_state()->ClearSPDelta(); break; } case kArchPrepareCallCFunction: { int const num_parameters = MiscField::decode(instr->opcode()); __ PrepareCallCFunction(num_parameters, kScratchReg); // Frame alignment requires using FP-relative frame addressing. frame_access_state()->SetFrameAccessToFP(); break; } case kArchPrepareTailCall: AssemblePrepareTailCall(); break; case kArchCallCFunction: { int const num_parameters = MiscField::decode(instr->opcode()); if (instr->InputAt(0)->IsImmediate()) { ExternalReference ref = i.InputExternalReference(0); __ CallCFunction(ref, num_parameters); } else { Register func = i.InputRegister(0); __ CallCFunction(func, num_parameters); } frame_access_state()->SetFrameAccessToDefault(); frame_access_state()->ClearSPDelta(); break; } case kArchJmp: AssembleArchJump(i.InputRpo(0)); break; case kArchLookupSwitch: AssembleArchLookupSwitch(instr); break; case kArchTableSwitch: AssembleArchTableSwitch(instr); break; case kArchDebugBreak: __ stop("kArchDebugBreak"); break; case kArchComment: { Address comment_string = i.InputExternalReference(0).address(); __ RecordComment(reinterpret_cast(comment_string)); break; } case kArchNop: case kArchThrowTerminator: // don't emit code for nops. break; case kArchDeoptimize: { int deopt_state_id = BuildTranslation(instr, -1, 0, OutputFrameStateCombine::Ignore()); Deoptimizer::BailoutType bailout_type = Deoptimizer::BailoutType(MiscField::decode(instr->opcode())); CodeGenResult result = AssembleDeoptimizerCall( deopt_state_id, bailout_type, current_source_position_); if (result != kSuccess) return result; break; } case kArchRet: AssembleReturn(instr->InputAt(0)); break; case kArchStackPointer: __ mov(i.OutputRegister(), sp); break; case kArchFramePointer: __ mov(i.OutputRegister(), fp); break; case kArchParentFramePointer: if (frame_access_state()->has_frame()) { __ lw(i.OutputRegister(), MemOperand(fp, 0)); } else { __ mov(i.OutputRegister(), fp); } break; case kArchTruncateDoubleToI: __ TruncateDoubleToI(i.OutputRegister(), i.InputDoubleRegister(0)); break; case kArchStoreWithWriteBarrier: { RecordWriteMode mode = static_cast(MiscField::decode(instr->opcode())); Register object = i.InputRegister(0); Register index = i.InputRegister(1); Register value = i.InputRegister(2); Register scratch0 = i.TempRegister(0); Register scratch1 = i.TempRegister(1); auto ool = new (zone()) OutOfLineRecordWrite(this, object, index, value, scratch0, scratch1, mode); __ Addu(at, object, index); __ sw(value, MemOperand(at)); __ CheckPageFlag(object, scratch0, MemoryChunk::kPointersFromHereAreInterestingMask, ne, ool->entry()); __ bind(ool->exit()); break; } case kArchStackSlot: { FrameOffset offset = frame_access_state()->GetFrameOffset(i.InputInt32(0)); __ Addu(i.OutputRegister(), offset.from_stack_pointer() ? sp : fp, Operand(offset.offset())); break; } case kIeee754Float64Acos: ASSEMBLE_IEEE754_UNOP(acos); break; case kIeee754Float64Acosh: ASSEMBLE_IEEE754_UNOP(acosh); break; case kIeee754Float64Asin: ASSEMBLE_IEEE754_UNOP(asin); break; case kIeee754Float64Asinh: ASSEMBLE_IEEE754_UNOP(asinh); break; case kIeee754Float64Atan: ASSEMBLE_IEEE754_UNOP(atan); break; case kIeee754Float64Atanh: ASSEMBLE_IEEE754_UNOP(atanh); break; case kIeee754Float64Atan2: ASSEMBLE_IEEE754_BINOP(atan2); break; case kIeee754Float64Cos: ASSEMBLE_IEEE754_UNOP(cos); break; case kIeee754Float64Cosh: ASSEMBLE_IEEE754_UNOP(cosh); break; case kIeee754Float64Cbrt: ASSEMBLE_IEEE754_UNOP(cbrt); break; case kIeee754Float64Exp: ASSEMBLE_IEEE754_UNOP(exp); break; case kIeee754Float64Expm1: ASSEMBLE_IEEE754_UNOP(expm1); break; case kIeee754Float64Log: ASSEMBLE_IEEE754_UNOP(log); break; case kIeee754Float64Log1p: ASSEMBLE_IEEE754_UNOP(log1p); break; case kIeee754Float64Log10: ASSEMBLE_IEEE754_UNOP(log10); break; case kIeee754Float64Log2: ASSEMBLE_IEEE754_UNOP(log2); break; case kIeee754Float64Pow: { MathPowStub stub(isolate(), MathPowStub::DOUBLE); __ CallStub(&stub); break; } case kIeee754Float64Sin: ASSEMBLE_IEEE754_UNOP(sin); break; case kIeee754Float64Sinh: ASSEMBLE_IEEE754_UNOP(sinh); break; case kIeee754Float64Tan: ASSEMBLE_IEEE754_UNOP(tan); break; case kIeee754Float64Tanh: ASSEMBLE_IEEE754_UNOP(tanh); break; case kMipsAdd: __ Addu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsAddOvf: // Pseudo-instruction used for overflow/branch. No opcode emitted here. break; case kMipsSub: __ Subu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsSubOvf: // Pseudo-instruction used for overflow/branch. No opcode emitted here. break; case kMipsMul: __ Mul(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsMulOvf: // Pseudo-instruction used for overflow/branch. No opcode emitted here. break; case kMipsMulHigh: __ Mulh(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsMulHighU: __ Mulhu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsDiv: __ Div(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); if (IsMipsArchVariant(kMips32r6)) { __ selnez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); } else { __ Movz(i.OutputRegister(), i.InputRegister(1), i.InputRegister(1)); } break; case kMipsDivU: __ Divu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); if (IsMipsArchVariant(kMips32r6)) { __ selnez(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); } else { __ Movz(i.OutputRegister(), i.InputRegister(1), i.InputRegister(1)); } break; case kMipsMod: __ Mod(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsModU: __ Modu(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsAnd: __ And(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsOr: __ Or(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsNor: if (instr->InputAt(1)->IsRegister()) { __ Nor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); } else { DCHECK(i.InputOperand(1).immediate() == 0); __ Nor(i.OutputRegister(), i.InputRegister(0), zero_reg); } break; case kMipsXor: __ Xor(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsClz: __ Clz(i.OutputRegister(), i.InputRegister(0)); break; case kMipsCtz: { Register reg1 = kScratchReg; Register reg2 = kScratchReg2; Label skip_for_zero; Label end; // Branch if the operand is zero __ Branch(&skip_for_zero, eq, i.InputRegister(0), Operand(zero_reg)); // Find the number of bits before the last bit set to 1. __ Subu(reg2, zero_reg, i.InputRegister(0)); __ And(reg2, reg2, i.InputRegister(0)); __ clz(reg2, reg2); // Get the number of bits after the last bit set to 1. __ li(reg1, 0x1F); __ Subu(i.OutputRegister(), reg1, reg2); __ Branch(&end); __ bind(&skip_for_zero); // If the operand is zero, return word length as the result. __ li(i.OutputRegister(), 0x20); __ bind(&end); } break; case kMipsPopcnt: { Register reg1 = kScratchReg; Register reg2 = kScratchReg2; uint32_t m1 = 0x55555555; uint32_t m2 = 0x33333333; uint32_t m4 = 0x0f0f0f0f; uint32_t m8 = 0x00ff00ff; uint32_t m16 = 0x0000ffff; // Put count of ones in every 2 bits into those 2 bits. __ li(at, m1); __ srl(reg1, i.InputRegister(0), 1); __ And(reg2, i.InputRegister(0), at); __ And(reg1, reg1, at); __ addu(reg1, reg1, reg2); // Put count of ones in every 4 bits into those 4 bits. __ li(at, m2); __ srl(reg2, reg1, 2); __ And(reg2, reg2, at); __ And(reg1, reg1, at); __ addu(reg1, reg1, reg2); // Put count of ones in every 8 bits into those 8 bits. __ li(at, m4); __ srl(reg2, reg1, 4); __ And(reg2, reg2, at); __ And(reg1, reg1, at); __ addu(reg1, reg1, reg2); // Put count of ones in every 16 bits into those 16 bits. __ li(at, m8); __ srl(reg2, reg1, 8); __ And(reg2, reg2, at); __ And(reg1, reg1, at); __ addu(reg1, reg1, reg2); // Calculate total number of ones. __ li(at, m16); __ srl(reg2, reg1, 16); __ And(reg2, reg2, at); __ And(reg1, reg1, at); __ addu(i.OutputRegister(), reg1, reg2); } break; case kMipsShl: if (instr->InputAt(1)->IsRegister()) { __ sllv(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); } else { int32_t imm = i.InputOperand(1).immediate(); __ sll(i.OutputRegister(), i.InputRegister(0), imm); } break; case kMipsShr: if (instr->InputAt(1)->IsRegister()) { __ srlv(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); } else { int32_t imm = i.InputOperand(1).immediate(); __ srl(i.OutputRegister(), i.InputRegister(0), imm); } break; case kMipsSar: if (instr->InputAt(1)->IsRegister()) { __ srav(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1)); } else { int32_t imm = i.InputOperand(1).immediate(); __ sra(i.OutputRegister(), i.InputRegister(0), imm); } break; case kMipsShlPair: { Register second_output = instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0); if (instr->InputAt(2)->IsRegister()) { __ ShlPair(i.OutputRegister(0), second_output, i.InputRegister(0), i.InputRegister(1), i.InputRegister(2)); } else { uint32_t imm = i.InputOperand(2).immediate(); __ ShlPair(i.OutputRegister(0), second_output, i.InputRegister(0), i.InputRegister(1), imm); } } break; case kMipsShrPair: { Register second_output = instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0); if (instr->InputAt(2)->IsRegister()) { __ ShrPair(i.OutputRegister(0), second_output, i.InputRegister(0), i.InputRegister(1), i.InputRegister(2)); } else { uint32_t imm = i.InputOperand(2).immediate(); __ ShrPair(i.OutputRegister(0), second_output, i.InputRegister(0), i.InputRegister(1), imm); } } break; case kMipsSarPair: { Register second_output = instr->OutputCount() >= 2 ? i.OutputRegister(1) : i.TempRegister(0); if (instr->InputAt(2)->IsRegister()) { __ SarPair(i.OutputRegister(0), second_output, i.InputRegister(0), i.InputRegister(1), i.InputRegister(2)); } else { uint32_t imm = i.InputOperand(2).immediate(); __ SarPair(i.OutputRegister(0), second_output, i.InputRegister(0), i.InputRegister(1), imm); } } break; case kMipsExt: __ Ext(i.OutputRegister(), i.InputRegister(0), i.InputInt8(1), i.InputInt8(2)); break; case kMipsIns: if (instr->InputAt(1)->IsImmediate() && i.InputInt8(1) == 0) { __ Ins(i.OutputRegister(), zero_reg, i.InputInt8(1), i.InputInt8(2)); } else { __ Ins(i.OutputRegister(), i.InputRegister(0), i.InputInt8(1), i.InputInt8(2)); } break; case kMipsRor: __ Ror(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1)); break; case kMipsTst: // Pseudo-instruction used for tst/branch. No opcode emitted here. break; case kMipsCmp: // Pseudo-instruction used for cmp/branch. No opcode emitted here. break; case kMipsMov: // TODO(plind): Should we combine mov/li like this, or use separate instr? // - Also see x64 ASSEMBLE_BINOP & RegisterOrOperandType if (HasRegisterInput(instr, 0)) { __ mov(i.OutputRegister(), i.InputRegister(0)); } else { __ li(i.OutputRegister(), i.InputOperand(0)); } break; case kMipsLsa: DCHECK(instr->InputAt(2)->IsImmediate()); __ Lsa(i.OutputRegister(), i.InputRegister(0), i.InputRegister(1), i.InputInt8(2)); break; case kMipsCmpS: // Psuedo-instruction used for FP cmp/branch. No opcode emitted here. break; case kMipsAddS: // TODO(plind): add special case: combine mult & add. __ add_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsSubS: __ sub_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsMulS: // TODO(plind): add special case: right op is -1.0, see arm port. __ mul_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsDivS: __ div_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsModS: { // TODO(bmeurer): We should really get rid of this special instruction, // and generate a CallAddress instruction instead. FrameScope scope(masm(), StackFrame::MANUAL); __ PrepareCallCFunction(0, 2, kScratchReg); __ MovToFloatParameters(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); // TODO(balazs.kilvady): implement mod_two_floats_operation(isolate()) __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()), 0, 2); // Move the result in the double result register. __ MovFromFloatResult(i.OutputSingleRegister()); break; } case kMipsAbsS: __ abs_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); break; case kMipsSqrtS: { __ sqrt_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); break; } case kMipsMaxS: __ max_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsMinS: __ min_s(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsCmpD: // Psuedo-instruction used for FP cmp/branch. No opcode emitted here. break; case kMipsAddPair: __ AddPair(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0), i.InputRegister(1), i.InputRegister(2), i.InputRegister(3)); break; case kMipsSubPair: __ SubPair(i.OutputRegister(0), i.OutputRegister(1), i.InputRegister(0), i.InputRegister(1), i.InputRegister(2), i.InputRegister(3)); break; case kMipsMulPair: { __ Mulu(i.OutputRegister(1), i.OutputRegister(0), i.InputRegister(0), i.InputRegister(2)); __ mul(kScratchReg, i.InputRegister(0), i.InputRegister(3)); __ mul(kScratchReg2, i.InputRegister(1), i.InputRegister(2)); __ Addu(i.OutputRegister(1), i.OutputRegister(1), kScratchReg); __ Addu(i.OutputRegister(1), i.OutputRegister(1), kScratchReg2); } break; case kMipsAddD: // TODO(plind): add special case: combine mult & add. __ add_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsSubD: __ sub_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsMaddS: __ madd_s(i.OutputFloatRegister(), i.InputFloatRegister(0), i.InputFloatRegister(1), i.InputFloatRegister(2)); break; case kMipsMaddD: __ madd_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1), i.InputDoubleRegister(2)); break; case kMipsMaddfS: __ maddf_s(i.OutputFloatRegister(), i.InputFloatRegister(1), i.InputFloatRegister(2)); break; case kMipsMaddfD: __ maddf_d(i.OutputDoubleRegister(), i.InputDoubleRegister(1), i.InputDoubleRegister(2)); break; case kMipsMsubS: __ msub_s(i.OutputFloatRegister(), i.InputFloatRegister(0), i.InputFloatRegister(1), i.InputFloatRegister(2)); break; case kMipsMsubD: __ msub_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1), i.InputDoubleRegister(2)); break; case kMipsMsubfS: __ msubf_s(i.OutputFloatRegister(), i.InputFloatRegister(1), i.InputFloatRegister(2)); break; case kMipsMsubfD: __ msubf_d(i.OutputDoubleRegister(), i.InputDoubleRegister(1), i.InputDoubleRegister(2)); break; case kMipsMulD: // TODO(plind): add special case: right op is -1.0, see arm port. __ mul_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsDivD: __ div_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsModD: { // TODO(bmeurer): We should really get rid of this special instruction, // and generate a CallAddress instruction instead. FrameScope scope(masm(), StackFrame::MANUAL); __ PrepareCallCFunction(0, 2, kScratchReg); __ MovToFloatParameters(i.InputDoubleRegister(0), i.InputDoubleRegister(1)); __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()), 0, 2); // Move the result in the double result register. __ MovFromFloatResult(i.OutputDoubleRegister()); break; } case kMipsAbsD: __ abs_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); break; case kMipsNegS: __ Neg_s(i.OutputSingleRegister(), i.InputSingleRegister(0)); break; case kMipsNegD: __ Neg_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); break; case kMipsSqrtD: { __ sqrt_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); break; } case kMipsMaxD: __ max_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsMinD: __ min_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1)); break; case kMipsFloat64RoundDown: { ASSEMBLE_ROUND_DOUBLE_TO_DOUBLE(floor); break; } case kMipsFloat32RoundDown: { ASSEMBLE_ROUND_FLOAT_TO_FLOAT(floor); break; } case kMipsFloat64RoundTruncate: { ASSEMBLE_ROUND_DOUBLE_TO_DOUBLE(trunc); break; } case kMipsFloat32RoundTruncate: { ASSEMBLE_ROUND_FLOAT_TO_FLOAT(trunc); break; } case kMipsFloat64RoundUp: { ASSEMBLE_ROUND_DOUBLE_TO_DOUBLE(ceil); break; } case kMipsFloat32RoundUp: { ASSEMBLE_ROUND_FLOAT_TO_FLOAT(ceil); break; } case kMipsFloat64RoundTiesEven: { ASSEMBLE_ROUND_DOUBLE_TO_DOUBLE(round); break; } case kMipsFloat32RoundTiesEven: { ASSEMBLE_ROUND_FLOAT_TO_FLOAT(round); break; } case kMipsFloat32Max: { Label compare_nan, done_compare; __ MaxNaNCheck_s(i.OutputSingleRegister(), i.InputSingleRegister(0), i.InputSingleRegister(1), &compare_nan); __ Branch(&done_compare); __ bind(&compare_nan); __ Move(i.OutputSingleRegister(), std::numeric_limits::quiet_NaN()); __ bind(&done_compare); break; } case kMipsFloat64Max: { Label compare_nan, done_compare; __ MaxNaNCheck_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1), &compare_nan); __ Branch(&done_compare); __ bind(&compare_nan); __ Move(i.OutputDoubleRegister(), std::numeric_limits::quiet_NaN()); __ bind(&done_compare); break; } case kMipsFloat32Min: { Label compare_nan, done_compare; __ MinNaNCheck_s(i.OutputSingleRegister(), i.InputSingleRegister(0), i.InputSingleRegister(1), &compare_nan); __ Branch(&done_compare); __ bind(&compare_nan); __ Move(i.OutputSingleRegister(), std::numeric_limits::quiet_NaN()); __ bind(&done_compare); break; } case kMipsFloat64Min: { Label compare_nan, done_compare; __ MinNaNCheck_d(i.OutputDoubleRegister(), i.InputDoubleRegister(0), i.InputDoubleRegister(1), &compare_nan); __ Branch(&done_compare); __ bind(&compare_nan); __ Move(i.OutputDoubleRegister(), std::numeric_limits::quiet_NaN()); __ bind(&done_compare); break; } case kMipsCvtSD: { __ cvt_s_d(i.OutputSingleRegister(), i.InputDoubleRegister(0)); break; } case kMipsCvtDS: { __ cvt_d_s(i.OutputDoubleRegister(), i.InputSingleRegister(0)); break; } case kMipsCvtDW: { FPURegister scratch = kScratchDoubleReg; __ mtc1(i.InputRegister(0), scratch); __ cvt_d_w(i.OutputDoubleRegister(), scratch); break; } case kMipsCvtSW: { FPURegister scratch = kScratchDoubleReg; __ mtc1(i.InputRegister(0), scratch); __ cvt_s_w(i.OutputDoubleRegister(), scratch); break; } case kMipsCvtSUw: { FPURegister scratch = kScratchDoubleReg; __ Cvt_d_uw(i.OutputDoubleRegister(), i.InputRegister(0), scratch); __ cvt_s_d(i.OutputDoubleRegister(), i.OutputDoubleRegister()); break; } case kMipsCvtDUw: { FPURegister scratch = kScratchDoubleReg; __ Cvt_d_uw(i.OutputDoubleRegister(), i.InputRegister(0), scratch); break; } case kMipsFloorWD: { FPURegister scratch = kScratchDoubleReg; __ floor_w_d(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); break; } case kMipsCeilWD: { FPURegister scratch = kScratchDoubleReg; __ ceil_w_d(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); break; } case kMipsRoundWD: { FPURegister scratch = kScratchDoubleReg; __ round_w_d(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); break; } case kMipsTruncWD: { FPURegister scratch = kScratchDoubleReg; // Other arches use round to zero here, so we follow. __ trunc_w_d(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); break; } case kMipsFloorWS: { FPURegister scratch = kScratchDoubleReg; __ floor_w_s(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); break; } case kMipsCeilWS: { FPURegister scratch = kScratchDoubleReg; __ ceil_w_s(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); break; } case kMipsRoundWS: { FPURegister scratch = kScratchDoubleReg; __ round_w_s(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); break; } case kMipsTruncWS: { FPURegister scratch = kScratchDoubleReg; __ trunc_w_s(scratch, i.InputDoubleRegister(0)); __ mfc1(i.OutputRegister(), scratch); // Avoid INT32_MAX as an overflow indicator and use INT32_MIN instead, // because INT32_MIN allows easier out-of-bounds detection. __ addiu(kScratchReg, i.OutputRegister(), 1); __ slt(kScratchReg2, kScratchReg, i.OutputRegister()); __ Movn(i.OutputRegister(), kScratchReg, kScratchReg2); break; } case kMipsTruncUwD: { FPURegister scratch = kScratchDoubleReg; // TODO(plind): Fix wrong param order of Trunc_uw_d() macro-asm function. __ Trunc_uw_d(i.InputDoubleRegister(0), i.OutputRegister(), scratch); break; } case kMipsTruncUwS: { FPURegister scratch = kScratchDoubleReg; // TODO(plind): Fix wrong param order of Trunc_uw_s() macro-asm function. __ Trunc_uw_s(i.InputDoubleRegister(0), i.OutputRegister(), scratch); // Avoid UINT32_MAX as an overflow indicator and use 0 instead, // because 0 allows easier out-of-bounds detection. __ addiu(kScratchReg, i.OutputRegister(), 1); __ Movz(i.OutputRegister(), zero_reg, kScratchReg); break; } case kMipsFloat64ExtractLowWord32: __ FmoveLow(i.OutputRegister(), i.InputDoubleRegister(0)); break; case kMipsFloat64ExtractHighWord32: __ FmoveHigh(i.OutputRegister(), i.InputDoubleRegister(0)); break; case kMipsFloat64InsertLowWord32: __ FmoveLow(i.OutputDoubleRegister(), i.InputRegister(1)); break; case kMipsFloat64InsertHighWord32: __ FmoveHigh(i.OutputDoubleRegister(), i.InputRegister(1)); break; case kMipsFloat64SilenceNaN: __ FPUCanonicalizeNaN(i.OutputDoubleRegister(), i.InputDoubleRegister(0)); break; // ... more basic instructions ... case kMipsSeb: __ Seb(i.OutputRegister(), i.InputRegister(0)); break; case kMipsSeh: __ Seh(i.OutputRegister(), i.InputRegister(0)); break; case kMipsLbu: __ lbu(i.OutputRegister(), i.MemoryOperand()); break; case kMipsLb: __ lb(i.OutputRegister(), i.MemoryOperand()); break; case kMipsSb: __ sb(i.InputOrZeroRegister(2), i.MemoryOperand()); break; case kMipsLhu: __ lhu(i.OutputRegister(), i.MemoryOperand()); break; case kMipsUlhu: __ Ulhu(i.OutputRegister(), i.MemoryOperand()); break; case kMipsLh: __ lh(i.OutputRegister(), i.MemoryOperand()); break; case kMipsUlh: __ Ulh(i.OutputRegister(), i.MemoryOperand()); break; case kMipsSh: __ sh(i.InputOrZeroRegister(2), i.MemoryOperand()); break; case kMipsUsh: __ Ush(i.InputOrZeroRegister(2), i.MemoryOperand(), kScratchReg); break; case kMipsLw: __ lw(i.OutputRegister(), i.MemoryOperand()); break; case kMipsUlw: __ Ulw(i.OutputRegister(), i.MemoryOperand()); break; case kMipsSw: __ sw(i.InputOrZeroRegister(2), i.MemoryOperand()); break; case kMipsUsw: __ Usw(i.InputOrZeroRegister(2), i.MemoryOperand()); break; case kMipsLwc1: { __ lwc1(i.OutputSingleRegister(), i.MemoryOperand()); break; } case kMipsUlwc1: { __ Ulwc1(i.OutputSingleRegister(), i.MemoryOperand(), kScratchReg); break; } case kMipsSwc1: { size_t index = 0; MemOperand operand = i.MemoryOperand(&index); FPURegister ft = i.InputOrZeroSingleRegister(index); if (ft.is(kDoubleRegZero) && !__ IsDoubleZeroRegSet()) { __ Move(kDoubleRegZero, 0.0); } __ swc1(ft, operand); break; } case kMipsUswc1: { size_t index = 0; MemOperand operand = i.MemoryOperand(&index); FPURegister ft = i.InputOrZeroSingleRegister(index); if (ft.is(kDoubleRegZero) && !__ IsDoubleZeroRegSet()) { __ Move(kDoubleRegZero, 0.0); } __ Uswc1(ft, operand, kScratchReg); break; } case kMipsLdc1: __ ldc1(i.OutputDoubleRegister(), i.MemoryOperand()); break; case kMipsUldc1: __ Uldc1(i.OutputDoubleRegister(), i.MemoryOperand(), kScratchReg); break; case kMipsSdc1: { FPURegister ft = i.InputOrZeroDoubleRegister(2); if (ft.is(kDoubleRegZero) && !__ IsDoubleZeroRegSet()) { __ Move(kDoubleRegZero, 0.0); } __ sdc1(ft, i.MemoryOperand()); break; } case kMipsUsdc1: { FPURegister ft = i.InputOrZeroDoubleRegister(2); if (ft.is(kDoubleRegZero) && !