// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/adapters.h" #include "src/compiler/linkage.h" #include "src/compiler/register-allocator.h" #include "src/string-stream.h" namespace v8 { namespace internal { namespace compiler { #define TRACE(...) \ do { \ if (FLAG_trace_alloc) PrintF(__VA_ARGS__); \ } while (false) namespace { static const int kFloatRepBit = 1 << static_cast(MachineRepresentation::kFloat32); static const int kSimd128RepBit = 1 << static_cast(MachineRepresentation::kSimd128); void RemoveElement(ZoneVector* v, LiveRange* range) { auto it = std::find(v->begin(), v->end(), range); DCHECK(it != v->end()); v->erase(it); } int GetRegisterCount(const RegisterConfiguration* cfg, RegisterKind kind) { return kind == FP_REGISTERS ? cfg->num_double_registers() : cfg->num_general_registers(); } int GetAllocatableRegisterCount(const RegisterConfiguration* cfg, RegisterKind kind) { return kind == FP_REGISTERS ? cfg->num_allocatable_double_registers() : cfg->num_allocatable_general_registers(); } const int* GetAllocatableRegisterCodes(const RegisterConfiguration* cfg, RegisterKind kind) { return kind == FP_REGISTERS ? cfg->allocatable_double_codes() : cfg->allocatable_general_codes(); } const InstructionBlock* GetContainingLoop(const InstructionSequence* sequence, const InstructionBlock* block) { RpoNumber index = block->loop_header(); if (!index.IsValid()) return nullptr; return sequence->InstructionBlockAt(index); } const InstructionBlock* GetInstructionBlock(const InstructionSequence* code, LifetimePosition pos) { return code->GetInstructionBlock(pos.ToInstructionIndex()); } Instruction* GetLastInstruction(InstructionSequence* code, const InstructionBlock* block) { return code->InstructionAt(block->last_instruction_index()); } // TODO(dcarney): fix frame to allow frame accesses to half size location. int GetByteWidth(MachineRepresentation rep) { switch (rep) { case MachineRepresentation::kBit: case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kWord32: case MachineRepresentation::kTaggedSigned: case MachineRepresentation::kTaggedPointer: case MachineRepresentation::kTagged: case MachineRepresentation::kFloat32: return kPointerSize; case MachineRepresentation::kWord64: case MachineRepresentation::kFloat64: return kDoubleSize; case MachineRepresentation::kSimd128: return kSimd128Size; case MachineRepresentation::kNone: break; } UNREACHABLE(); return 0; } } // namespace class LiveRangeBound { public: explicit LiveRangeBound(LiveRange* range, bool skip) : range_(range), start_(range->Start()), end_(range->End()), skip_(skip) { DCHECK(!range->IsEmpty()); } bool CanCover(LifetimePosition position) { return start_ <= position && position < end_; } LiveRange* const range_; const LifetimePosition start_; const LifetimePosition end_; const bool skip_; private: DISALLOW_COPY_AND_ASSIGN(LiveRangeBound); }; struct FindResult { LiveRange* cur_cover_; LiveRange* pred_cover_; }; class LiveRangeBoundArray { public: LiveRangeBoundArray() : length_(0), start_(nullptr) {} bool ShouldInitialize() { return start_ == nullptr; } void Initialize(Zone* zone, TopLevelLiveRange* range) { length_ = range->GetChildCount(); start_ = zone->NewArray(length_); LiveRangeBound* curr = start_; // Normally, spilled ranges do not need connecting moves, because the spill // location has been assigned at definition. For ranges spilled in deferred // blocks, that is not the case, so we need to connect the spilled children. for (LiveRange *i = range; i != nullptr; i = i->next(), ++curr) { new (curr) LiveRangeBound(i, i->spilled()); } } LiveRangeBound* Find(const LifetimePosition position) const { size_t left_index = 0; size_t right_index = length_; while (true) { size_t current_index = left_index + (right_index - left_index) / 2; DCHECK(right_index > current_index); LiveRangeBound* bound = &start_[current_index]; if (bound->start_ <= position) { if (position < bound->end_) return bound; DCHECK(left_index < current_index); left_index = current_index; } else { right_index = current_index; } } } LiveRangeBound* FindPred(const InstructionBlock* pred) { LifetimePosition pred_end = LifetimePosition::InstructionFromInstructionIndex( pred->last_instruction_index()); return Find(pred_end); } LiveRangeBound* FindSucc(const InstructionBlock* succ) { LifetimePosition succ_start = LifetimePosition::GapFromInstructionIndex( succ->first_instruction_index()); return Find(succ_start); } bool FindConnectableSubranges(const InstructionBlock* block, const InstructionBlock* pred, FindResult* result) const { LifetimePosition pred_end = LifetimePosition::InstructionFromInstructionIndex( pred->last_instruction_index()); LiveRangeBound* bound = Find(pred_end); result->pred_cover_ = bound->range_; LifetimePosition cur_start = LifetimePosition::GapFromInstructionIndex( block->first_instruction_index()); if (bound->CanCover(cur_start)) { // Both blocks are covered by the same range, so there is nothing to // connect. return false; } bound = Find(cur_start); if (bound->skip_) { return false; } result->cur_cover_ = bound->range_; DCHECK(result->pred_cover_ != nullptr && result->cur_cover_ != nullptr); return (result->cur_cover_ != result->pred_cover_); } private: size_t length_; LiveRangeBound* start_; DISALLOW_COPY_AND_ASSIGN(LiveRangeBoundArray); }; class LiveRangeFinder { public: explicit LiveRangeFinder(const RegisterAllocationData* data, Zone* zone) : data_(data), bounds_length_(static_cast(data_->live_ranges().size())), bounds_(zone->NewArray(bounds_length_)), zone_(zone) { for (int i = 0; i < bounds_length_; ++i) { new (&bounds_[i]) LiveRangeBoundArray(); } } LiveRangeBoundArray* ArrayFor(int operand_index) { DCHECK(operand_index < bounds_length_); TopLevelLiveRange* range = data_->live_ranges()[operand_index]; DCHECK(range != nullptr && !range->IsEmpty()); LiveRangeBoundArray* array = &bounds_[operand_index]; if (array->ShouldInitialize()) { array->Initialize(zone_, range); } return array; } private: const RegisterAllocationData* const data_; const int bounds_length_; LiveRangeBoundArray* const bounds_; Zone* const zone_; DISALLOW_COPY_AND_ASSIGN(LiveRangeFinder); }; typedef std::pair DelayedInsertionMapKey; struct DelayedInsertionMapCompare { bool operator()(const DelayedInsertionMapKey& a, const DelayedInsertionMapKey& b) const { if (a.first == b.first) { return a.second.Compare(b.second); } return a.first < b.first; } }; typedef ZoneMap DelayedInsertionMap; UsePosition::UsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint, UsePositionHintType hint_type) : operand_(operand), hint_(hint), next_(nullptr), pos_(pos), flags_(0) { DCHECK_IMPLIES(hint == nullptr, hint_type == UsePositionHintType::kNone); bool register_beneficial = true; UsePositionType type = UsePositionType::kAny; if (operand_ != nullptr && operand_->IsUnallocated()) { const UnallocatedOperand* unalloc = UnallocatedOperand::cast(operand_); if (unalloc->HasRegisterPolicy()) { type = UsePositionType::kRequiresRegister; } else if (unalloc->HasSlotPolicy()) { type = UsePositionType::kRequiresSlot; register_beneficial = false; } else { register_beneficial = !unalloc->HasAnyPolicy(); } } flags_ = TypeField::encode(type) | HintTypeField::encode(hint_type) | RegisterBeneficialField::encode(register_beneficial) | AssignedRegisterField::encode(kUnassignedRegister); DCHECK(pos_.IsValid()); } bool UsePosition::HasHint() const { int hint_register; return HintRegister(&hint_register); } bool UsePosition::HintRegister(int* register_code) const { if (hint_ == nullptr) return false; switch (HintTypeField::decode(flags_)) { case UsePositionHintType::kNone: case UsePositionHintType::kUnresolved: return false; case UsePositionHintType::kUsePos: { UsePosition* use_pos = reinterpret_cast(hint_); int assigned_register = AssignedRegisterField::decode(use_pos->flags_); if (assigned_register == kUnassignedRegister) return false; *register_code = assigned_register; return true; } case UsePositionHintType::kOperand: { InstructionOperand* operand = reinterpret_cast(hint_); *register_code = LocationOperand::cast(operand)->register_code(); return true; } case UsePositionHintType::kPhi: { RegisterAllocationData::PhiMapValue* phi = reinterpret_cast(hint_); int assigned_register = phi->assigned_register(); if (assigned_register == kUnassignedRegister) return false; *register_code = assigned_register; return true; } } UNREACHABLE(); return false; } UsePositionHintType UsePosition::HintTypeForOperand( const InstructionOperand& op) { switch (op.kind()) { case InstructionOperand::CONSTANT: case InstructionOperand::IMMEDIATE: case InstructionOperand::EXPLICIT: return UsePositionHintType::kNone; case InstructionOperand::UNALLOCATED: return UsePositionHintType::kUnresolved; case InstructionOperand::ALLOCATED: if (op.IsRegister() || op.IsFPRegister()) { return UsePositionHintType::kOperand; } else { DCHECK(op.IsStackSlot() || op.IsFPStackSlot()); return UsePositionHintType::kNone; } case InstructionOperand::INVALID: break; } UNREACHABLE(); return UsePositionHintType::kNone; } void UsePosition::SetHint(UsePosition* use_pos) { DCHECK_NOT_NULL(use_pos); hint_ = use_pos; flags_ = HintTypeField::update(flags_, UsePositionHintType::kUsePos); } void UsePosition::ResolveHint(UsePosition* use_pos) { DCHECK_NOT_NULL(use_pos); if (HintTypeField::decode(flags_) != UsePositionHintType::kUnresolved) return; hint_ = use_pos; flags_ = HintTypeField::update(flags_, UsePositionHintType::kUsePos); } void UsePosition::set_type(UsePositionType type, bool register_beneficial) { DCHECK_IMPLIES(type == UsePositionType::kRequiresSlot, !register_beneficial); DCHECK_EQ(kUnassignedRegister, AssignedRegisterField::decode(flags_)); flags_ = TypeField::encode(type) | RegisterBeneficialField::encode(register_beneficial) | HintTypeField::encode(HintTypeField::decode(flags_)) | AssignedRegisterField::encode(kUnassignedRegister); } UseInterval* UseInterval::SplitAt(LifetimePosition pos, Zone* zone) { DCHECK(Contains(pos) && pos != start()); UseInterval* after = new (zone) UseInterval(pos, end_); after->next_ = next_; next_ = nullptr; end_ = pos; return after; } void LifetimePosition::Print() const { OFStream os(stdout); os << *this << std::endl; } std::ostream& operator<<(std::ostream& os, const LifetimePosition pos) { os << '@' << pos.ToInstructionIndex(); if (pos.IsGapPosition()) { os << 'g'; } else { os << 'i'; } if (pos.IsStart()) { os << 's'; } else { os << 'e'; } return os; } LiveRange::LiveRange(int relative_id, MachineRepresentation rep, TopLevelLiveRange* top_level) : relative_id_(relative_id), bits_(0), last_interval_(nullptr), first_interval_(nullptr), first_pos_(nullptr), top_level_(top_level), next_(nullptr), current_interval_(nullptr), last_processed_use_(nullptr), current_hint_position_(nullptr), splitting_pointer_(nullptr) { DCHECK(AllocatedOperand::IsSupportedRepresentation(rep)); bits_ = AssignedRegisterField::encode(kUnassignedRegister) | RepresentationField::encode(rep); } void LiveRange::VerifyPositions() const { // Walk the positions, verifying that each is in an interval. UseInterval* interval = first_interval_; for (UsePosition* pos = first_pos_; pos != nullptr; pos = pos->next()) { CHECK(Start() <= pos->pos()); CHECK(pos->pos() <= End()); CHECK_NOT_NULL(interval); while (!interval->Contains(pos->pos()) && interval->end() != pos->pos()) { interval = interval->next(); CHECK_NOT_NULL(interval); } } } void LiveRange::VerifyIntervals() const { DCHECK(first_interval()->start() == Start()); LifetimePosition last_end = first_interval()->end(); for (UseInterval* interval = first_interval()->next(); interval != nullptr; interval = interval->next()) { DCHECK(last_end <= interval->start()); last_end = interval->end(); } DCHECK(last_end == End()); } void LiveRange::set_assigned_register(int reg) { DCHECK(!HasRegisterAssigned() && !spilled()); bits_ = AssignedRegisterField::update(bits_, reg); } void LiveRange::UnsetAssignedRegister() { DCHECK(HasRegisterAssigned() && !spilled()); bits_ = AssignedRegisterField::update(bits_, kUnassignedRegister); } void LiveRange::Spill() { DCHECK(!spilled()); DCHECK(!TopLevel()->HasNoSpillType()); set_spilled(true); bits_ = AssignedRegisterField::update(bits_, kUnassignedRegister); } RegisterKind LiveRange::kind() const { return IsFloatingPoint(representation()) ? FP_REGISTERS : GENERAL_REGISTERS; } UsePosition* LiveRange::FirstHintPosition(int* register_index) const { for (UsePosition* pos = first_pos_; pos != nullptr; pos = pos->next()) { if (pos->HintRegister(register_index)) return pos; } return nullptr; } UsePosition* LiveRange::NextUsePosition(LifetimePosition start) const { UsePosition* use_pos = last_processed_use_; if (use_pos == nullptr || use_pos->pos() > start) { use_pos = first_pos(); } while (use_pos != nullptr && use_pos->pos() < start) { use_pos = use_pos->next(); } last_processed_use_ = use_pos; return use_pos; } UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial( LifetimePosition start) const { UsePosition* pos = NextUsePosition(start); while (pos != nullptr && !pos->RegisterIsBeneficial()) { pos = pos->next(); } return pos; } LifetimePosition LiveRange::NextLifetimePositionRegisterIsBeneficial( const LifetimePosition& start) const { UsePosition* next_use = NextUsePositionRegisterIsBeneficial(start); if (next_use == nullptr) return End(); return next_use->pos(); } UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial( LifetimePosition start) const { UsePosition* pos = first_pos(); UsePosition* prev = nullptr; while (pos != nullptr && pos->pos() < start) { if (pos->RegisterIsBeneficial()) prev = pos; pos = pos->next(); } return prev; } UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) const { UsePosition* pos = NextUsePosition(start); while (pos != nullptr && pos->type() != UsePositionType::kRequiresRegister) { pos = pos->next(); } return pos; } UsePosition* LiveRange::NextSlotPosition(LifetimePosition start) const { for (UsePosition* pos = NextUsePosition(start); pos != nullptr; pos = pos->next()) { if (pos->type() != UsePositionType::kRequiresSlot) continue; return pos; } return nullptr; } bool LiveRange::CanBeSpilled(LifetimePosition pos) const { // We cannot spill a live range that has a use requiring a register // at the current or the immediate next position. UsePosition* use_pos = NextRegisterPosition(pos); if (use_pos == nullptr) return true; return use_pos->pos() > pos.NextStart().End(); } bool LiveRange::IsTopLevel() const { return top_level_ == this; } InstructionOperand LiveRange::GetAssignedOperand() const { if (HasRegisterAssigned()) { DCHECK(!spilled()); return AllocatedOperand(LocationOperand::REGISTER, representation(), assigned_register()); } DCHECK(spilled()); DCHECK(!HasRegisterAssigned()); if (TopLevel()->HasSpillOperand()) { InstructionOperand* op = TopLevel()->GetSpillOperand(); DCHECK(!op->IsUnallocated()); return *op; } return TopLevel()->GetSpillRangeOperand(); } UseInterval* LiveRange::FirstSearchIntervalForPosition( LifetimePosition position) const { if (current_interval_ == nullptr) return first_interval_; if (current_interval_->start() > position) { current_interval_ = nullptr; return first_interval_; } return current_interval_; } void LiveRange::AdvanceLastProcessedMarker( UseInterval* to_start_of, LifetimePosition but_not_past) const { if (to_start_of == nullptr) return; if (to_start_of->start() > but_not_past) return; LifetimePosition start = current_interval_ == nullptr ? LifetimePosition::Invalid() : current_interval_->start(); if (to_start_of->start() > start) { current_interval_ = to_start_of; } } LiveRange* LiveRange::SplitAt(LifetimePosition position, Zone* zone) { int new_id = TopLevel()->GetNextChildId(); LiveRange* child = new (zone) LiveRange(new_id, representation(), TopLevel()); // If we split, we do so because we're about to switch registers or move // to/from a slot, so there's no value in connecting hints. DetachAt(position, child, zone, DoNotConnectHints); child->top_level_ = TopLevel(); child->next_ = next_; next_ = child; return child; } UsePosition* LiveRange::DetachAt(LifetimePosition position, LiveRange* result, Zone* zone, HintConnectionOption connect_hints) { DCHECK(Start() < position); DCHECK(End() > position); DCHECK(result->IsEmpty()); // Find the last interval that ends before the position. If the // position is contained in one of the intervals in the chain, we // split that interval and use the first part. UseInterval* current = FirstSearchIntervalForPosition(position); // If the split position coincides with the beginning of a use interval // we need to split use positons in a special way. bool split_at_start = false; if (current->start() == position) { // When splitting at start we need to locate the previous use interval. current = first_interval_; } UseInterval* after = nullptr; while (current != nullptr) { if (current->Contains(position)) { after = current->SplitAt(position, zone); break; } UseInterval* next = current->next(); if (next->start() >= position) { split_at_start = (next->start() == position); after = next; current->set_next(nullptr); break; } current = next; } DCHECK(nullptr != after); // Partition original use intervals to the two live ranges. UseInterval* before = current; result->last_interval_ = (last_interval_ == before) ? after // Only interval in the range after split. : last_interval_; // Last interval of the original range. result->first_interval_ = after; last_interval_ = before; // Find the last use position before the split and the first use // position after it. UsePosition* use_after = splitting_pointer_ == nullptr || splitting_pointer_->pos() > position ? first_pos() : splitting_pointer_; UsePosition* use_before = nullptr; if (split_at_start) { // The split position coincides with the beginning of a use interval (the // end of a lifetime hole). Use at this position should be attributed to // the split child because split child owns use interval covering it. while (use_after != nullptr && use_after->pos() < position) { use_before = use_after; use_after = use_after->next(); } } else { while (use_after != nullptr && use_after->pos() <= position) { use_before = use_after; use_after = use_after->next(); } } // Partition original use positions to the two live ranges. if (use_before != nullptr) { use_before->set_next(nullptr); } else { first_pos_ = nullptr; } result->first_pos_ = use_after; // Discard cached iteration state. It might be pointing // to the use that no longer belongs to this live range. last_processed_use_ = nullptr; current_interval_ = nullptr; if (connect_hints == ConnectHints && use_before != nullptr && use_after != nullptr) { use_after->SetHint(use_before); } #ifdef DEBUG VerifyChildStructure(); result->VerifyChildStructure(); #endif return use_before; } void LiveRange::UpdateParentForAllChildren(TopLevelLiveRange* new_top_level) { LiveRange* child = this; for (; child != nullptr; child = child->next()) { child->top_level_ = new_top_level; } } void LiveRange::ConvertUsesToOperand(const InstructionOperand& op, const InstructionOperand& spill_op) { for (UsePosition* pos = first_pos(); pos != nullptr; pos = pos->next()) { DCHECK(Start() <= pos->pos() && pos->pos() <= End()); if (!pos->HasOperand()) continue; switch (pos->type()) { case UsePositionType::kRequiresSlot: DCHECK(spill_op.IsStackSlot() || spill_op.IsFPStackSlot()); InstructionOperand::ReplaceWith(pos->operand(), &spill_op); break; case UsePositionType::kRequiresRegister: DCHECK(op.IsRegister() || op.IsFPRegister()); // Fall through. case UsePositionType::kAny: InstructionOperand::ReplaceWith(pos->operand(), &op); break; } } } // This implements an ordering on live ranges so that they are ordered by their // start positions. This is needed for the correctness of the register // allocation algorithm. If two live ranges start at the same offset then there // is a tie breaker based on where the value is first used. This part of the // ordering is merely a heuristic. bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const { LifetimePosition start = Start(); LifetimePosition other_start = other->Start(); if (start == other_start) { UsePosition* pos = first_pos(); if (pos == nullptr) return false; UsePosition* other_pos = other->first_pos(); if (other_pos == nullptr) return true; return pos->pos() < other_pos->pos(); } return start < other_start; } void LiveRange::SetUseHints(int register_index) { for (UsePosition* pos = first_pos(); pos != nullptr; pos = pos->next()) { if (!pos->HasOperand()) continue; switch (pos->type()) { case UsePositionType::kRequiresSlot: break; case UsePositionType::kRequiresRegister: case UsePositionType::kAny: pos->set_assigned_register(register_index); break; } } } bool LiveRange::CanCover(LifetimePosition position) const { if (IsEmpty()) return false; return Start() <= position && position < End(); } bool LiveRange::Covers(LifetimePosition position) const { if (!CanCover(position)) return false; UseInterval* start_search = FirstSearchIntervalForPosition(position); for (UseInterval* interval = start_search; interval != nullptr; interval = interval->next()) { DCHECK(interval->next() == nullptr || interval->next()->start() >= interval->start()); AdvanceLastProcessedMarker(interval, position); if (interval->Contains(position)) return true; if (interval->start() > position) return false; } return false; } LifetimePosition LiveRange::FirstIntersection(LiveRange* other) const { UseInterval* b = other->first_interval(); if (b == nullptr) return LifetimePosition::Invalid(); LifetimePosition advance_last_processed_up_to = b->start(); UseInterval* a = FirstSearchIntervalForPosition(b->start()); while (a != nullptr && b != nullptr) { if (a->start() > other->End()) break; if (b->start() > End()) break; LifetimePosition cur_intersection = a->Intersect(b); if (cur_intersection.IsValid()) { return cur_intersection; } if (a->start() < b->start()) { a = a->next(); if (a == nullptr || a->start() > other->End()) break; AdvanceLastProcessedMarker(a, advance_last_processed_up_to); } else { b = b->next(); } } return LifetimePosition::Invalid(); } void LiveRange::Print(const RegisterConfiguration* config, bool with_children) const { OFStream os(stdout); PrintableLiveRange wrapper; wrapper.register_configuration_ = config; for (const LiveRange* i = this; i != nullptr; i = i->next()) { wrapper.range_ = i; os << wrapper << std::endl; if (!with_children) break; } } void LiveRange::Print(bool with_children) const { Print(RegisterConfiguration::Turbofan(), with_children); } struct TopLevelLiveRange::SpillMoveInsertionList : ZoneObject { SpillMoveInsertionList(int gap_index, InstructionOperand* operand, SpillMoveInsertionList* next) : gap_index(gap_index), operand(operand), next(next) {} const int gap_index; InstructionOperand* const operand; SpillMoveInsertionList* const next; }; TopLevelLiveRange::TopLevelLiveRange(int vreg, MachineRepresentation rep) : LiveRange(0, rep, this), vreg_(vreg), last_child_id_(0), splintered_from_(nullptr), spill_operand_(nullptr), spill_move_insertion_locations_(nullptr), spilled_in_deferred_blocks_(false), spill_start_index_(kMaxInt), last_pos_(nullptr), splinter_(nullptr), has_preassigned_slot_(false) { bits_ |= SpillTypeField::encode(SpillType::kNoSpillType); } #if DEBUG int TopLevelLiveRange::debug_virt_reg() const { return IsSplinter() ? splintered_from()->vreg() : vreg(); } #endif void TopLevelLiveRange::RecordSpillLocation(Zone* zone, int gap_index, InstructionOperand* operand) { DCHECK(HasNoSpillType()); spill_move_insertion_locations_ = new (zone) SpillMoveInsertionList( gap_index, operand, spill_move_insertion_locations_); } void TopLevelLiveRange::CommitSpillMoves(InstructionSequence* sequence, const InstructionOperand& op, bool might_be_duplicated) { DCHECK_IMPLIES(op.IsConstant(), GetSpillMoveInsertionLocations() == nullptr); Zone* zone = sequence->zone(); for (SpillMoveInsertionList* to_spill = GetSpillMoveInsertionLocations(); to_spill != nullptr; to_spill = to_spill->next) { Instruction* instr = sequence->InstructionAt(to_spill->gap_index); ParallelMove* move = instr->GetOrCreateParallelMove(Instruction::START, zone); // Skip insertion if it's possible that the move exists already as a // constraint move from a fixed output register to a slot. if (might_be_duplicated || has_preassigned_slot()) { bool found = false; for (MoveOperands* move_op : *move) { if (move_op->IsEliminated()) continue; if (move_op->source().Equals(*to_spill->operand) && move_op->destination().Equals(op)) { found = true; if (has_preassigned_slot()) move_op->Eliminate(); break; } } if (found) continue; } if (!has_preassigned_slot()) { move->AddMove(*to_spill->operand, op); } } } void TopLevelLiveRange::SetSpillOperand(InstructionOperand* operand) { DCHECK(HasNoSpillType()); DCHECK(!operand->IsUnallocated() && !operand->IsImmediate()); set_spill_type(SpillType::kSpillOperand); spill_operand_ = operand; } void TopLevelLiveRange::SetSpillRange(SpillRange* spill_range) { DCHECK(!HasSpillOperand()); DCHECK(spill_range); spill_range_ = spill_range; } AllocatedOperand TopLevelLiveRange::GetSpillRangeOperand() const { SpillRange* spill_range = GetSpillRange(); int index = spill_range->assigned_slot(); return AllocatedOperand(LocationOperand::STACK_SLOT, representation(), index); } void TopLevelLiveRange::Splinter(LifetimePosition start, LifetimePosition end, Zone* zone) { DCHECK(start != Start() || end != End()); DCHECK(start < end); TopLevelLiveRange splinter_temp(-1, representation()); UsePosition* last_in_splinter = nullptr; // Live ranges defined in deferred blocks stay in deferred blocks, so we // don't need to splinter them. That means that start should always be // after the beginning of the range. DCHECK(start > Start()); if (end >= End()) { DCHECK(start > Start()); DetachAt(start, &splinter_temp, zone, ConnectHints); next_ = nullptr; } else { DCHECK(start < End() && Start() < end); const int kInvalidId = std::numeric_limits::max(); UsePosition* last = DetachAt(start, &splinter_temp, zone, ConnectHints); LiveRange end_part(kInvalidId, this->representation(), nullptr); // The last chunk exits the deferred region, and we don't want to connect // hints here, because the non-deferred region shouldn't be affected // by allocation decisions on the deferred path. last_in_splinter = splinter_temp.DetachAt(end, &end_part, zone, DoNotConnectHints); next_ = end_part.next_; last_interval_->set_next(end_part.first_interval_); // The next splinter will happen either at or after the current interval. // We can optimize DetachAt by setting current_interval_ accordingly, // which will then be picked up by FirstSearchIntervalForPosition. current_interval_ = last_interval_; last_interval_ = end_part.last_interval_; if (first_pos_ == nullptr) { first_pos_ = end_part.first_pos_; } else { splitting_pointer_ = last; if (last != nullptr) last->set_next(end_part.first_pos_); } } if (splinter()->IsEmpty()) { splinter()->first_interval_ = splinter_temp.first_interval_; splinter()->last_interval_ = splinter_temp.last_interval_; } else { splinter()->last_interval_->set_next(splinter_temp.first_interval_); splinter()->last_interval_ = splinter_temp.last_interval_; } if (splinter()->first_pos() == nullptr) { splinter()->first_pos_ = splinter_temp.first_pos_; } else { splinter()->last_pos_->set_next(splinter_temp.first_pos_); } if (last_in_splinter != nullptr) { splinter()->last_pos_ = last_in_splinter; } else { if (splinter()->first_pos() != nullptr && splinter()->last_pos_ == nullptr) { splinter()->last_pos_ = splinter()->first_pos(); for (UsePosition* pos = splinter()->first_pos(); pos != nullptr; pos = pos->next()) { splinter()->last_pos_ = pos; } } } #if DEBUG Verify(); splinter()->Verify(); #endif } void TopLevelLiveRange::SetSplinteredFrom(TopLevelLiveRange* splinter_parent) { splintered_from_ = splinter_parent; if (!HasSpillOperand() && splinter_parent->spill_range_ != nullptr) { SetSpillRange(splinter_parent->spill_range_); } } void TopLevelLiveRange::UpdateSpillRangePostMerge(TopLevelLiveRange* merged) { DCHECK(merged->TopLevel() == this); if (HasNoSpillType() && merged->HasSpillRange()) { set_spill_type(merged->spill_type()); DCHECK(GetSpillRange()->live_ranges().size() > 0); merged->spill_range_ = nullptr; merged->bits_ = SpillTypeField::update(merged->bits_, SpillType::kNoSpillType); } } void TopLevelLiveRange::Merge(TopLevelLiveRange* other, Zone* zone) { DCHECK(Start() < other->Start()); DCHECK(other->splintered_from() == this); LiveRange* first = this; LiveRange* second = other; DCHECK(first->Start() < second->Start()); while (first != nullptr && second != nullptr) { DCHECK(first != second); // Make sure the ranges are in order each time we iterate. if (second->Start() < first->Start()) { LiveRange* tmp = second; second = first; first = tmp; continue; } if (first->End() <= second->Start()) { if (first->next() == nullptr || first->next()->Start() > second->Start()) { // First is in order before second. LiveRange* temp = first->next(); first->next_ = second; first = temp; } else { // First is in order before its successor (or second), so advance first. first = first->next(); } continue; } DCHECK(first->Start() < second->Start()); // If first and second intersect, split first. if (first->Start() < second->End() && second->Start() < first->End()) { LiveRange* temp = first->SplitAt(second->Start(), zone); CHECK(temp != first); temp->set_spilled(first->spilled()); if (!temp->spilled()) temp->set_assigned_register(first->assigned_register()); first->next_ = second; first = temp; continue; } DCHECK(first->End() <= second->Start()); } TopLevel()->UpdateParentForAllChildren(TopLevel()); TopLevel()->UpdateSpillRangePostMerge(other); TopLevel()->set_has_slot_use(TopLevel()->has_slot_use() || other->has_slot_use()); #if DEBUG Verify(); #endif } void TopLevelLiveRange::VerifyChildrenInOrder() const { LifetimePosition last_end = End(); for (const LiveRange* child = this->next(); child != nullptr; child = child->next()) { DCHECK(last_end <= child->Start()); last_end = child->End(); } } void TopLevelLiveRange::Verify() const { VerifyChildrenInOrder(); for (const LiveRange* child = this; child != nullptr; child = child->next()) { VerifyChildStructure(); } } void