__ IsDoubleZeroRegSet()) { __ Move(kDoubleRegZero, 0.0); } __ Usdc1(ft, i.MemoryOperand(), kScratchReg); break; } case kMipsPush: if (instr->InputAt(0)->IsFPRegister()) { __ sdc1(i.InputDoubleRegister(0), MemOperand(sp, -kDoubleSize)); __ Subu(sp, sp, Operand(kDoubleSize)); frame_access_state()->IncreaseSPDelta(kDoubleSize / kPointerSize); } else { __ Push(i.InputRegister(0)); frame_access_state()->IncreaseSPDelta(1); } break; case kMipsStackClaim: { __ Subu(sp, sp, Operand(i.InputInt32(0))); frame_access_state()->IncreaseSPDelta(i.InputInt32(0) / kPointerSize); break; } case kMipsStoreToStackSlot: { if (instr->InputAt(0)->IsFPRegister()) { LocationOperand* op = LocationOperand::cast(instr->InputAt(0)); if (op->representation() == MachineRepresentation::kFloat64) { __ sdc1(i.InputDoubleRegister(0), MemOperand(sp, i.InputInt32(1))); } else { DCHECK_EQ(MachineRepresentation::kFloat32, op->representation()); __ swc1(i.InputSingleRegister(0), MemOperand(sp, i.InputInt32(1))); } } else { __ sw(i.InputRegister(0), MemOperand(sp, i.InputInt32(1))); } break; } case kMipsByteSwap32: { __ ByteSwapSigned(i.OutputRegister(0), i.InputRegister(0), 4); break; } case kCheckedLoadInt8: ASSEMBLE_CHECKED_LOAD_INTEGER(lb); break; case kCheckedLoadUint8: ASSEMBLE_CHECKED_LOAD_INTEGER(lbu); break; case kCheckedLoadInt16: ASSEMBLE_CHECKED_LOAD_INTEGER(lh); break; case kCheckedLoadUint16: ASSEMBLE_CHECKED_LOAD_INTEGER(lhu); break; case kCheckedLoadWord32: ASSEMBLE_CHECKED_LOAD_INTEGER(lw); break; case kCheckedLoadFloat32: ASSEMBLE_CHECKED_LOAD_FLOAT(Single, lwc1); break; case kCheckedLoadFloat64: ASSEMBLE_CHECKED_LOAD_FLOAT(Double, ldc1); break; case kCheckedStoreWord8: ASSEMBLE_CHECKED_STORE_INTEGER(sb); break; case kCheckedStoreWord16: ASSEMBLE_CHECKED_STORE_INTEGER(sh); break; case kCheckedStoreWord32: ASSEMBLE_CHECKED_STORE_INTEGER(sw); break; case kCheckedStoreFloat32: ASSEMBLE_CHECKED_STORE_FLOAT(Single, swc1); break; case kCheckedStoreFloat64: ASSEMBLE_CHECKED_STORE_FLOAT(Double, sdc1); break; case kCheckedLoadWord64: case kCheckedStoreWord64: UNREACHABLE(); // currently unsupported checked int64 load/store. break; case kAtomicLoadInt8: ASSEMBLE_ATOMIC_LOAD_INTEGER(lb); break; case kAtomicLoadUint8: ASSEMBLE_ATOMIC_LOAD_INTEGER(lbu); break; case kAtomicLoadInt16: ASSEMBLE_ATOMIC_LOAD_INTEGER(lh); break; case kAtomicLoadUint16: ASSEMBLE_ATOMIC_LOAD_INTEGER(lhu); break; case kAtomicLoadWord32: ASSEMBLE_ATOMIC_LOAD_INTEGER(lw); break; case kAtomicStoreWord8: ASSEMBLE_ATOMIC_STORE_INTEGER(sb); break; case kAtomicStoreWord16: ASSEMBLE_ATOMIC_STORE_INTEGER(sh); break; case kAtomicStoreWord32: ASSEMBLE_ATOMIC_STORE_INTEGER(sw); break; } return kSuccess; } // NOLINT(readability/fn_size) #define UNSUPPORTED_COND(opcode, condition) \ OFStream out(stdout); \ out << "Unsupported " << #opcode << " condition: \"" << condition << "\""; \ UNIMPLEMENTED(); static bool convertCondition(FlagsCondition condition, Condition& cc) { switch (condition) { case kEqual: cc = eq; return true; case kNotEqual: cc = ne; return true; case kUnsignedLessThan: cc = lt; return true; case kUnsignedGreaterThanOrEqual: cc = uge; return true; case kUnsignedLessThanOrEqual: cc = le; return true; case kUnsignedGreaterThan: cc = ugt; return true; default: break; } return false; } // Assembles branches after an instruction. void CodeGenerator::AssembleArchBranch(Instruction* instr, BranchInfo* branch) { MipsOperandConverter i(this, instr); Label* tlabel = branch->true_label; Label* flabel = branch->false_label; Condition cc = kNoCondition; // MIPS does not have condition code flags, so compare and branch are // implemented differently than on the other arch's. The compare operations // emit mips pseudo-instructions, which are handled here by branch // instructions that do the actual comparison. Essential that the input // registers to compare pseudo-op are not modified before this branch op, as // they are tested here. if (instr->arch_opcode() == kMipsTst) { cc = FlagsConditionToConditionTst(branch->condition); __ And(at, i.InputRegister(0), i.InputOperand(1)); __ Branch(tlabel, cc, at, Operand(zero_reg)); } else if (instr->arch_opcode() == kMipsAddOvf) { switch (branch->condition) { case kOverflow: __ AddBranchOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), tlabel, flabel); break; case kNotOverflow: __ AddBranchOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), flabel, tlabel); break; default: UNSUPPORTED_COND(kMipsAddOvf, branch->condition); break; } } else if (instr->arch_opcode() == kMipsSubOvf) { switch (branch->condition) { case kOverflow: __ SubBranchOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), tlabel, flabel); break; case kNotOverflow: __ SubBranchOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), flabel, tlabel); break; default: UNSUPPORTED_COND(kMipsAddOvf, branch->condition); break; } } else if (instr->arch_opcode() == kMipsMulOvf) { switch (branch->condition) { case kOverflow: __ MulBranchOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), tlabel, flabel); break; case kNotOverflow: __ MulBranchOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), flabel, tlabel); break; default: UNSUPPORTED_COND(kMipsMulOvf, branch->condition); break; } } else if (instr->arch_opcode() == kMipsCmp) { cc = FlagsConditionToConditionCmp(branch->condition); __ Branch(tlabel, cc, i.InputRegister(0), i.InputOperand(1)); } else if (instr->arch_opcode() == kMipsCmpS) { if (!convertCondition(branch->condition, cc)) { UNSUPPORTED_COND(kMips64CmpS, branch->condition); } FPURegister left = i.InputOrZeroSingleRegister(0); FPURegister right = i.InputOrZeroSingleRegister(1); if ((left.is(kDoubleRegZero) || right.is(kDoubleRegZero)) && !