TopLevelLiveRange::ShortenTo(LifetimePosition start) { TRACE("Shorten live range %d to [%d\n", vreg(), start.value()); DCHECK(first_interval_ != nullptr); DCHECK(first_interval_->start() <= start); DCHECK(start < first_interval_->end()); first_interval_->set_start(start); } void TopLevelLiveRange::EnsureInterval(LifetimePosition start, LifetimePosition end, Zone* zone) { TRACE("Ensure live range %d in interval [%d %d[\n", vreg(), start.value(), end.value()); LifetimePosition new_end = end; while (first_interval_ != nullptr && first_interval_->start() <= end) { if (first_interval_->end() > end) { new_end = first_interval_->end(); } first_interval_ = first_interval_->next(); } UseInterval* new_interval = new (zone) UseInterval(start, new_end); new_interval->set_next(first_interval_); first_interval_ = new_interval; if (new_interval->next() == nullptr) { last_interval_ = new_interval; } } void TopLevelLiveRange::AddUseInterval(LifetimePosition start, LifetimePosition end, Zone* zone) { TRACE("Add to live range %d interval [%d %d[\n", vreg(), start.value(), end.value()); if (first_interval_ == nullptr) { UseInterval* interval = new (zone) UseInterval(start, end); first_interval_ = interval; last_interval_ = interval; } else { if (end == first_interval_->start()) { first_interval_->set_start(start); } else if (end < first_interval_->start()) { UseInterval* interval = new (zone) UseInterval(start, end); interval->set_next(first_interval_); first_interval_ = interval; } else { // Order of instruction's processing (see ProcessInstructions) guarantees // that each new use interval either precedes, intersects with or touches // the last added interval. DCHECK(start <= first_interval_->end()); first_interval_->set_start(Min(start, first_interval_->start())); first_interval_->set_end(Max(end, first_interval_->end())); } } } void TopLevelLiveRange::AddUsePosition(UsePosition* use_pos) { LifetimePosition pos = use_pos->pos(); TRACE("Add to live range %d use position %d\n", vreg(), pos.value()); UsePosition* prev_hint = nullptr; UsePosition* prev = nullptr; UsePosition* current = first_pos_; while (current != nullptr && current->pos() < pos) { prev_hint = current->HasHint() ? current : prev_hint; prev = current; current = current->next(); } if (prev == nullptr) { use_pos->set_next(first_pos_); first_pos_ = use_pos; } else { use_pos->set_next(prev->next()); prev->set_next(use_pos); } if (prev_hint == nullptr && use_pos->HasHint()) { current_hint_position_ = use_pos; } } static bool AreUseIntervalsIntersecting(UseInterval* interval1, UseInterval* interval2) { while (interval1 != nullptr && interval2 != nullptr) { if (interval1->start() < interval2->start()) { if (interval1->end() > interval2->start()) { return true; } interval1 = interval1->next(); } else { if (interval2->end() > interval1->start()) { return true; } interval2 = interval2->next(); } } return false; } std::ostream& operator<<(std::ostream& os, const PrintableLiveRange& printable_range) { const LiveRange* range = printable_range.range_; os << "Range: " << range->TopLevel()->vreg() << ":" << range->relative_id() << " "; if (range->TopLevel()->is_phi()) os << "phi "; if (range->TopLevel()->is_non_loop_phi()) os << "nlphi "; os << "{" << std::endl; UseInterval* interval = range->first_interval(); UsePosition* use_pos = range->first_pos(); PrintableInstructionOperand pio; pio.register_configuration_ = printable_range.register_configuration_; while (use_pos != nullptr) { if (use_pos->HasOperand()) { pio.op_ = *use_pos->operand(); os << pio << use_pos->pos() << " "; } use_pos = use_pos->next(); } os << std::endl; while (interval != nullptr) { os << '[' << interval->start() << ", " << interval->end() << ')' << std::endl; interval = interval->next(); } os << "}"; return os; } SpillRange::SpillRange(TopLevelLiveRange* parent, Zone* zone) : live_ranges_(zone), assigned_slot_(kUnassignedSlot), byte_width_(GetByteWidth(parent->representation())) { // Spill ranges are created for top level, non-splintered ranges. This is so // that, when merging decisions are made, we consider the full extent of the // virtual register, and avoid clobbering it. DCHECK(!parent->IsSplinter()); UseInterval* result = nullptr; UseInterval* node = nullptr; // Copy the intervals for all ranges. for (LiveRange* range = parent; range != nullptr; range = range->next()) { UseInterval* src = range->first_interval(); while (src != nullptr) { UseInterval* new_node = new (zone) UseInterval(src->start(), src->end()); if (result == nullptr) { result = new_node; } else { node->set_next(new_node); } node = new_node; src = src->next(); } } use_interval_ = result; live_ranges().push_back(parent); end_position_ = node->end(); parent->SetSpillRange(this); } bool SpillRange::IsIntersectingWith(SpillRange* other) const { if (this->use_interval_ == nullptr || other->use_interval_ == nullptr || this->End() <= other->use_interval_->start() || other->End() <= this->use_interval_->start()) { return false; } return AreUseIntervalsIntersecting(use_interval_, other->use_interval_); } bool SpillRange::TryMerge(SpillRange* other) { if (HasSlot() || other->HasSlot()) return false; if (byte_width() != other->byte_width() || IsIntersectingWith(other)) return false; LifetimePosition max = LifetimePosition::MaxPosition(); if (End() < other->End() && other->End() != max) { end_position_ = other->End(); } other->end_position_ = max; MergeDisjointIntervals(other->use_interval_); other->use_interval_ = nullptr; for (TopLevelLiveRange* range : other->live_ranges()) { DCHECK(range->GetSpillRange() == other); range->SetSpillRange(this); } live_ranges().insert(live_ranges().end(), other->live_ranges().begin(), other->live_ranges().end()); other->live_ranges().clear(); return true; } void SpillRange::MergeDisjointIntervals(UseInterval* other) { UseInterval* tail = nullptr; UseInterval* current = use_interval_; while (other != nullptr) { // Make sure the 'current' list starts first if (current == nullptr || current->start() > other->start()) { std::swap(current, other); } // Check disjointness DCHECK(other == nullptr || current->end() <= other->start()); // Append the 'current' node to the result accumulator and move forward if (tail == nullptr) { use_interval_ = current; } else { tail->set_next(current); } tail = current; current = current->next(); } // Other list is empty => we are done } void SpillRange::Print() const { OFStream os(stdout); os << "{" << std::endl; for (TopLevelLiveRange* range : live_ranges()) { os << range->vreg() << " "; } os << std::endl; for (UseInterval* i = interval(); i != nullptr; i = i->next()) { os << '[' << i->start() << ", " << i->end() << ')' << std::endl; } os << "}" << std::endl; } RegisterAllocationData::PhiMapValue::PhiMapValue(PhiInstruction* phi, const InstructionBlock* block, Zone* zone) : phi_(phi), block_(block), incoming_operands_(zone), assigned_register_(kUnassignedRegister) { incoming_operands_.reserve(phi->operands().size()); } void RegisterAllocationData::PhiMapValue::AddOperand( InstructionOperand* operand) { incoming_operands_.push_back(operand); } void RegisterAllocationData::PhiMapValue::CommitAssignment( const InstructionOperand& assigned) { for (InstructionOperand* operand : incoming_operands_) { InstructionOperand::ReplaceWith(operand, &assigned); } } RegisterAllocationData::RegisterAllocationData( const RegisterConfiguration* config, Zone* zone, Frame* frame, InstructionSequence* code, const char* debug_name) : allocation_zone_(zone), frame_(frame), code_(code), debug_name_(debug_name), config_(config), phi_map_(allocation_zone()), live_in_sets_(code->InstructionBlockCount(), nullptr, allocation_zone()), live_out_sets_(code->InstructionBlockCount(), nullptr, allocation_zone()), live_ranges_(code->VirtualRegisterCount() * 2, nullptr, allocation_zone()), fixed_live_ranges_(this->config()->num_general_registers(), nullptr, allocation_zone()), fixed_float_live_ranges_(allocation_zone()), fixed_double_live_ranges_(this->config()->num_double_registers(), nullptr, allocation_zone()), fixed_simd128_live_ranges_(allocation_zone()), spill_ranges_(code->VirtualRegisterCount(), nullptr, allocation_zone()), delayed_references_(allocation_zone()), assigned_registers_(nullptr), assigned_double_registers_(nullptr), virtual_register_count_(code->VirtualRegisterCount()), preassigned_slot_ranges_(zone) { if (!kSimpleFPAliasing) { fixed_float_live_ranges_.resize(this->config()->num_float_registers(), nullptr); fixed_simd128_live_ranges_.resize(this->config()->num_simd128_registers(), nullptr); } assigned_registers_ = new (code_zone()) BitVector(this->config()->num_general_registers(), code_zone()); assigned_double_registers_ = new (code_zone()) BitVector(this->config()->num_double_registers(), code_zone()); this->frame()->SetAllocatedRegisters(assigned_registers_); this->frame()->SetAllocatedDoubleRegisters(assigned_double_registers_); } MoveOperands* RegisterAllocationData::AddGapMove( int index, Instruction::GapPosition position, const InstructionOperand& from, const InstructionOperand& to) { Instruction* instr = code()->InstructionAt(index); ParallelMove* moves = instr->GetOrCreateParallelMove(position, code_zone()); return moves->AddMove(from, to); } MachineRepresentation RegisterAllocationData::RepresentationFor( int virtual_register) { DCHECK_LT(virtual_register, code()->VirtualRegisterCount()); return code()->GetRepresentation(virtual_register); } TopLevelLiveRange* RegisterAllocationData::GetOrCreateLiveRangeFor(int index) { if (index >= static_cast(live_ranges().size())) { live_ranges().resize(index + 1, nullptr); } TopLevelLiveRange* result = live_ranges()[index]; if (result == nullptr) { result = NewLiveRange(index, RepresentationFor(index)); live_ranges()[index] = result; } return result; } TopLevelLiveRange* RegisterAllocationData::NewLiveRange( int index, MachineRepresentation rep) { return new (allocation_zone()) TopLevelLiveRange(index, rep); } int RegisterAllocationData::GetNextLiveRangeId() { int vreg = virtual_register_count_++; if (vreg >= static_cast(live_ranges().size())) { live_ranges().resize(vreg + 1, nullptr); } return vreg; } TopLevelLiveRange* RegisterAllocationData::NextLiveRange( MachineRepresentation rep) { int vreg = GetNextLiveRangeId(); TopLevelLiveRange* ret = NewLiveRange(vreg, rep); return ret; } RegisterAllocationData::PhiMapValue* RegisterAllocationData::InitializePhiMap( const InstructionBlock* block, PhiInstruction* phi) { RegisterAllocationData::PhiMapValue* map_value = new (allocation_zone()) RegisterAllocationData::PhiMapValue(phi, block, allocation_zone()); auto res = phi_map_.insert(std::make_pair(phi->virtual_register(), map_value)); DCHECK(res.second); USE(res); return map_value; } RegisterAllocationData::PhiMapValue* RegisterAllocationData::GetPhiMapValueFor( int virtual_register) { auto it = phi_map_.find(virtual_register); DCHECK(it != phi_map_.end()); return it->second; } RegisterAllocationData::PhiMapValue* RegisterAllocationData::GetPhiMapValueFor( TopLevelLiveRange* top_range) { return GetPhiMapValueFor(top_range->vreg()); } bool RegisterAllocationData::ExistsUseWithoutDefinition() { bool found = false; BitVector::Iterator iterator(live_in_sets()[0]); while (!iterator.Done()) { found = true; int operand_index = iterator.Current(); PrintF("Register allocator error: live v%d reached first block.\n", operand_index); LiveRange* range = GetOrCreateLiveRangeFor(operand_index); PrintF(" (first use is at %d)\n", range->first_pos()->pos().value()); if (debug_name() == nullptr) { PrintF("\n"); } else { PrintF(" (function: %s)\n", debug_name()); } iterator.Advance(); } return found; } // If a range is defined in a deferred block, we can expect all the range // to only cover positions in deferred blocks. Otherwise, a block on the // hot path would be dominated by a deferred block, meaning it is unreachable // without passing through the deferred block, which is contradictory. // In particular, when such a range contributes a result back on the hot // path, it will be as one of the inputs of a phi. In that case, the value // will be transferred via a move in the Gap::END's of the last instruction // of a deferred block. bool RegisterAllocationData::RangesDefinedInDeferredStayInDeferred() { for (const TopLevelLiveRange* range : live_ranges()) { if (range == nullptr || range->IsEmpty() || !code() ->GetInstructionBlock(range->Start().ToInstructionIndex()) ->IsDeferred()) { continue; } for (const UseInterval* i = range->first_interval(); i != nullptr; i = i->next()) { int first = i->FirstGapIndex(); int last = i->LastGapIndex(); for (int instr = first; instr <= last;) { const InstructionBlock* block = code()->GetInstructionBlock(instr); if (!block->IsDeferred()) return false; instr = block->last_instruction_index() + 1; } } } return true; } SpillRange* RegisterAllocationData::AssignSpillRangeToLiveRange( TopLevelLiveRange* range) { DCHECK(!range->HasSpillOperand()); SpillRange* spill_range = range->GetAllocatedSpillRange(); if (spill_range == nullptr) { DCHECK(!range->IsSplinter()); spill_range = new (allocation_zone()) SpillRange(range, allocation_zone()); } range->set_spill_type(TopLevelLiveRange::SpillType::kSpillRange); int spill_range_index = range->IsSplinter() ? range->splintered_from()->vreg() : range->vreg(); spill_ranges()[spill_range_index] = spill_range; return spill_range; } SpillRange* RegisterAllocationData::CreateSpillRangeForLiveRange( TopLevelLiveRange* range) { DCHECK(!range->HasSpillOperand()); DCHECK(!range->IsSplinter()); SpillRange* spill_range = new (allocation_zone()) SpillRange(range, allocation_zone()); return spill_range; } void RegisterAllocationData::MarkAllocated(MachineRepresentation rep, int index) { switch (rep) { case MachineRepresentation::kFloat32: case MachineRepresentation::kSimd128: if (kSimpleFPAliasing) { assigned_double_registers_->Add(index); } else { int alias_base_index = -1; int aliases = config()->GetAliases( rep, index, MachineRepresentation::kFloat64, &alias_base_index); DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1)); while (aliases--) { int aliased_reg = alias_base_index + aliases; assigned_double_registers_->Add(aliased_reg); } } break; case MachineRepresentation::kFloat64: assigned_double_registers_->Add(index); break; default: DCHECK(!IsFloatingPoint(rep)); assigned_registers_->Add(index); break; } } bool RegisterAllocationData::IsBlockBoundary(LifetimePosition pos) const { return pos.IsFullStart() && code()->GetInstructionBlock(pos.ToInstructionIndex())->code_start() == pos.ToInstructionIndex(); } ConstraintBuilder::ConstraintBuilder(RegisterAllocationData* data) : data_(data) {} InstructionOperand* ConstraintBuilder::AllocateFixed( UnallocatedOperand* operand, int pos, bool is_tagged) { TRACE("Allocating fixed reg for op %d\n", operand->virtual_register()); DCHECK(operand->HasFixedPolicy()); InstructionOperand allocated; MachineRepresentation rep = InstructionSequence::DefaultRepresentation(); int virtual_register = operand->virtual_register(); if (virtual_register != InstructionOperand::kInvalidVirtualRegister) { rep = data()->RepresentationFor(virtual_register); } if (operand->HasFixedSlotPolicy()) { allocated = AllocatedOperand(AllocatedOperand::STACK_SLOT, rep, operand->fixed_slot_index()); } else if (operand->HasFixedRegisterPolicy()) { DCHECK(!IsFloatingPoint(rep)); allocated = AllocatedOperand(AllocatedOperand::REGISTER, rep, operand->fixed_register_index()); } else if (operand->HasFixedFPRegisterPolicy()) { DCHECK(IsFloatingPoint(rep)); DCHECK_NE(InstructionOperand::kInvalidVirtualRegister, virtual_register); allocated = AllocatedOperand(AllocatedOperand::REGISTER, rep, operand->fixed_register_index()); } else { UNREACHABLE(); } InstructionOperand::ReplaceWith(operand, &allocated); if (is_tagged) { TRACE("Fixed reg is tagged at %d\n", pos); Instruction* instr = code()->InstructionAt(pos); if (instr->HasReferenceMap()) { instr->reference_map()->RecordReference(*AllocatedOperand::cast(operand)); } } return operand; } void ConstraintBuilder::MeetRegisterConstraints() { for (InstructionBlock* block : code()->instruction_blocks()) { MeetRegisterConstraints(block); } } void ConstraintBuilder::MeetRegisterConstraints(const InstructionBlock* block) { int start = block->first_instruction_index(); int end = block->last_instruction_index(); DCHECK_NE(-1, start); for (int i = start; i <= end; ++i) { MeetConstraintsBefore(i); if (i != end) MeetConstraintsAfter(i); } // Meet register constraints for the instruction in the end. MeetRegisterConstraintsForLastInstructionInBlock(block); } void ConstraintBuilder::MeetRegisterConstraintsForLastInstructionInBlock( const InstructionBlock* block) { int end = block->last_instruction_index(); Instruction* last_instruction = code()->InstructionAt(end); for (size_t i = 0; i < last_instruction->OutputCount(); i++) { InstructionOperand* output_operand = last_instruction->OutputAt(i); DCHECK(!output_operand->IsConstant()); UnallocatedOperand* output = UnallocatedOperand::cast(output_operand); int output_vreg = output->virtual_register(); TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(output_vreg); bool assigned = false; if (output->HasFixedPolicy()) { AllocateFixed(output, -1, false); // This value is produced on the stack, we never need to spill it. if (output->IsStackSlot()) { DCHECK(LocationOperand::cast(output)->index() < data()->frame()->GetSpillSlotCount()); range->SetSpillOperand(LocationOperand::cast(output)); range->SetSpillStartIndex(end); assigned = true; } for (const RpoNumber& succ : block->successors()) { const InstructionBlock* successor = code()->InstructionBlockAt(succ); DCHECK(successor->PredecessorCount() == 1); int gap_index = successor->first_instruction_index(); // Create an unconstrained operand for the same virtual register // and insert a gap move from the fixed output to the operand. UnallocatedOperand output_copy(UnallocatedOperand::ANY, output_vreg); data()->AddGapMove(gap_index, Instruction::START, *output, output_copy); } } if (!assigned) { for (const RpoNumber& succ : block->successors()) { const InstructionBlock* successor = code()->InstructionBlockAt(succ); DCHECK(successor->PredecessorCount() == 1); int gap_index = successor->first_instruction_index(); range->RecordSpillLocation(allocation_zone(), gap_index, output); range->SetSpillStartIndex(gap_index); } } } } void ConstraintBuilder::MeetConstraintsAfter(int instr_index) { Instruction* first = code()->InstructionAt(instr_index); // Handle fixed temporaries. for (size_t i = 0; i < first->TempCount(); i++) { UnallocatedOperand* temp = UnallocatedOperand::cast(first->TempAt(i)); if (temp->HasFixedPolicy()) AllocateFixed(temp, instr_index, false); } // Handle constant/fixed output operands. for (size_t i = 0; i < first->OutputCount(); i++) { InstructionOperand* output = first->OutputAt(i); if (output->IsConstant()) { int output_vreg = ConstantOperand::cast(output)->virtual_register(); TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(output_vreg); range->SetSpillStartIndex(instr_index + 1); range->SetSpillOperand(output); continue; } UnallocatedOperand* first_output = UnallocatedOperand::cast(output); TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(first_output->virtual_register()); bool assigned = false; if (first_output->HasFixedPolicy()) { int output_vreg = first_output->virtual_register(); UnallocatedOperand output_copy(UnallocatedOperand::ANY, output_vreg); bool is_tagged = code()->IsReference(output_vreg); if (first_output->HasSecondaryStorage()) { range->MarkHasPreassignedSlot(); data()->preassigned_slot_ranges().push_back( std::make_pair(range, first_output->GetSecondaryStorage())); } AllocateFixed(first_output, instr_index, is_tagged); // This value is produced on the stack, we never need to spill it. if (first_output->IsStackSlot()) { DCHECK(LocationOperand::cast(first_output)->index() < data()->frame()->GetTotalFrameSlotCount()); range->SetSpillOperand(LocationOperand::cast(first_output)); range->SetSpillStartIndex(instr_index + 1); assigned = true; } data()->AddGapMove(instr_index + 1, Instruction::START, *first_output, output_copy); } // Make sure we add a gap move for spilling (if we have not done // so already). if (!assigned) { range->RecordSpillLocation(allocation_zone(), instr_index + 1, first_output); range->SetSpillStartIndex(instr_index + 1); } } } void ConstraintBuilder::MeetConstraintsBefore(int instr_index) { Instruction* second = code()->InstructionAt(instr_index); // Handle fixed input operands of second instruction. for (size_t i = 0; i < second->InputCount(); i++) { InstructionOperand* input = second->InputAt(i); if (input->IsImmediate() || input->IsExplicit()) { continue; // Ignore immediates and explicitly reserved registers. } UnallocatedOperand* cur_input = UnallocatedOperand::cast(input); if (cur_input->HasFixedPolicy()) { int input_vreg = cur_input->virtual_register(); UnallocatedOperand input_copy(UnallocatedOperand::ANY, input_vreg); bool is_tagged = code()->IsReference(input_vreg); AllocateFixed(cur_input, instr_index, is_tagged); data()->AddGapMove(instr_index, Instruction::END, input_copy, *cur_input); } } // Handle "output same as input" for second instruction. for (size_t i = 0; i < second->OutputCount(); i++) { InstructionOperand* output = second->OutputAt(i); if (!output->IsUnallocated()) continue; UnallocatedOperand* second_output = UnallocatedOperand::cast(output); if (!second_output->HasSameAsInputPolicy()) continue; DCHECK(i == 0); // Only valid for first output. UnallocatedOperand* cur_input = UnallocatedOperand::cast(second->InputAt(0)); int output_vreg = second_output->virtual_register(); int input_vreg = cur_input->virtual_register(); UnallocatedOperand input_copy(UnallocatedOperand::ANY, input_vreg); cur_input->set_virtual_register(second_output->virtual_register()); MoveOperands* gap_move = data()->AddGapMove(instr_index, Instruction::END, input_copy, *cur_input); if (code()->IsReference(input_vreg) && !code()->IsReference(output_vreg)) { if (second->HasReferenceMap()) { RegisterAllocationData::DelayedReference delayed_reference = { second->reference_map(), &gap_move->source()}; data()->delayed_references().push_back(delayed_reference); } } else if (!code()->IsReference(input_vreg) && code()->IsReference(output_vreg)) { // The input is assumed to immediately have a tagged representation, // before the pointer map can be used. I.e. the pointer map at the // instruction will include the output operand (whose value at the // beginning of the instruction is equal to the input operand). If // this is not desired, then the pointer map at this instruction needs // to be adjusted manually. } } } void ConstraintBuilder::ResolvePhis() { // Process the blocks in reverse order. for (InstructionBlock* block : base::Reversed(code()->instruction_blocks())) { ResolvePhis(block); } } void ConstraintBuilder::ResolvePhis(const InstructionBlock* block) { for (PhiInstruction* phi : block->phis()) { int phi_vreg = phi->virtual_register(); RegisterAllocationData::PhiMapValue* map_value = data()->InitializePhiMap(block, phi); InstructionOperand& output = phi->output(); // Map the destination operands, so the commitment phase can find them. for (size_t i = 0; i < phi->operands().size(); ++i) { InstructionBlock* cur_block = code()->InstructionBlockAt(block->predecessors()[i]); UnallocatedOperand input(UnallocatedOperand::ANY, phi->operands()[i]); MoveOperands* move = data()->AddGapMove( cur_block->last_instruction_index(), Instruction::END, input, output); map_value->AddOperand(&move->destination()); DCHECK(!code() ->InstructionAt(cur_block->last_instruction_index()) ->HasReferenceMap()); } TopLevelLiveRange* live_range = data()->GetOrCreateLiveRangeFor(phi_vreg); int gap_index = block->first_instruction_index(); live_range->RecordSpillLocation(allocation_zone(), gap_index, &output); live_range->SetSpillStartIndex(gap_index); // We use the phi-ness of some nodes in some later heuristics. live_range->set_is_phi(true); live_range->set_is_non_loop_phi(!block->IsLoopHeader()); } } LiveRangeBuilder::LiveRangeBuilder(RegisterAllocationData* data, Zone* local_zone) : data_(data), phi_hints_(local_zone) {} BitVector* LiveRangeBuilder::ComputeLiveOut(const InstructionBlock* block, RegisterAllocationData* data) { size_t block_index = block->rpo_number().ToSize(); BitVector* live_out = data->live_out_sets()[block_index]; if (live_out == nullptr) { // Compute live out for the given block, except not including backward // successor edges. Zone* zone = data->allocation_zone(); const InstructionSequence* code = data->code(); live_out = new (zone) BitVector(code->VirtualRegisterCount(), zone); // Process all successor blocks. for (const RpoNumber& succ : block->successors()) { // Add values live on entry to the successor. if (succ <= block->rpo_number()) continue; BitVector* live_in = data->live_in_sets()[succ.ToSize()]; if (live_in != nullptr) live_out->Union(*live_in); // All phi input operands corresponding to this successor edge are live // out from this block. const InstructionBlock* successor = code->InstructionBlockAt(succ); size_t index = successor->PredecessorIndexOf(block->rpo_number()); DCHECK(index < successor->PredecessorCount()); for (PhiInstruction* phi : successor->phis()) { live_out->Add(phi->operands()[index]); } } data->live_out_sets()[block_index] = live_out; } return live_out; } void LiveRangeBuilder::AddInitialIntervals(const InstructionBlock* block, BitVector* live_out) { // Add an interval that includes the entire block to the live range for // each live_out value. LifetimePosition start = LifetimePosition::GapFromInstructionIndex( block->first_instruction_index()); LifetimePosition end = LifetimePosition::InstructionFromInstructionIndex( block->last_instruction_index()) .NextStart(); BitVector::Iterator iterator(live_out); while (!iterator.Done()) { int operand_index = iterator.Current(); TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(operand_index); range->AddUseInterval(start, end, allocation_zone()); iterator.Advance(); } } int LiveRangeBuilder::FixedFPLiveRangeID(int index, MachineRepresentation rep) { int result = -index - 1; switch (rep) { case MachineRepresentation::kSimd128: result -= config()->num_float_registers(); // Fall through. case MachineRepresentation::kFloat32: result -= config()->num_double_registers(); // Fall through. case MachineRepresentation::kFloat64: result -= config()->num_general_registers(); break; default: UNREACHABLE(); break; } return result; } TopLevelLiveRange* LiveRangeBuilder::FixedLiveRangeFor(int index) { DCHECK(index < config()->num_general_registers()); TopLevelLiveRange* result = data()->fixed_live_ranges()[index]; if (result == nullptr) { MachineRepresentation rep = InstructionSequence::DefaultRepresentation(); result = data()->NewLiveRange(FixedLiveRangeID(index), rep); DCHECK(result->IsFixed()); result->set_assigned_register(index); data()->MarkAllocated(rep, index); data()->fixed_live_ranges()[index] = result; } return result; } TopLevelLiveRange* LiveRangeBuilder::FixedFPLiveRangeFor( int index, MachineRepresentation rep) { int num_regs = config()->num_double_registers(); ZoneVector* live_ranges = &data()->fixed_double_live_ranges(); if (!kSimpleFPAliasing) { switch (rep) { case MachineRepresentation::kFloat32: num_regs = config()->num_float_registers(); live_ranges = &data()->fixed_float_live_ranges(); break; case MachineRepresentation::kSimd128: num_regs = config()->num_simd128_registers(); live_ranges = &data()->fixed_simd128_live_ranges(); break; default: break; } } DCHECK(index < num_regs); USE(num_regs); TopLevelLiveRange* result = (*live_ranges)[index]; if (result == nullptr) { result = data()->NewLiveRange(FixedFPLiveRangeID(index, rep), rep); DCHECK(result->IsFixed()); result->set_assigned_register(index); data()->MarkAllocated(rep, index); (*live_ranges)[index] = result; } return result; } TopLevelLiveRange* LiveRangeBuilder::LiveRangeFor(InstructionOperand* operand) { if (operand->IsUnallocated()) { return data()->GetOrCreateLiveRangeFor( UnallocatedOperand::cast(operand)->virtual_register()); } else if (operand->IsConstant()) { return data()->GetOrCreateLiveRangeFor( ConstantOperand::cast(operand)->virtual_register()); } else if (operand->IsRegister()) { return FixedLiveRangeFor( LocationOperand::cast(operand)->GetRegister().code()); } else if (operand->IsFPRegister()) { LocationOperand* op = LocationOperand::cast(operand); return FixedFPLiveRangeFor(op->register_code(), op->representation()); } else { return nullptr; } } UsePosition* LiveRangeBuilder::NewUsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint, UsePositionHintType hint_type) { return new (allocation_zone()) UsePosition(pos, operand, hint, hint_type); } UsePosition* LiveRangeBuilder::Define(LifetimePosition position, InstructionOperand* operand, void* hint, UsePositionHintType hint_type) { TopLevelLiveRange* range = LiveRangeFor(operand); if (range == nullptr) return nullptr; if (range->IsEmpty() || range->Start() > position) { // Can happen if there is a definition without use. range->AddUseInterval(position, position.NextStart(), allocation_zone()); range->AddUsePosition(NewUsePosition(position.NextStart())); } else { range->ShortenTo(position); } if (!operand->IsUnallocated()) return nullptr; UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand); UsePosition* use_pos = NewUsePosition(position, unalloc_operand, hint, hint_type); range->AddUsePosition(use_pos); return use_pos; } UsePosition* LiveRangeBuilder::Use(LifetimePosition block_start, LifetimePosition position, InstructionOperand* operand, void* hint, UsePositionHintType hint_type) { TopLevelLiveRange* range = LiveRangeFor(operand); if (range == nullptr) return nullptr; UsePosition* use_pos = nullptr; if (operand->IsUnallocated()) { UnallocatedOperand* unalloc_operand = UnallocatedOperand::cast(operand); use_pos = NewUsePosition(position, unalloc_operand, hint, hint_type); range->AddUsePosition(use_pos); } range->AddUseInterval(block_start, position, allocation_zone()); return use_pos; } void LiveRangeBuilder::ProcessInstructions(const InstructionBlock* block, BitVector* live) { int block_start = block->first_instruction_index(); LifetimePosition block_start_position = LifetimePosition::GapFromInstructionIndex(block_start); bool fixed_float_live_ranges = false; bool fixed_simd128_live_ranges = false; if (!kSimpleFPAliasing) { int mask = data()->code()->representation_mask(); fixed_float_live_ranges = (mask & kFloatRepBit) != 0; fixed_simd128_live_ranges = (mask & kSimd128RepBit) != 0; } for (int index = block->last_instruction_index(); index >= block_start; index--) { LifetimePosition curr_position = LifetimePosition::InstructionFromInstructionIndex(index); Instruction* instr = code()->InstructionAt(index); DCHECK(instr != nullptr); DCHECK(curr_position.IsInstructionPosition()); // Process output, inputs, and temps of this instruction. for (size_t i = 0; i < instr->OutputCount(); i++) { InstructionOperand* output = instr->OutputAt(i); if (output->IsUnallocated()) { // Unsupported. DCHECK(!UnallocatedOperand::cast(output)->HasSlotPolicy()); int out_vreg = UnallocatedOperand::cast(output)->virtual_register(); live->Remove(out_vreg); } else if (output->IsConstant()) { int out_vreg = ConstantOperand::cast(output)->virtual_register(); live->Remove(out_vreg); } if (block->IsHandler() && index == block_start && output->IsAllocated() && output->IsRegister() && AllocatedOperand::cast(output)->GetRegister().is( v8::internal::kReturnRegister0)) { // The register defined here is blocked from gap start - it is the // exception value. // TODO(mtrofin): should we explore an explicit opcode for // the first instruction in the handler? Define(LifetimePosition::GapFromInstructionIndex(index), output); } else { Define(curr_position, output); } } if (instr->ClobbersRegisters()) { for (int i = 0; i < config()->num_allocatable_general_registers(); ++i) { // Create a UseInterval at this instruction for all fixed registers, // (including the instruction outputs). Adding another UseInterval here // is OK because AddUseInterval will just merge it with the existing // one at the end of the range. int code = config()->GetAllocatableGeneralCode(i); TopLevelLiveRange* range = FixedLiveRangeFor(code); range->AddUseInterval(curr_position, curr_position.End(), allocation_zone()); } } if (instr->ClobbersDoubleRegisters()) { for (int i = 0; i < config()->num_allocatable_double_registers(); ++i) { // Add a UseInterval for all DoubleRegisters. See comment above for // general registers. int code = config()->GetAllocatableDoubleCode(i); TopLevelLiveRange* range = FixedFPLiveRangeFor(code, MachineRepresentation::kFloat64); range->AddUseInterval(curr_position, curr_position.End(), allocation_zone()); } // Clobber fixed float registers on archs with non-simple aliasing. if (!kSimpleFPAliasing) { if (fixed_float_live_ranges) { for (int i = 0; i < config()->num_allocatable_float_registers(); ++i) { // Add a UseInterval for all FloatRegisters. See comment above for // general registers. int code = config()->GetAllocatableFloatCode(i); TopLevelLiveRange* range = FixedFPLiveRangeFor(code, MachineRepresentation::kFloat32); range->AddUseInterval(curr_position, curr_position.End(), allocation_zone()); } } if (fixed_simd128_live_ranges) { for (int i = 0; i < config()->num_allocatable_simd128_registers(); ++i) { int code = config()->GetAllocatableSimd128Code(i); TopLevelLiveRange* range = FixedFPLiveRangeFor(code, MachineRepresentation::kSimd128); range->AddUseInterval(curr_position, curr_position.End(), allocation_zone()); } } } } for (size_t i = 0; i < instr->InputCount(); i++) { InstructionOperand* input = instr->InputAt(i); if (input->IsImmediate() || input->IsExplicit()) { continue; // Ignore immediates and explicitly reserved registers. } LifetimePosition use_pos; if (input->IsUnallocated() && UnallocatedOperand::cast(input)->IsUsedAtStart()) { use_pos = curr_position; } else { use_pos = curr_position.End(); } if (input->IsUnallocated()) { UnallocatedOperand* unalloc = UnallocatedOperand::cast(input); int vreg = unalloc->virtual_register(); live->Add(vreg); if (unalloc->HasSlotPolicy()) { data()->GetOrCreateLiveRangeFor(vreg)->set_has_slot_use(true); } } Use(block_start_position, use_pos, input); } for (size_t i = 0; i < instr->TempCount(); i++) { InstructionOperand* temp = instr->TempAt(i); // Unsupported. DCHECK_IMPLIES(temp->IsUnallocated(), !UnallocatedOperand::cast(temp)->HasSlotPolicy()); if (instr->ClobbersTemps()) { if (temp->IsRegister()) continue; if (temp->IsUnallocated()) { UnallocatedOperand* temp_unalloc = UnallocatedOperand::cast(temp); if (temp_unalloc->HasFixedPolicy()) { continue; } } } Use(block_start_position, curr_position.End(), temp); Define(curr_position, temp); } // Process the moves of the instruction's gaps, making their sources live. const Instruction::GapPosition kPositions[] = {Instruction::END, Instruction::START}; curr_position = curr_position.PrevStart(); DCHECK(curr_position.IsGapPosition()); for (const Instruction::GapPosition& position : kPositions) { ParallelMove* move = instr->GetParallelMove(position); if (move == nullptr) continue; if (position == Instruction::END) { curr_position = curr_position.End(); } else { curr_position = curr_position.Start(); } for (MoveOperands* cur : *move) { InstructionOperand& from = cur->source(); InstructionOperand& to = cur->destination(); void* hint = &to; UsePositionHintType hint_type = UsePosition::HintTypeForOperand(to); UsePosition* to_use = nullptr; int phi_vreg = -1; if (to.IsUnallocated()) { int to_vreg = UnallocatedOperand::cast(to).virtual_register(); TopLevelLiveRange* to_range = data()->GetOrCreateLiveRangeFor(to_vreg); if (to_range->is_phi()) { phi_vreg = to_vreg; if (to_range->is_non_loop_phi()) { hint = to_range->current_hint_position(); hint_type = hint == nullptr ? UsePositionHintType::kNone : UsePositionHintType::kUsePos; } else { hint_type = UsePositionHintType::kPhi; hint = data()->GetPhiMapValueFor(to_vreg); } } else { if (live->Contains(to_vreg)) { to_use = Define(curr_position, &to, &from, UsePosition::HintTypeForOperand(from)); live->Remove(to_vreg); } else { cur->Eliminate(); continue; } } } else { Define(curr_position, &to); } UsePosition* from_use = Use(block_start_position, curr_position, &from, hint, hint_type); // Mark range live. if (from.IsUnallocated()) { live->Add(UnallocatedOperand::cast(from).virtual_register()); } // Resolve use position hints just created. if (to_use != nullptr && from_use != nullptr) { to_use->ResolveHint(from_use); from_use->ResolveHint(to_use); } DCHECK_IMPLIES(to_use != nullptr, to_use->IsResolved()); DCHECK_IMPLIES(from_use != nullptr, from_use->IsResolved()); // Potentially resolve phi hint. if (phi_vreg != -1) ResolvePhiHint(&from, from_use); } } } } void LiveRangeBuilder::ProcessPhis(const InstructionBlock* block, BitVector* live) { for (PhiInstruction* phi : block->phis()) { // The live range interval already ends at the first instruction of the // block. int phi_vreg = phi->virtual_register(); live->Remove(phi_vreg); // Select a hint from a predecessor block that preceeds this block in the // rpo order. In order of priority: // - Avoid hints from deferred blocks. // - Prefer hints from allocated (or explicit) operands. // - Prefer hints from empty blocks (containing just parallel moves and a // jump). In these cases, if we can elide the moves, the jump threader // is likely to be able to elide the jump. // The enforcement of hinting in rpo order is required because hint // resolution that happens later in the compiler pipeline visits // instructions in reverse rpo order, relying on the fact that phis are // encountered before their hints. InstructionOperand* hint = nullptr; int hint_preference = 0; // The cost of hinting increases with the number of predecessors. At the // same time, the typical benefit decreases, since this hinting only // optimises the execution path through one predecessor. A limit of 2 is // sufficient to hit the common if/else pattern. int predecessor_limit = 2; for (RpoNumber predecessor : block->predecessors()) { const InstructionBlock* predecessor_block = code()->InstructionBlockAt(predecessor); DCHECK_EQ(predecessor_block->rpo_number(), predecessor); // Only take hints from earlier rpo numbers. if (predecessor >= block->rpo_number()) continue; // Look up the predecessor instruction. const Instruction* predecessor_instr = GetLastInstruction(code(), predecessor_block); InstructionOperand* predecessor_hint = nullptr; // Phis are assigned in the END position of the last instruction in each // predecessor block. for (MoveOperands* move : *predecessor_instr->GetParallelMove(Instruction::END)) { InstructionOperand& to = move->destination(); if (to.IsUnallocated() && UnallocatedOperand::cast(to).virtual_register() == phi_vreg) { predecessor_hint = &move->source(); break; } } DCHECK_NOT_NULL(predecessor_hint); // For each predecessor, generate a score according to the priorities // described above, and pick the best one. Flags in higher-order bits have // a higher priority than those in lower-order bits. int predecessor_hint_preference = 0; const int kNotDeferredBlockPreference = (1 << 2); const int kMoveIsAllocatedPreference = (1 << 1); const int kBlockIsEmptyPreference = (1 << 0); // - Avoid hints from deferred blocks. if (!predecessor_block->IsDeferred()) { predecessor_hint_preference |= kNotDeferredBlockPreference; } // - Prefer hints from allocated (or explicit) operands. // // Already-allocated or explicit operands are typically assigned using // the parallel moves on the last instruction. For example: // // gap (v101 = [x0|R|w32]) (v100 = v101) // ArchJmp // ... // phi: v100 = v101 v102 // // We have already found the END move, so look for a matching START move // from an allocated (or explicit) operand. // // Note that we cannot simply look up data()->live_ranges()[vreg] here // because the live ranges are still being built when this function is // called. // TODO(v8): Find a way to separate hinting from live range analysis in // BuildLiveRanges so that we can use the O(1) live-range look-up. auto moves = predecessor_instr->GetParallelMove(Instruction::START); if (moves != nullptr) { for (MoveOperands* move : *moves) { InstructionOperand& to = move->destination(); if (predecessor_hint->Equals(to)) { if (move->source().IsAllocated() || move->source().IsExplicit()) { predecessor_hint_preference |= kMoveIsAllocatedPreference; } break; } } } // - Prefer hints from empty blocks. if (predecessor_block->last_instruction_index() == predecessor_block->first_instruction_index()) { predecessor_hint_preference |= kBlockIsEmptyPreference; } if ((hint == nullptr) || (predecessor_hint_preference > hint_preference)) { // Take the hint from this predecessor. hint = predecessor_hint; hint_preference = predecessor_hint_preference; } if (--predecessor_limit <= 0) break; } DCHECK_NOT_NULL(hint); LifetimePosition block_start = LifetimePosition::GapFromInstructionIndex( block->first_instruction_index()); UsePosition* use_pos = Define(block_start, &phi->output(), hint, UsePosition::HintTypeForOperand(*hint)); MapPhiHint(hint, use_pos); } } void LiveRangeBuilder::ProcessLoopHeader(const InstructionBlock* block, BitVector* live) { DCHECK(block->IsLoopHeader()); // Add a live range stretching from the first loop instruction to the last // for each value live on entry to the header. BitVector::Iterator iterator(live); LifetimePosition start = LifetimePosition::GapFromInstructionIndex( block->first_instruction_index()); LifetimePosition end = LifetimePosition::GapFromInstructionIndex( code()->LastLoopInstructionIndex(block)) .NextFullStart(); while (!iterator.Done()) { int operand_index = iterator.Current(); TopLevelLiveRange* range = data()->GetOrCreateLiveRangeFor(operand_index); range->EnsureInterval(start, end, allocation_zone()); iterator.Advance(); } // Insert all values into the live in sets of all blocks in the loop. for (int i = block->rpo_number().ToInt() + 1; i < block->loop_end().ToInt(); ++i) { live_in_sets()[i]->Union(*live); } } void LiveRangeBuilder::BuildLiveRanges() { // Process the blocks in reverse order. for (int block_id = code()->InstructionBlockCount() - 1; block_id >= 0; --block_id) { InstructionBlock* block = code()->InstructionBlockAt(RpoNumber::FromInt(block_id)); BitVector* live = ComputeLiveOut(block, data()); // Initially consider all live_out values live for the entire block. We // will shorten these intervals if necessary. AddInitialIntervals(block, live); // Process the instructions in reverse order, generating and killing // live values. ProcessInstructions(block, live); // All phi output operands are killed by this block. ProcessPhis(block, live); // Now live is live_in for this block except not including values live // out on backward successor edges. if (block->IsLoopHeader()) ProcessLoopHeader(block, live); live_in_sets()[block_id] = live; } // Postprocess the ranges. for (TopLevelLiveRange* range : data()->live_ranges()) { if (range == nullptr) continue; // Give slots to all ranges with a non fixed slot use. if (range->has_slot_use() && range->HasNoSpillType()) { data()->AssignSpillRangeToLiveRange(range); } // TODO(bmeurer): This is a horrible hack to make sure that for constant // live ranges, every use requires the constant to be in a register. // Without this hack, all uses with "any" policy would get the constant // operand assigned. if (range->HasSpillOperand() && range->GetSpillOperand()->IsConstant()) { for (UsePosition* pos = range->first_pos(); pos != nullptr; pos = pos->next()) { if (pos->type() == UsePositionType::kRequiresSlot) continue; UsePositionType new_type = UsePositionType::kAny; // Can't mark phis as needing a register. if (!pos->pos().IsGapPosition()) { new_type = UsePositionType::kRequiresRegister; } pos->set_type(new_type, true); } } } for (auto preassigned : data()->preassigned_slot_ranges()) { TopLevelLiveRange* range = preassigned.first; int slot_id = preassigned.second; SpillRange* spill = range->HasSpillRange() ? range->GetSpillRange() : data()->AssignSpillRangeToLiveRange(range); spill->set_assigned_slot(slot_id); } #ifdef DEBUG Verify(); #endif } void LiveRangeBuilder::MapPhiHint(InstructionOperand* operand, UsePosition* use_pos) { DCHECK(!use_pos->IsResolved()); auto res = phi_hints_.insert(std::make_pair(operand, use_pos)); DCHECK(res.second); USE(res); } void LiveRangeBuilder::ResolvePhiHint(InstructionOperand* operand, UsePosition* use_pos) { auto it = phi_hints_.find(operand); if (it == phi_hints_.end()) return; DCHECK(!it->second->IsResolved()); it->second->ResolveHint(use_pos); } void LiveRangeBuilder::Verify() const { for (auto& hint : phi_hints_) { CHECK(hint.second->IsResolved()); } for (const TopLevelLiveRange* current : data()->live_ranges()) { if (current != nullptr && !current->IsEmpty()) { // New LiveRanges should not be split. CHECK_NULL(current->next()); // General integrity check. current->Verify(); const UseInterval* first = current->first_interval(); if (first->next() == nullptr) continue; // Consecutive intervals should not end and start in the same block, // otherwise the intervals should