__ IsDoubleZeroRegSet()) { __ Move(kDoubleRegZero, 0.0); } __ BranchF32(tlabel, nullptr, cc, left, right); } else if (instr->arch_opcode() == kMipsCmpD) { if (!convertCondition(branch->condition, cc)) { UNSUPPORTED_COND(kMips64CmpD, branch->condition); } FPURegister left = i.InputOrZeroDoubleRegister(0); FPURegister right = i.InputOrZeroDoubleRegister(1); if ((left.is(kDoubleRegZero) || right.is(kDoubleRegZero)) && !__ IsDoubleZeroRegSet()) { __ Move(kDoubleRegZero, 0.0); } __ BranchF64(tlabel, nullptr, cc, left, right); } else { PrintF("AssembleArchBranch Unimplemented arch_opcode: %d\n", instr->arch_opcode()); UNIMPLEMENTED(); } if (!branch->fallthru) __ Branch(flabel); // no fallthru to flabel. } void CodeGenerator::AssembleArchJump(RpoNumber target) { if (!IsNextInAssemblyOrder(target)) __ Branch(GetLabel(target)); } // Assembles boolean materializations after an instruction. void CodeGenerator::AssembleArchBoolean(Instruction* instr, FlagsCondition condition) { MipsOperandConverter i(this, instr); Label done; // Materialize a full 32-bit 1 or 0 value. The result register is always the // last output of the instruction. Label false_value; DCHECK_NE(0u, instr->OutputCount()); Register result = i.OutputRegister(instr->OutputCount() - 1); Condition cc = kNoCondition; // MIPS does not have condition code flags, so compare and branch are // implemented differently than on the other arch's. The compare operations // emit mips psuedo-instructions, which are checked and handled here. if (instr->arch_opcode() == kMipsTst) { cc = FlagsConditionToConditionTst(condition); if (instr->InputAt(1)->IsImmediate() && base::bits::IsPowerOfTwo32(i.InputOperand(1).immediate())) { uint16_t pos = base::bits::CountTrailingZeros32(i.InputOperand(1).immediate()); __ Ext(result, i.InputRegister(0), pos, 1); } else { __ And(kScratchReg, i.InputRegister(0), i.InputOperand(1)); __ Sltu(result, zero_reg, kScratchReg); } if (cc == eq) { // Sltu produces 0 for equality, invert the result. __ xori(result, result, 1); } return; } else if (instr->arch_opcode() == kMipsAddOvf || instr->arch_opcode() == kMipsSubOvf || instr->arch_opcode() == kMipsMulOvf) { Label flabel, tlabel; switch (instr->arch_opcode()) { case kMipsAddOvf: __ AddBranchNoOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), &flabel); break; case kMipsSubOvf: __ SubBranchNoOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), &flabel); break; case kMipsMulOvf: __ MulBranchNoOvf(i.OutputRegister(), i.InputRegister(0), i.InputOperand(1), &flabel); break; default: UNREACHABLE(); break; } __ li(result, 1); __ Branch(&tlabel); __ bind(&flabel); __ li(result, 0); __ bind(&tlabel); } else if (instr->arch_opcode() == kMipsCmp) { cc = FlagsConditionToConditionCmp(condition); switch (cc) { case eq: case ne: { Register left = i.InputRegister(0); Operand right = i.InputOperand(1); Register select; if (instr->InputAt(1)->IsImmediate() && right.immediate() == 0) { // Pass left operand if right is zero. select = left; } else { __ Subu(kScratchReg, left, right); select = kScratchReg; } __ Sltu(result, zero_reg, select); if (cc == eq) { // Sltu produces 0 for equality, invert the result. __ xori(result, result, 1); } } break; case lt: case ge: { Register left = i.InputRegister(0); Operand right = i.InputOperand(1); __ Slt(result, left, right); if (cc == ge) { __ xori(result, result, 1); } } break; case gt: case le: { Register left = i.InputRegister(1); Operand right = i.InputOperand(0); __ Slt(result, left, right); if (cc == le) { __ xori(result, result, 1); } } break; case lo: case hs: { Register left = i.InputRegister(0); Operand right = i.InputOperand(1); __ Sltu(result, left, right); if (cc == hs) { __ xori(result, result, 1); } } break; case hi: case ls: { Register left = i.InputRegister(1); Operand right = i.InputOperand(0); __ Sltu(result, left, right); if (cc == ls) { __ xori(result, result, 1); } } break; default: UNREACHABLE(); } return; } else if (instr->arch_opcode() == kMipsCmpD || instr->arch_opcode() == kMipsCmpS) { FPURegister left = i.InputOrZeroDoubleRegister(0); FPURegister right = i.InputOrZeroDoubleRegister(1); if ((left.is(kDoubleRegZero) || right.is(kDoubleRegZero)) && !__ IsDoubleZeroRegSet()) { __ Move(kDoubleRegZero, 0.0); } bool predicate; FPUCondition cc = FlagsConditionToConditionCmpFPU(predicate, condition); if (!IsMipsArchVariant(kMips32r6)) { __ li(result, Operand(1)); if (instr->arch_opcode() == kMipsCmpD) { __ c(cc, D, left, right); } else { DCHECK(instr->arch_opcode() == kMipsCmpS); __ c(cc, S, left, right); } if (predicate) { __ Movf(result, zero_reg); } else { __ Movt(result, zero_reg); } } else { if (instr->arch_opcode() == kMipsCmpD) { __ cmp(cc, L, kDoubleCompareReg, left, right); } else { DCHECK(instr->arch_opcode() == kMipsCmpS); __ cmp(cc, W, kDoubleCompareReg, left, right); } __ mfc1(result, kDoubleCompareReg); __ andi(result, result, 1); // Cmp returns all 1's/0's, use only LSB. if (!predicate) // Toggle result for not equal. __ xori(result, result, 1); } return; } else { PrintF("AssembleArchBranch Unimplemented arch_opcode is : %d\n", instr->arch_opcode()); TRACE_UNIMPL(); UNIMPLEMENTED(); } } void CodeGenerator::AssembleArchLookupSwitch(Instruction* instr) { MipsOperandConverter i(this, instr); Register input = i.InputRegister(0); for (size_t index = 2; index < instr->InputCount(); index += 2) { __ li(at, Operand(i.InputInt32(index + 0))); __ beq(input, at, GetLabel(i.InputRpo(index + 1))); } __ nop(); // Branch delay slot of the last beq. AssembleArchJump(i.InputRpo(1)); } void CodeGenerator::AssembleArchTableSwitch(Instruction* instr) { MipsOperandConverter i(this, instr); Register input = i.InputRegister(0); size_t const case_count = instr->InputCount() - 2; __ Branch(GetLabel(i.InputRpo(1)), hs, input, Operand(case_count)); __ GenerateSwitchTable(input, case_count, [&i, this](size_t index) { return GetLabel(i.InputRpo(index + 2)); }); } CodeGenerator::CodeGenResult CodeGenerator::AssembleDeoptimizerCall( int deoptimization_id, Deoptimizer::BailoutType bailout_type, SourcePosition pos) { Address deopt_entry = Deoptimizer::GetDeoptimizationEntry( isolate(), deoptimization_id, bailout_type); if (deopt_entry == nullptr) return kTooManyDeoptimizationBailouts; DeoptimizeReason deoptimization_reason = GetDeoptimizationReason(deoptimization_id); __ RecordDeoptReason(deoptimization_reason, pos, deoptimization_id); __ Call(deopt_entry, RelocInfo::RUNTIME_ENTRY); return kSuccess; } void CodeGenerator::FinishFrame(Frame* frame) { CallDescriptor* descriptor = linkage()->GetIncomingDescriptor(); const RegList saves_fpu = descriptor->CalleeSavedFPRegisters(); if (saves_fpu != 0) { frame->AlignSavedCalleeRegisterSlots(); } if (saves_fpu != 0) { int count = base::bits::CountPopulation32(saves_fpu); DCHECK(kNumCalleeSavedFPU == count); frame->AllocateSavedCalleeRegisterSlots(count * (kDoubleSize / kPointerSize)); } const RegList saves = descriptor->CalleeSavedRegisters(); if (saves != 0) { int count = base::bits::CountPopulation32(saves); DCHECK(kNumCalleeSaved == count + 1); frame->AllocateSavedCalleeRegisterSlots(count); } } void CodeGenerator::AssembleConstructFrame() { CallDescriptor* descriptor = linkage()->GetIncomingDescriptor(); if (frame_access_state()->has_frame()) { if (descriptor->IsCFunctionCall()) { __ Push(ra, fp); __ mov(fp, sp); } else if (descriptor->IsJSFunctionCall()) { __ Prologue(this->info()->GeneratePreagedPrologue()); if (descriptor->PushArgumentCount()) { __ Push(kJavaScriptCallArgCountRegister); } } else { __ StubPrologue(info()->GetOutputStackFrameType()); } } int shrink_slots = frame()->GetTotalFrameSlotCount() - descriptor->CalculateFixedFrameSize(); if (info()->is_osr()) { // TurboFan OSR-compiled functions cannot be entered directly. __ Abort(kShouldNotDirectlyEnterOsrFunction); // Unoptimized code jumps directly to this entrypoint while the unoptimized // frame is still on the stack. Optimized code uses OSR values directly from // the unoptimized frame. Thus, all that needs to be done is to allocate the // remaining stack slots. if (FLAG_code_comments) __ RecordComment("-- OSR entrypoint --"); osr_pc_offset_ = __ pc_offset(); shrink_slots -= OsrHelper(info()).UnoptimizedFrameSlots(); } const RegList saves_fpu = descriptor->CalleeSavedFPRegisters(); if (shrink_slots > 0) { __ Subu(sp, sp, Operand(shrink_slots * kPointerSize)); } // Save callee-saved FPU registers. if (saves_fpu != 0) { __ MultiPushFPU(saves_fpu); } const RegList saves = descriptor->CalleeSavedRegisters(); if (saves != 0) { // Save callee-saved registers. __ MultiPush(saves); DCHECK(kNumCalleeSaved == base::bits::CountPopulation32(saves) + 1); } } void CodeGenerator::AssembleReturn(InstructionOperand* pop) { CallDescriptor* descriptor = linkage()->GetIncomingDescriptor(); int pop_count = static_cast(descriptor->StackParameterCount()); // Restore GP registers. const RegList saves = descriptor->CalleeSavedRegisters(); if (saves != 0) { __ MultiPop(saves); } // Restore FPU registers. const RegList saves_fpu = descriptor->CalleeSavedFPRegisters(); if (saves_fpu != 0) { __ MultiPopFPU(saves_fpu); } MipsOperandConverter g(this, nullptr); if (descriptor->IsCFunctionCall()) { AssembleDeconstructFrame(); } else if (frame_access_state()->has_frame()) { // Canonicalize JSFunction return sites for now unless they have an variable // number of stack slot pops. if (pop->IsImmediate() && g.ToConstant(pop).ToInt32() == 0) { if (return_label_.is_bound()) { __ Branch(&return_label_); return; } else { __ bind(&return_label_); AssembleDeconstructFrame(); } } else { AssembleDeconstructFrame(); } } if (pop->IsImmediate()) { DCHECK_EQ(Constant::kInt32, g.ToConstant(pop).type()); pop_count += g.ToConstant(pop).ToInt32(); } else { Register pop_reg = g.ToRegister(pop); __ sll(pop_reg, pop_reg, kPointerSizeLog2); __ Addu(sp, sp, Operand(pop_reg)); } if (pop_count != 0) { __ DropAndRet(pop_count); } else { __ Ret(); } } void CodeGenerator::AssembleMove(InstructionOperand* source, InstructionOperand* destination) { MipsOperandConverter g(this, nullptr); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister()) { DCHECK(destination->IsRegister() || destination->IsStackSlot()); Register src = g.ToRegister(source); if (destination->IsRegister()) { __ mov(g.ToRegister(destination), src); } else { __ sw(src, g.ToMemOperand(destination)); } } else if (source->IsStackSlot()) { DCHECK(destination->IsRegister() || destination->IsStackSlot()); MemOperand src = g.ToMemOperand(source); if (destination->IsRegister()) { __ lw(g.ToRegister(destination), src); } else { Register temp = kScratchReg; __ lw(temp, src); __ sw(temp, g.ToMemOperand(destination)); } } else if (source->IsConstant()) { Constant src = g.ToConstant(source); if (destination->IsRegister() || destination->IsStackSlot()) { Register dst = destination->IsRegister() ? g.ToRegister(destination) : kScratchReg; switch (src.type()) { case Constant::kInt32: if (src.rmode() == RelocInfo::WASM_MEMORY_REFERENCE || src.rmode() == RelocInfo::WASM_GLOBAL_REFERENCE || src.rmode() == RelocInfo::WASM_MEMORY_SIZE_REFERENCE) { __ li(dst, Operand(src.ToInt32(), src.rmode())); } else { __ li(dst, Operand(src.ToInt32())); } break; case Constant::kFloat32: __ li(dst, isolate()->factory()->NewNumber(src.ToFloat32(), TENURED)); break; case Constant::kInt64: UNREACHABLE(); break; case Constant::kFloat64: __ li(dst, isolate()->factory()->NewNumber(src.ToFloat64(), TENURED)); break; case Constant::kExternalReference: __ li(dst, Operand(src.ToExternalReference())); break; case Constant::kHeapObject: { Handle src_object = src.ToHeapObject(); Heap::RootListIndex index; if (IsMaterializableFromRoot(src_object, &index)) { __ LoadRoot(dst, index); } else { __ li(dst, src_object); } break; } case Constant::kRpoNumber: UNREACHABLE(); // TODO(titzer): loading RPO numbers on mips. break; } if (destination->IsStackSlot()) __ sw(dst, g.ToMemOperand(destination)); } else if (src.type() == Constant::kFloat32) { if (destination->IsFPStackSlot()) { MemOperand dst = g.ToMemOperand(destination); if (bit_cast(src.ToFloat32()) == 0) { __ sw(zero_reg, dst); } else { __ li(at, Operand(bit_cast(src.ToFloat32()))); __ sw(at, dst); } } else { DCHECK(destination->IsFPRegister()); FloatRegister dst = g.ToSingleRegister(destination); __ Move(dst, src.ToFloat32()); } } else { DCHECK_EQ(Constant::kFloat64, src.type()); DoubleRegister dst = destination->IsFPRegister() ? g.ToDoubleRegister(destination) : kScratchDoubleReg; __ Move(dst, src.ToFloat64()); if (destination->IsFPStackSlot()) { __ sdc1(dst, g.ToMemOperand(destination)); } } } else if (source->IsFPRegister()) { FPURegister src = g.ToDoubleRegister(source); if (destination->IsFPRegister()) { FPURegister dst = g.ToDoubleRegister(destination); __ Move(dst, src); } else { DCHECK(destination->IsFPStackSlot()); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat64) { __ sdc1(src, g.ToMemOperand(destination)); } else if (rep == MachineRepresentation::kFloat32) { __ swc1(src, g.ToMemOperand(destination)); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); UNREACHABLE(); } } } else if (source->IsFPStackSlot()) { DCHECK(destination->IsFPRegister() || destination->IsFPStackSlot()); MemOperand src = g.ToMemOperand(source); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (destination->IsFPRegister()) { if (rep == MachineRepresentation::kFloat64) { __ ldc1(g.ToDoubleRegister(destination), src); } else if (rep == MachineRepresentation::kFloat32) { __ lwc1(g.ToDoubleRegister(destination), src); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); UNREACHABLE(); } } else { FPURegister temp = kScratchDoubleReg; if (rep == MachineRepresentation::kFloat64) { __ ldc1(temp, src); __ sdc1(temp, g.ToMemOperand(destination)); } else if (rep == MachineRepresentation::kFloat32) { __ lwc1(temp, src); __ swc1(temp, g.ToMemOperand(destination)); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); UNREACHABLE(); } } } else { UNREACHABLE(); } } void CodeGenerator::AssembleSwap(InstructionOperand* source, InstructionOperand* destination) { MipsOperandConverter g(this, nullptr); // Dispatch on the source and destination operand kinds. Not all // combinations are possible. if (source->IsRegister()) { // Register-register. Register temp = kScratchReg; Register src = g.ToRegister(source); if (destination->IsRegister()) { Register dst = g.ToRegister(destination); __ Move(temp, src); __ Move(src, dst); __ Move(dst, temp); } else { DCHECK(destination->IsStackSlot()); MemOperand dst = g.ToMemOperand(destination); __ mov(temp, src); __ lw(src, dst); __ sw(temp, dst); } } else if (source->IsStackSlot()) { DCHECK(destination->IsStackSlot()); Register temp_0 = kScratchReg; Register temp_1 = kCompareReg; MemOperand src = g.ToMemOperand(source); MemOperand dst = g.ToMemOperand(destination); __ lw(temp_0, src); __ lw(temp_1, dst); __ sw(temp_0, dst); __ sw(temp_1, src); } else if (source->IsFPRegister()) { FPURegister temp = kScratchDoubleReg; FPURegister src = g.ToDoubleRegister(source); if (destination->IsFPRegister()) { FPURegister dst = g.ToDoubleRegister(destination); __ Move(temp, src); __ Move(src, dst); __ Move(dst, temp); } else { DCHECK(destination->IsFPStackSlot()); MemOperand dst = g.ToMemOperand(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat64) { __ Move(temp, src); __ ldc1(src, dst); __ sdc1(temp, dst); } else if (rep == MachineRepresentation::kFloat32) { __ Move(temp, src); __ lwc1(src, dst); __ swc1(temp, dst); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); UNREACHABLE(); } } } else if (source->IsFPStackSlot()) { DCHECK(destination->IsFPStackSlot()); Register temp_0 = kScratchReg; FPURegister temp_1 = kScratchDoubleReg; MemOperand src0 = g.ToMemOperand(source); MemOperand dst0 = g.ToMemOperand(destination); MachineRepresentation rep = LocationOperand::cast(source)->representation(); if (rep == MachineRepresentation::kFloat64) { MemOperand src1(src0.rm(), src0.offset() + kIntSize); MemOperand dst1(dst0.rm(), dst0.offset() + kIntSize); __ ldc1(temp_1, dst0); // Save destination in temp_1. __ lw(temp_0, src0); // Then use temp_0 to copy source to destination. __ sw(temp_0, dst0); __ lw(temp_0, src1); __ sw(temp_0, dst1); __ sdc1(temp_1, src0); } else if (rep == MachineRepresentation::kFloat32) { __ lwc1(temp_1, dst0); // Save destination in temp_1. __ lw(temp_0, src0); // Then use temp_0 to copy source to destination. __ sw(temp_0, dst0); __ swc1(temp_1, src0); } else { DCHECK_EQ(MachineRepresentation::kSimd128, rep); UNREACHABLE(); } } else { // No other combinations are possible. UNREACHABLE(); } } void CodeGenerator::AssembleJumpTable(Label** targets, size_t target_count) { // On 32-bit MIPS we emit the jump tables inline. UNREACHABLE(); } void CodeGenerator::EnsureSpaceForLazyDeopt() { if (!info()->ShouldEnsureSpaceForLazyDeopt()) { return; } int space_needed = Deoptimizer::patch_size(); // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { // Block tramoline pool emission for duration of padding. v8::internal::Assembler::BlockTrampolinePoolScope block_trampoline_pool( masm()); int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; DCHECK_EQ(0, padding_size % v8::internal::Assembler::kInstrSize); while (padding_size > 0) { __ nop(); padding_size -= v8::internal::Assembler::kInstrSize; } } } #undef __ } // namespace compiler } // namespace internal } // namespace v8