have been joined, because the // variable is live throughout that block. CHECK(NextIntervalStartsInDifferentBlocks(first)); for (const UseInterval* i = first->next(); i != nullptr; i = i->next()) { // Except for the first interval, the other intevals must start at // a block boundary, otherwise data wouldn't flow to them. CHECK(IntervalStartsAtBlockBoundary(i)); // The last instruction of the predecessors of the block the interval // starts must be covered by the range. CHECK(IntervalPredecessorsCoveredByRange(i, current)); if (i->next() != nullptr) { // Check the consecutive intervals property, except for the last // interval, where it doesn't apply. CHECK(NextIntervalStartsInDifferentBlocks(i)); } } } } } bool LiveRangeBuilder::IntervalStartsAtBlockBoundary( const UseInterval* interval) const { LifetimePosition start = interval->start(); if (!start.IsFullStart()) return false; int instruction_index = start.ToInstructionIndex(); const InstructionBlock* block = data()->code()->GetInstructionBlock(instruction_index); return block->first_instruction_index() == instruction_index; } bool LiveRangeBuilder::IntervalPredecessorsCoveredByRange( const UseInterval* interval, const TopLevelLiveRange* range) const { LifetimePosition start = interval->start(); int instruction_index = start.ToInstructionIndex(); const InstructionBlock* block = data()->code()->GetInstructionBlock(instruction_index); for (RpoNumber pred_index : block->predecessors()) { const InstructionBlock* predecessor = data()->code()->InstructionBlockAt(pred_index); LifetimePosition last_pos = LifetimePosition::GapFromInstructionIndex( predecessor->last_instruction_index()); last_pos = last_pos.NextStart().End(); if (!range->Covers(last_pos)) return false; } return true; } bool LiveRangeBuilder::NextIntervalStartsInDifferentBlocks( const UseInterval* interval) const { DCHECK_NOT_NULL(interval->next()); LifetimePosition end = interval->end(); LifetimePosition next_start = interval->next()->start(); // Since end is not covered, but the previous position is, move back a // position end = end.IsStart() ? end.PrevStart().End() : end.Start(); int last_covered_index = end.ToInstructionIndex(); const InstructionBlock* block = data()->code()->GetInstructionBlock(last_covered_index); const InstructionBlock* next_block = data()->code()->GetInstructionBlock(next_start.ToInstructionIndex()); return block->rpo_number() < next_block->rpo_number(); } RegisterAllocator::RegisterAllocator(RegisterAllocationData* data, RegisterKind kind) : data_(data), mode_(kind), num_registers_(GetRegisterCount(data->config(), kind)), num_allocatable_registers_( GetAllocatableRegisterCount(data->config(), kind)), allocatable_register_codes_( GetAllocatableRegisterCodes(data->config(), kind)), check_fp_aliasing_(false) { if (!kSimpleFPAliasing && kind == FP_REGISTERS) { check_fp_aliasing_ = (data->code()->representation_mask() & (kFloatRepBit | kSimd128RepBit)) != 0; } } LifetimePosition RegisterAllocator::GetSplitPositionForInstruction( const LiveRange* range, int instruction_index) { LifetimePosition ret = LifetimePosition::Invalid(); ret = LifetimePosition::GapFromInstructionIndex(instruction_index); if (range->Start() >= ret || ret >= range->End()) { return LifetimePosition::Invalid(); } return ret; } void RegisterAllocator::SplitAndSpillRangesDefinedByMemoryOperand() { size_t initial_range_count = data()->live_ranges().size(); for (size_t i = 0; i < initial_range_count; ++i) { TopLevelLiveRange* range = data()->live_ranges()[i]; if (!CanProcessRange(range)) continue; if (range->HasNoSpillType() || (range->HasSpillRange() && !range->has_slot_use())) { continue; } LifetimePosition start = range->Start(); TRACE("Live range %d:%d is defined by a spill operand.\n", range->TopLevel()->vreg(), range->relative_id()); LifetimePosition next_pos = start; if (next_pos.IsGapPosition()) { next_pos = next_pos.NextStart(); } // With splinters, we can be more strict and skip over positions // not strictly needing registers. UsePosition* pos = range->IsSplinter() ? range->NextRegisterPosition(next_pos) : range->NextUsePositionRegisterIsBeneficial(next_pos); // If the range already has a spill operand and it doesn't need a // register immediately, split it and spill the first part of the range. if (pos == nullptr) { Spill(range); } else if (pos->pos() > range->Start().NextStart()) { // Do not spill live range eagerly if use position that can benefit from // the register is too close to the start of live range. LifetimePosition split_pos = GetSplitPositionForInstruction( range, pos->pos().ToInstructionIndex()); // There is no place to split, so we can't split and spill. if (!split_pos.IsValid()) continue; split_pos = FindOptimalSplitPos(range->Start().NextFullStart(), split_pos); SplitRangeAt(range, split_pos); Spill(range); } } } LiveRange* RegisterAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) { DCHECK(!range->TopLevel()->IsFixed()); TRACE("Splitting live range %d:%d at %d\n", range->TopLevel()->vreg(), range->relative_id(), pos.value()); if (pos <= range->Start()) return range; // We can't properly connect liveranges if splitting occurred at the end // a block. DCHECK(pos.IsStart() || pos.IsGapPosition() || (GetInstructionBlock(code(), pos)->last_instruction_index() != pos.ToInstructionIndex())); LiveRange* result = range->SplitAt(pos, allocation_zone()); return result; } LiveRange* RegisterAllocator::SplitBetween(LiveRange* range, LifetimePosition start, LifetimePosition end) { DCHECK(!range->TopLevel()->IsFixed()); TRACE("Splitting live range %d:%d in position between [%d, %d]\n", range->TopLevel()->vreg(), range->relative_id(), start.value(), end.value()); LifetimePosition split_pos = FindOptimalSplitPos(start, end); DCHECK(split_pos >= start); return SplitRangeAt(range, split_pos); } LifetimePosition RegisterAllocator::FindOptimalSplitPos(LifetimePosition start, LifetimePosition end) { int start_instr = start.ToInstructionIndex(); int end_instr = end.ToInstructionIndex(); DCHECK(start_instr <= end_instr); // We have no choice if (start_instr == end_instr) return end; const InstructionBlock* start_block = GetInstructionBlock(code(), start); const InstructionBlock* end_block = GetInstructionBlock(code(), end); if (end_block == start_block) { // The interval is split in the same basic block. Split at the latest // possible position. return end; } const InstructionBlock* block = end_block; // Find header of outermost loop. do { const InstructionBlock* loop = GetContainingLoop(code(), block); if (loop == nullptr || loop->rpo_number().ToInt() <= start_block->rpo_number().ToInt()) { // No more loops or loop starts before the lifetime start. break; } block = loop; } while (true); // We did not find any suitable outer loop. Split at the latest possible // position unless end_block is a loop header itself. if (block == end_block && !end_block->IsLoopHeader()) return end; return LifetimePosition::GapFromInstructionIndex( block->first_instruction_index()); } LifetimePosition RegisterAllocator::FindOptimalSpillingPos( LiveRange* range, LifetimePosition pos) { const InstructionBlock* block = GetInstructionBlock(code(), pos.Start()); const InstructionBlock* loop_header = block->IsLoopHeader() ? block : GetContainingLoop(code(), block); if (loop_header == nullptr) return pos; const UsePosition* prev_use = range->PreviousUsePositionRegisterIsBeneficial(pos); while (loop_header != nullptr) { // We are going to spill live range inside the loop. // If possible try to move spilling position backwards to loop header. // This will reduce number of memory moves on the back edge. LifetimePosition loop_start = LifetimePosition::GapFromInstructionIndex( loop_header->first_instruction_index()); if (range->Covers(loop_start)) { if (prev_use == nullptr || prev_use->pos() < loop_start) { // No register beneficial use inside the loop before the pos. pos = loop_start; } } // Try hoisting out to an outer loop. loop_header = GetContainingLoop(code(), loop_header); } return pos; } void RegisterAllocator::Spill(LiveRange* range) { DCHECK(!range->spilled()); TopLevelLiveRange* first = range->TopLevel(); TRACE("Spilling live range %d:%d\n", first->vreg(), range->relative_id()); if (first->HasNoSpillType()) { data()->AssignSpillRangeToLiveRange(first); } range->Spill(); } const char* RegisterAllocator::RegisterName(int register_code) const { if (mode() == GENERAL_REGISTERS) { return data()->config()->GetGeneralRegisterName(register_code); } else { return data()->config()->GetDoubleRegisterName(register_code); } } LinearScanAllocator::LinearScanAllocator(RegisterAllocationData* data, RegisterKind kind, Zone* local_zone) : RegisterAllocator(data, kind), unhandled_live_ranges_(local_zone), active_live_ranges_(local_zone), inactive_live_ranges_(local_zone) { unhandled_live_ranges().reserve( static_cast(code()->VirtualRegisterCount() * 2)); active_live_ranges().reserve(8); inactive_live_ranges().reserve(8); // TryAllocateFreeReg and AllocateBlockedReg assume this // when allocating local arrays. DCHECK(RegisterConfiguration::kMaxFPRegisters >= this->data()->config()->num_general_registers()); } void LinearScanAllocator::AllocateRegisters() { DCHECK(unhandled_live_ranges().empty()); DCHECK(active_live_ranges().empty()); DCHECK(inactive_live_ranges().empty()); SplitAndSpillRangesDefinedByMemoryOperand(); for (TopLevelLiveRange* range : data()->live_ranges()) { if (!CanProcessRange(range)) continue; for (LiveRange* to_add = range; to_add != nullptr; to_add = to_add->next()) { if (!to_add->spilled()) { AddToUnhandledUnsorted(to_add); } } } SortUnhandled(); DCHECK(UnhandledIsSorted()); if (mode() == GENERAL_REGISTERS) { for (TopLevelLiveRange* current : data()->fixed_live_ranges()) { if (current != nullptr) AddToInactive(current); } } else { for (TopLevelLiveRange* current : data()->fixed_double_live_ranges()) { if (current != nullptr) AddToInactive(current); } if (!kSimpleFPAliasing && check_fp_aliasing()) { for (TopLevelLiveRange* current : data()->fixed_float_live_ranges()) { if (current != nullptr) AddToInactive(current); } for (TopLevelLiveRange* current : data()->fixed_simd128_live_ranges()) { if (current != nullptr) AddToInactive(current); } } } while (!unhandled_live_ranges().empty()) { DCHECK(UnhandledIsSorted()); LiveRange* current = unhandled_live_ranges().back(); unhandled_live_ranges().pop_back(); DCHECK(UnhandledIsSorted()); LifetimePosition position = current->Start(); #ifdef DEBUG allocation_finger_ = position; #endif TRACE("Processing interval %d:%d start=%d\n", current->TopLevel()->vreg(), current->relative_id(), position.value()); if (current->IsTopLevel() && TryReuseSpillForPhi(current->TopLevel())) continue; for (size_t i = 0; i < active_live_ranges().size(); ++i) { LiveRange* cur_active = active_live_ranges()[i]; if (cur_active->End() <= position) { ActiveToHandled(cur_active); --i; // The live range was removed from the list of active live ranges. } else if (!cur_active->Covers(position)) { ActiveToInactive(cur_active); --i; // The live range was removed from the list of active live ranges. } } for (size_t i = 0; i < inactive_live_ranges().size(); ++i) { LiveRange* cur_inactive = inactive_live_ranges()[i]; if (cur_inactive->End() <= position) { InactiveToHandled(cur_inactive); --i; // Live range was removed from the list of inactive live ranges. } else if (cur_inactive->Covers(position)) { InactiveToActive(cur_inactive); --i; // Live range was removed from the list of inactive live ranges. } } DCHECK(!current->HasRegisterAssigned() && !current->spilled()); ProcessCurrentRange(current); } } bool LinearScanAllocator::TrySplitAndSpillSplinter(LiveRange* range) { DCHECK(range->TopLevel()->IsSplinter()); // If we can spill the whole range, great. Otherwise, split above the // first use needing a register and spill the top part. const UsePosition* next_reg = range->NextRegisterPosition(range->Start()); if (next_reg == nullptr) { Spill(range); return true; } else if (range->FirstHintPosition() == nullptr) { // If there was no hint, but we have a use position requiring a // register, apply the hot path heuristics. return false; } else if (next_reg->pos().PrevStart() > range->Start()) { LiveRange* tail = SplitRangeAt(range, next_reg->pos().PrevStart()); AddToUnhandledSorted(tail); Spill(range); return true; } return false; } void LinearScanAllocator::SetLiveRangeAssignedRegister(LiveRange* range, int reg) { data()->MarkAllocated(range->representation(), reg); range->set_assigned_register(reg); range->SetUseHints(reg); if (range->IsTopLevel() && range->TopLevel()->is_phi()) { data()->GetPhiMapValueFor(range->TopLevel())->set_assigned_register(reg); } } void LinearScanAllocator::AddToActive(LiveRange* range) { TRACE("Add live range %d:%d to active\n", range->TopLevel()->vreg(), range->relative_id()); active_live_ranges().push_back(range); } void LinearScanAllocator::AddToInactive(LiveRange* range) { TRACE("Add live range %d:%d to inactive\n", range->TopLevel()->vreg(), range->relative_id()); inactive_live_ranges().push_back(range); } void LinearScanAllocator::AddToUnhandledSorted(LiveRange* range) { if (range == nullptr || range->IsEmpty()) return; DCHECK(!range->HasRegisterAssigned() && !range->spilled()); DCHECK(allocation_finger_ <= range->Start()); for (int i = static_cast(unhandled_live_ranges().size() - 1); i >= 0; --i) { LiveRange* cur_range = unhandled_live_ranges().at(i); if (!range->ShouldBeAllocatedBefore(cur_range)) continue; TRACE("Add live range %d:%d to unhandled at %d\n", range->TopLevel()->vreg(), range->relative_id(), i + 1); auto it = unhandled_live_ranges().begin() + (i + 1); unhandled_live_ranges().insert(it, range); DCHECK(UnhandledIsSorted()); return; } TRACE("Add live range %d:%d to unhandled at start\n", range->TopLevel()->vreg(), range->relative_id()); unhandled_live_ranges().insert(unhandled_live_ranges().begin(), range); DCHECK(UnhandledIsSorted()); } void LinearScanAllocator::AddToUnhandledUnsorted(LiveRange* range) { if (range == nullptr || range->IsEmpty()) return; DCHECK(!range->HasRegisterAssigned() && !range->spilled()); TRACE("Add live range %d:%d to unhandled unsorted at end\n", range->TopLevel()->vreg(), range->relative_id()); unhandled_live_ranges().push_back(range); } static bool UnhandledSortHelper(LiveRange* a, LiveRange* b) { DCHECK(!a->ShouldBeAllocatedBefore(b) || !b->ShouldBeAllocatedBefore(a)); if (a->ShouldBeAllocatedBefore(b)) return false; if (b->ShouldBeAllocatedBefore(a)) return true; return a->TopLevel()->vreg() < b->TopLevel()->vreg(); } // Sort the unhandled live ranges so that the ranges to be processed first are // at the end of the array list. This is convenient for the register allocation // algorithm because it is efficient to remove elements from the end. void LinearScanAllocator::SortUnhandled() { TRACE("Sort unhandled\n"); std::sort(unhandled_live_ranges().begin(), unhandled_live_ranges().end(), &UnhandledSortHelper); } bool LinearScanAllocator::UnhandledIsSorted() { size_t len = unhandled_live_ranges().size(); for (size_t i = 1; i < len; i++) { LiveRange* a = unhandled_live_ranges().at(i - 1); LiveRange* b = unhandled_live_ranges().at(i); if (a->Start() < b->Start()) return false; } return true; } void LinearScanAllocator::ActiveToHandled(LiveRange* range) { RemoveElement(&active_live_ranges(), range); TRACE("Moving live range %d:%d from active to handled\n", range->TopLevel()->vreg(), range->relative_id()); } void LinearScanAllocator::ActiveToInactive(LiveRange* range) { RemoveElement(&active_live_ranges(), range); inactive_live_ranges().push_back(range); TRACE("Moving live range %d:%d from active to inactive\n", range->TopLevel()->vreg(), range->relative_id()); } void LinearScanAllocator::InactiveToHandled(LiveRange* range) { RemoveElement(&inactive_live_ranges(), range); TRACE("Moving live range %d:%d from inactive to handled\n", range->TopLevel()->vreg(), range->relative_id()); } void LinearScanAllocator::InactiveToActive(LiveRange* range) { RemoveElement(&inactive_live_ranges(), range); active_live_ranges().push_back(range); TRACE("Moving live range %d:%d from inactive to active\n", range->TopLevel()->vreg(), range->relative_id()); } void LinearScanAllocator::GetFPRegisterSet(MachineRepresentation rep, int* num_regs, int* num_codes, const int** codes) const { DCHECK(!kSimpleFPAliasing); if (rep == MachineRepresentation::kFloat32) { *num_regs = data()->config()->num_float_registers(); *num_codes = data()->config()->num_allocatable_float_registers(); *codes = data()->config()->allocatable_float_codes(); } else if (rep == MachineRepresentation::kSimd128) { *num_regs = data()->config()->num_simd128_registers(); *num_codes = data()->config()->num_allocatable_simd128_registers(); *codes = data()->config()->allocatable_simd128_codes(); } else { UNREACHABLE(); } } void LinearScanAllocator::FindFreeRegistersForRange( LiveRange* range, Vector positions) { int num_regs = num_registers(); int num_codes = num_allocatable_registers(); const int* codes = allocatable_register_codes(); MachineRepresentation rep = range->representation(); if (!kSimpleFPAliasing && (rep == MachineRepresentation::kFloat32 || rep == MachineRepresentation::kSimd128)) GetFPRegisterSet(rep, &num_regs, &num_codes, &codes); DCHECK_GE(positions.length(), num_regs); for (int i = 0; i < num_regs; i++) { positions[i] = LifetimePosition::MaxPosition(); } for (LiveRange* cur_active : active_live_ranges()) { int cur_reg = cur_active->assigned_register(); if (kSimpleFPAliasing || !check_fp_aliasing()) { positions[cur_reg] = LifetimePosition::GapFromInstructionIndex(0); TRACE("Register %s is free until pos %d (1)\n", RegisterName(cur_reg), LifetimePosition::GapFromInstructionIndex(0).value()); } else { int alias_base_index = -1; int aliases = data()->config()->GetAliases( cur_active->representation(), cur_reg, rep, &alias_base_index); DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1)); while (aliases--) { int aliased_reg = alias_base_index + aliases; positions[aliased_reg] = LifetimePosition::GapFromInstructionIndex(0); } } } for (LiveRange* cur_inactive : inactive_live_ranges()) { DCHECK(cur_inactive->End() > range->Start()); LifetimePosition next_intersection = cur_inactive->FirstIntersection(range); if (!next_intersection.IsValid()) continue; int cur_reg = cur_inactive->assigned_register(); if (kSimpleFPAliasing || !check_fp_aliasing()) { positions[cur_reg] = Min(positions[cur_reg], next_intersection); TRACE("Register %s is free until pos %d (2)\n", RegisterName(cur_reg), Min(positions[cur_reg], next_intersection).value()); } else { int alias_base_index = -1; int aliases = data()->config()->GetAliases( cur_inactive->representation(), cur_reg, rep, &alias_base_index); DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1)); while (aliases--) { int aliased_reg = alias_base_index + aliases; positions[aliased_reg] = Min(positions[aliased_reg], next_intersection); } } } } // High-level register allocation summary: // // For regular, or hot (i.e. not splinter) ranges, we attempt to first // allocate first the preferred (hint) register. If that is not possible, // we find a register that's free, and allocate that. If that's not possible, // we search for a register to steal from a range that was allocated. The // goal is to optimize for throughput by avoiding register-to-memory // moves, which are expensive. // // For splinters, the goal is to minimize the number of moves. First we try // to allocate the preferred register (more discussion follows). Failing that, // we bail out and spill as far as we can, unless the first use is at start, // case in which we apply the same behavior as we do for regular ranges. // If there is no hint, we apply the hot-path behavior. // // For the splinter, the hint register may come from: // // - the hot path (we set it at splintering time with SetHint). In this case, if // we cannot offer the hint register, spilling is better because it's at most // 1 move, while trying to find and offer another register is at least 1 move. // // - a constraint. If we cannot offer that register, it's because there is some // interference. So offering the hint register up to the interference would // result // in a move at the interference, plus a move to satisfy the constraint. This is // also the number of moves if we spill, with the potential of the range being // already spilled and thus saving a move (the spill). // Note that this can only be an input constraint, if it were an output one, // the range wouldn't be a splinter because it means it'd be defined in a // deferred // block, and we don't mark those as splinters (they live in deferred blocks // only). // // - a phi. The same analysis as in the case of the input constraint applies. // void LinearScanAllocator::ProcessCurrentRange(LiveRange* current) { LifetimePosition free_until_pos_buff[RegisterConfiguration::kMaxFPRegisters]; Vector free_until_pos( free_until_pos_buff, RegisterConfiguration::kMaxFPRegisters); FindFreeRegistersForRange(current, free_until_pos); if (!TryAllocatePreferredReg(current, free_until_pos)) { if (current->TopLevel()->IsSplinter()) { if (TrySplitAndSpillSplinter(current)) return; } if (!TryAllocateFreeReg(current, free_until_pos)) { AllocateBlockedReg(current); } } if (current->HasRegisterAssigned()) { AddToActive(current); } } bool LinearScanAllocator::TryAllocatePreferredReg( LiveRange* current, const Vector& free_until_pos) { int hint_register; if (current->FirstHintPosition(&hint_register) != nullptr) { TRACE( "Found reg hint %s (free until [%d) for live range %d:%d (end %d[).\n", RegisterName(hint_register), free_until_pos[hint_register].value(), current->TopLevel()->vreg(), current->relative_id(), current->End().value()); // The desired register is free until the end of the current live range. if (free_until_pos[hint_register] >= current->End()) { TRACE("Assigning preferred reg %s to live range %d:%d\n", RegisterName(hint_register), current->TopLevel()->vreg(), current->relative_id()); SetLiveRangeAssignedRegister(current, hint_register); return true; } } return false; } bool LinearScanAllocator::TryAllocateFreeReg( LiveRange* current, const Vector& free_until_pos) { int num_regs = 0; // used only for the call to GetFPRegisterSet. int num_codes = num_allocatable_registers(); const int* codes = allocatable_register_codes(); MachineRepresentation rep = current->representation(); if (!kSimpleFPAliasing && (rep == MachineRepresentation::kFloat32 || rep == MachineRepresentation::kSimd128)) GetFPRegisterSet(rep, &num_regs, &num_codes, &codes); DCHECK_GE(free_until_pos.length(), num_codes); // Find the register which stays free for the longest time. int reg = codes[0]; for (int i = 1; i < num_codes; ++i) { int code = codes[i]; if (free_until_pos[code] > free_until_pos[reg]) { reg = code; } } LifetimePosition pos = free_until_pos[reg]; if (pos <= current->Start()) { // All registers are blocked. return false; } if (pos < current->End()) { // Register reg is available at the range start but becomes blocked before // the range end. Split current at position where it becomes blocked. LiveRange* tail = SplitRangeAt(current, pos); AddToUnhandledSorted(tail); } // Register reg is available at the range start and is free until the range // end. DCHECK(pos >= current->End()); TRACE("Assigning free reg %s to live range %d:%d\n", RegisterName(reg), current->TopLevel()->vreg(), current->relative_id()); SetLiveRangeAssignedRegister(current, reg); return true; } void LinearScanAllocator::AllocateBlockedReg(LiveRange* current) { UsePosition* register_use = current->NextRegisterPosition(current->Start()); if (register_use == nullptr) { // There is no use in the current live range that requires a register. // We can just spill it. Spill(current); return; } int num_regs = num_registers(); int num_codes = num_allocatable_registers(); const int* codes = allocatable_register_codes(); MachineRepresentation rep = current->representation(); if (!kSimpleFPAliasing && (rep == MachineRepresentation::kFloat32 || rep == MachineRepresentation::kSimd128)) GetFPRegisterSet(rep, &num_regs, &num_codes, &codes); LifetimePosition use_pos[RegisterConfiguration::kMaxFPRegisters]; LifetimePosition block_pos[RegisterConfiguration::kMaxFPRegisters]; for (int i = 0; i < num_regs; i++) { use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition(); } for (LiveRange* range : active_live_ranges()) { int cur_reg = range->assigned_register(); bool is_fixed_or_cant_spill = range->TopLevel()->IsFixed() || !range->CanBeSpilled(current->Start()); if (kSimpleFPAliasing || !check_fp_aliasing()) { if (is_fixed_or_cant_spill) { block_pos[cur_reg] = use_pos[cur_reg] = LifetimePosition::GapFromInstructionIndex(0); } else { use_pos[cur_reg] = range->NextLifetimePositionRegisterIsBeneficial(current->Start()); } } else { int alias_base_index = -1; int aliases = data()->config()->GetAliases( range->representation(), cur_reg, rep, &alias_base_index); DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1)); while (aliases--) { int aliased_reg = alias_base_index + aliases; if (is_fixed_or_cant_spill) { block_pos[aliased_reg] = use_pos[aliased_reg] = LifetimePosition::GapFromInstructionIndex(0); } else { use_pos[aliased_reg] = range->NextLifetimePositionRegisterIsBeneficial(current->Start()); } } } } for (LiveRange* range : inactive_live_ranges()) { DCHECK(range->End() > current->Start()); LifetimePosition next_intersection = range->FirstIntersection(current); if (!next_intersection.IsValid()) continue; int cur_reg = range->assigned_register(); bool is_fixed = range->TopLevel()->IsFixed(); if (kSimpleFPAliasing || !check_fp_aliasing()) { if (is_fixed) { block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection); use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]); } else { use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection); } } else { int alias_base_index = -1; int aliases = data()->config()->GetAliases( range->representation(), cur_reg, rep, &alias_base_index); DCHECK(aliases > 0 || (aliases == 0 && alias_base_index == -1)); while (aliases--) { int aliased_reg = alias_base_index + aliases; if (is_fixed) { block_pos[aliased_reg] = Min(block_pos[aliased_reg], next_intersection); use_pos[aliased_reg] = Min(block_pos[aliased_reg], use_pos[aliased_reg]); } else { use_pos[aliased_reg] = Min(use_pos[aliased_reg], next_intersection); } } } } int reg = codes[0]; for (int i = 1; i < num_codes; ++i) { int code = codes[i]; if (use_pos[code] > use_pos[reg]) { reg = code; } } LifetimePosition pos = use_pos[reg]; if (pos < register_use->pos()) { if (LifetimePosition::ExistsGapPositionBetween(current->Start(), register_use->pos())) { SpillBetween(current, current->Start(), register_use->pos()); } else { SetLiveRangeAssignedRegister(current, reg); SplitAndSpillIntersecting(current); } return; } if (block_pos[reg] < current->End()) { // Register becomes blocked before the current range end. Split before that // position. LiveRange* tail = SplitBetween(current, current->Start(), block_pos[reg].Start()); AddToUnhandledSorted(tail); } // Register reg is not blocked for the whole range. DCHECK(block_pos[reg] >= current->End()); TRACE("Assigning blocked reg %s to live range %d:%d\n", RegisterName(reg), current->TopLevel()->vreg(), current->relative_id()); SetLiveRangeAssignedRegister(current, reg); // This register was not free. Thus we need to find and spill // parts of active and inactive live regions that use the same register // at the same lifetime positions as current. SplitAndSpillIntersecting(current); } void LinearScanAllocator::SplitAndSpillIntersecting(LiveRange* current) { DCHECK(current->HasRegisterAssigned()); int reg = current->assigned_register(); LifetimePosition split_pos = current->Start(); for (size_t i = 0; i < active_live_ranges().size(); ++i) { LiveRange* range = active_live_ranges()[i]; if (kSimpleFPAliasing || !check_fp_aliasing()) { if (range->assigned_register() != reg) continue; } else { if (!data()->config()->AreAliases(current->representation(), reg, range->representation(), range->assigned_register())) { continue; } } UsePosition* next_pos = range->NextRegisterPosition(current->Start()); LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos); if (next_pos == nullptr) { SpillAfter(range, spill_pos); } else { // When spilling between spill_pos and next_pos ensure that the range // remains spilled at least until the start of the current live range. // This guarantees that we will not introduce new unhandled ranges that // start before the current range as this violates allocation invariants // and will lead to an inconsistent state of active and inactive // live-ranges: ranges are allocated in order of their start positions, // ranges are retired from active/inactive when the start of the // current live-range is larger than their end. DCHECK(LifetimePosition::ExistsGapPositionBetween(current->Start(), next_pos->pos())); SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos()); } ActiveToHandled(range); --i; } for (size_t i = 0; i < inactive_live_ranges().size(); ++i) { LiveRange* range = inactive_live_ranges()[i]; DCHECK(range->End() > current->Start()); if (range->TopLevel()->IsFixed()) continue; if (kSimpleFPAliasing || !check_fp_aliasing()) { if (range->assigned_register() != reg) continue; } else { if (!data()->config()->AreAliases(current->representation(), reg, range->representation(), range->assigned_register())) continue; } LifetimePosition next_intersection = range->FirstIntersection(current); if (next_intersection.IsValid()) { UsePosition* next_pos = range->NextRegisterPosition(current->Start()); if (next_pos == nullptr) { SpillAfter(range, split_pos); } else { next_intersection = Min(next_intersection, next_pos->pos()); SpillBetween(range, split_pos, next_intersection); } InactiveToHandled(range); --i; } } } bool LinearScanAllocator::TryReuseSpillForPhi(TopLevelLiveRange* range) { if (!range->is_phi()) return false; DCHECK(!range->HasSpillOperand()); RegisterAllocationData::PhiMapValue* phi_map_value = data()->GetPhiMapValueFor(range); const PhiInstruction* phi = phi_map_value->phi(); const InstructionBlock* block = phi_map_value->block(); // Count the number of spilled operands. size_t spilled_count = 0; LiveRange* first_op = nullptr; for (size_t i = 0; i < phi->operands().size(); i++) { int op = phi->operands()[i]; LiveRange* op_range = data()->GetOrCreateLiveRangeFor(op); if (!op_range->TopLevel()->HasSpillRange()) continue; const InstructionBlock* pred = code()->InstructionBlockAt(block->predecessors()[i]); LifetimePosition pred_end = LifetimePosition::InstructionFromInstructionIndex( pred->last_instruction_index()); while (op_range != nullptr && !op_range->CanCover(pred_end)) { op_range = op_range->next(); } if (op_range != nullptr && op_range->spilled()) { spilled_count++; if (first_op == nullptr) { first_op = op_range->TopLevel(); } } } // Only continue if more than half of the operands are spilled. if (spilled_count * 2 <= phi->operands().size()) { return false; } // Try to merge the spilled operands and count the number of merged spilled // operands. DCHECK(first_op != nullptr); SpillRange* first_op_spill = first_op->TopLevel()->GetSpillRange(); size_t num_merged = 1; for (size_t i = 1; i < phi->operands().size(); i++) { int op = phi->operands()[i]; TopLevelLiveRange* op_range = data()->live_ranges()[op]; if (!op_range->HasSpillRange()) continue; SpillRange* op_spill = op_range->GetSpillRange(); if (op_spill == first_op_spill || first_op_spill->TryMerge(op_spill)) { num_merged++; } } // Only continue if enough operands could be merged to the // same spill slot. if (num_merged * 2 <= phi->operands().size() || AreUseIntervalsIntersecting(first_op_spill->interval(), range->first_interval())) { return false; } // If the range does not need register soon, spill it to the merged // spill range. LifetimePosition next_pos = range->Start(); if (next_pos.IsGapPosition()) next_pos = next_pos.NextStart(); UsePosition* pos = range->NextUsePositionRegisterIsBeneficial(next_pos); if (pos == nullptr) { SpillRange* spill_range = range->TopLevel()->HasSpillRange() ? range->TopLevel()->GetSpillRange() : data()->AssignSpillRangeToLiveRange(range->TopLevel()); bool merged = first_op_spill->TryMerge(spill_range); if (!merged) return false; Spill(range); return true; } else if (pos->pos() > range->Start().NextStart()) { SpillRange* spill_range = range->TopLevel()->HasSpillRange() ? range->TopLevel()->GetSpillRange() : data()->AssignSpillRangeToLiveRange(range->TopLevel()); bool merged = first_op_spill->TryMerge(spill_range); if (!merged) return false; SpillBetween(range, range->Start(), pos->pos()); DCHECK(UnhandledIsSorted()); return true; } return false; } void LinearScanAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) { LiveRange* second_part = SplitRangeAt(range, pos); Spill(second_part); } void LinearScanAllocator::SpillBetween(LiveRange* range, LifetimePosition start, LifetimePosition end) { SpillBetweenUntil(range, start, start, end); } void LinearScanAllocator::SpillBetweenUntil(LiveRange* range, LifetimePosition start, LifetimePosition until, LifetimePosition end) { CHECK(start < end); LiveRange* second_part = SplitRangeAt(range, start); if (second_part->Start() < end) { // The split result intersects with [start, end[. // Split it at position between ]start+1, end[, spill the middle part // and put the rest to unhandled. LifetimePosition third_part_end = end.PrevStart().End(); if (data()->IsBlockBoundary(end.Start())) { third_part_end = end.Start(); } LiveRange* third_part = SplitBetween( second_part, Max(second_part->Start().End(), until), third_part_end); DCHECK(third_part != second_part); Spill(second_part); AddToUnhandledSorted(third_part); } else { // The split result does not intersect with [start, end[. // Nothing to spill. Just put it to unhandled as whole. AddToUnhandledSorted(second_part); } } SpillSlotLocator::SpillSlotLocator(RegisterAllocationData* data) : data_(data) {} void SpillSlotLocator::LocateSpillSlots() { const InstructionSequence* code = data()->code(); for (TopLevelLiveRange* range : data()->live_ranges()) { if (range == nullptr || range->IsEmpty()) continue; // We care only about ranges which spill in the frame. if (!range->HasSpillRange() || range->IsSpilledOnlyInDeferredBlocks()) { continue; } TopLevelLiveRange::SpillMoveInsertionList* spills = range->GetSpillMoveInsertionLocations(); DCHECK_NOT_NULL(spills); for (; spills != nullptr; spills = spills->next) { code->GetInstructionBlock(spills->gap_index)->mark_needs_frame(); } } } OperandAssigner::OperandAssigner(RegisterAllocationData* data) : data_(data) {} void OperandAssigner::AssignSpillSlots() { ZoneVector& spill_ranges = data()->spill_ranges(); // Merge disjoint spill ranges for (size_t i = 0; i < spill_ranges.size(); ++i) { SpillRange* range = spill_ranges[i]; if (range == nullptr) continue; if (range->IsEmpty()) continue; for (size_t j = i + 1; j < spill_ranges.size(); ++j) { SpillRange* other = spill_ranges[j]; if (other != nullptr && !other->IsEmpty()) { range->TryMerge(other); } } } // Allocate slots for the merged spill ranges. for (SpillRange* range : spill_ranges) { if (range == nullptr || range->IsEmpty()) continue; // Allocate a new operand referring to the spill slot. if (!range->HasSlot()) { int index = data()->frame()->AllocateSpillSlot(range->byte_width()); range->set_assigned_slot(index); } } } void OperandAssigner::CommitAssignment() { for (TopLevelLiveRange* top_range : data()->live_ranges()) { if (top_range == nullptr || top_range->IsEmpty()) continue; InstructionOperand spill_operand; if (top_range->HasSpillOperand()) { spill_operand = *top_range->TopLevel()->GetSpillOperand(); } else if (top_range->TopLevel()->HasSpillRange()) { spill_operand = top_range->TopLevel()->GetSpillRangeOperand(); } if (top_range->is_phi()) { data()->GetPhiMapValueFor(top_range)->CommitAssignment( top_range->GetAssignedOperand()); } for (LiveRange* range = top_range; range != nullptr; range = range->next()) { InstructionOperand assigned = range->GetAssignedOperand(); range->ConvertUsesToOperand(assigned, spill_operand); } if (!spill_operand.IsInvalid()) { // If this top level range has a child spilled in a deferred block, we use // the range and control flow connection mechanism instead of spilling at // definition. Refer to the ConnectLiveRanges and ResolveControlFlow // phases. Normally, when we spill at definition, we do not insert a // connecting move when a successor child range is spilled - because the // spilled range picks up its value from the slot which was assigned at // definition. For ranges that are determined to spill only in deferred // blocks, we let ConnectLiveRanges and ResolveControlFlow find the blocks // where a spill operand is expected, and then finalize by inserting the // spills in the deferred blocks dominators. if (!top_range->IsSpilledOnlyInDeferredBlocks()) { // Spill at definition if the range isn't spilled only in deferred // blocks. top_range->CommitSpillMoves( data()->code(), spill_operand, top_range->has_slot_use() || top_range->spilled()); } } } } ReferenceMapPopulator::ReferenceMapPopulator(RegisterAllocationData* data) : data_(data) {} bool ReferenceMapPopulator::SafePointsAreInOrder() const { int safe_point = 0; for (ReferenceMap* map : *data()->code()->reference_maps()) { if (safe_point > map->instruction_position()) return false; safe_point = map->instruction_position(); } return true; } void ReferenceMapPopulator::PopulateReferenceMaps() { DCHECK(SafePointsAreInOrder()); // Map all delayed references. for (RegisterAllocationData::DelayedReference& delayed_reference : data()->delayed_references()) { delayed_reference.map->RecordReference( AllocatedOperand::cast(*delayed_reference.operand)); } // Iterate over all safe point positions and record a pointer // for all spilled live ranges at this point. int last_range_start = 0; const ReferenceMapDeque* reference_maps = data()->code()->reference_maps(); ReferenceMapDeque::const_iterator first_it = reference_maps->begin(); for (TopLevelLiveRange* range : data()->live_ranges()) { if (range == nullptr) continue; // Skip non-reference values. if (!data()->IsReference(range)) continue; // Skip empty live ranges. if (range->IsEmpty()) continue; if (range->has_preassigned_slot()) continue; // Find the extent of the range and its children. int start = range->Start().ToInstructionIndex(); int end = 0; for (LiveRange* cur = range; cur != nullptr; cur = cur->next()) { LifetimePosition this_end = cur->End(); if (this_end.ToInstructionIndex() > end) end = this_end.ToInstructionIndex(); DCHECK(cur->Start().ToInstructionIndex() >= start); } // Most of the ranges are in order, but not all. Keep an eye on when they // step backwards and reset the first_it so we don't miss any safe points. if (start < last_range_start) first_it = reference_maps->begin(); last_range_start = start; // Step across all the safe points that are before the start of this range, // recording how far we step in order to save doing this for the next range. for (; first_it != reference_maps->end(); ++first_it) { ReferenceMap* map = *first_it; if (map->instruction_position() >= start) break; } InstructionOperand spill_operand; if (((range->HasSpillOperand() && !range->GetSpillOperand()->IsConstant()) || range->HasSpillRange())) { if (range->HasSpillOperand()) { spill_operand = *range->GetSpillOperand(); } else { spill_operand = range->GetSpillRangeOperand(); } DCHECK(spill_operand.IsStackSlot()); DCHECK(CanBeTaggedPointer( AllocatedOperand::cast(spill_operand).representation())); } LiveRange* cur = range; // Step through the safe points to see whether they are in the range. for (auto it = first_it; it != reference_maps->end(); ++it) { ReferenceMap* map = *it; int safe_point = map->instruction_position(); // The safe points are sorted so we can stop searching here. if (safe_point - 1 > end) break; // Advance to the next active range that covers the current // safe point position. LifetimePosition safe_point_pos = LifetimePosition::InstructionFromInstructionIndex(safe_point); // Search for the child range (cur) that covers safe_point_pos. If we // don't find it before the children pass safe_point_pos, keep cur at // the last child, because the next safe_point_pos may be covered by cur. // This may happen if cur has more than one interval, and the current // safe_point_pos is in between intervals. // For that reason, cur may be at most the last child. DCHECK_NOT_NULL(cur); DCHECK(safe_point_pos >= cur->Start() || range == cur); bool found = false; while (!found) { if (cur->Covers(safe_point_pos)) { found = true; } else { LiveRange* next = cur->next(); if (next == nullptr || next->Start() > safe_point_pos) { break; } cur = next; } } if (!found) { continue; } // Check if the live range is spilled and the safe point is after // the spill position. int spill_index = range->IsSpilledOnlyInDeferredBlocks() ? cur->Start().ToInstructionIndex() : range->spill_start_index(); if (!spill_operand.IsInvalid() && safe_point >= spill_index) { TRACE("Pointer for range %d (spilled at %d) at safe point %d\n", range->vreg(), spill_index, safe_point); map->RecordReference(AllocatedOperand::cast(spill_operand)); } if (!cur->spilled()) { TRACE( "Pointer in register for range %d:%d (start at %d) " "at safe point %d\n", range->vreg(), cur->relative_id(), cur->Start().value(), safe_point); InstructionOperand operand = cur->GetAssignedOperand(); DCHECK(!operand.IsStackSlot()); DCHECK(CanBeTaggedPointer( AllocatedOperand::cast(operand).representation())); map->RecordReference(AllocatedOperand::cast(operand)); } } } } LiveRangeConnector::LiveRangeConnector(RegisterAllocationData* data) : data_(data) {} bool LiveRangeConnector::CanEagerlyResolveControlFlow( const InstructionBlock* block) const { if (block->PredecessorCount() != 1) return false; return block->predecessors()[0].IsNext(block->rpo_number()); } void LiveRangeConnector::ResolveControlFlow(Zone* local_zone) { // Lazily linearize live ranges in memory for fast lookup. LiveRangeFinder finder(data(), local_zone); ZoneVector& live_in_sets = data()->live_in_sets(); for (const InstructionBlock* block : code()->instruction_blocks()) { if (CanEagerlyResolveControlFlow(block)) continue; BitVector* live = live_in_sets[block->rpo_number().ToInt()]; BitVector::Iterator iterator(live); while (!iterator.Done()) { int vreg = iterator.Current(); LiveRangeBoundArray* array = finder.ArrayFor(vreg); for (const RpoNumber& pred : block->predecessors()) { FindResult result; const InstructionBlock* pred_block = code()->InstructionBlockAt(pred); if (!array->FindConnectableSubranges(block, pred_block, &result)) { continue; } InstructionOperand pred_op = result.pred_cover_->GetAssignedOperand(); InstructionOperand cur_op = result.cur_cover_->GetAssignedOperand(); if (pred_op.Equals(cur_op)) continue; if (!pred_op.IsAnyRegister() && cur_op.IsAnyRegister()) { // We're doing a reload. // We don't need to, if: // 1) there's no register use in this block, and // 2) the range ends before the block does, and // 3) we don't have a successor, or the successor is spilled. LifetimePosition block_start = LifetimePosition::GapFromInstructionIndex(block->code_start()); LifetimePosition block_end = LifetimePosition::GapFromInstructionIndex(block->code_end()); const LiveRange* current = result.cur_cover_; const LiveRange* successor = current->next(); if (current->End() < block_end && (successor == nullptr || successor->spilled())) { // verify point 1: no register use. We can go to the end of the // range, since it's all within the block. bool uses_reg = false; for (const UsePosition* use = current->NextUsePosition(block_start); use != nullptr; use = use->next()) { if (use->operand()->IsAnyRegister()) { uses_reg = true; break; } } if (!uses_reg) continue; } if (current->TopLevel()->IsSpilledOnlyInDeferredBlocks() && pred_block->IsDeferred()) { // The spill location should be defined in pred_block, so add // pred_block to the list of blocks requiring a spill operand. current->TopLevel()->GetListOfBlocksRequiringSpillOperands()->Add( pred_block->rpo_number().ToInt()); } } int move_loc = ResolveControlFlow(block, cur_op, pred_block, pred_op); USE(move_loc); DCHECK_IMPLIES( result.cur_cover_->TopLevel()->IsSpilledOnlyInDeferredBlocks() && !(pred_op.IsAnyRegister() && cur_op.IsAnyRegister()), code()->GetInstructionBlock(move_loc)->IsDeferred()); } iterator.Advance(); } } // At this stage, we collected blocks needing a spill operand from // ConnectRanges and from ResolveControlFlow. Time to commit the spills for // deferred blocks. for (TopLevelLiveRange* top : data()->live_ranges()) { if (top == nullptr || top->IsEmpty() || !top->IsSpilledOnlyInDeferredBlocks()) continue; CommitSpillsInDeferredBlocks(top, finder.ArrayFor(top->vreg()), local_zone); } } int LiveRangeConnector::ResolveControlFlow(const InstructionBlock* block, const InstructionOperand& cur_op, const InstructionBlock* pred, const InstructionOperand& pred_op) { DCHECK(!pred_op.Equals(cur_op)); int gap_index; Instruction::GapPosition position; if (block->PredecessorCount() == 1) { gap_index = block->first_instruction_index(); position = Instruction::START; } else { DCHECK(pred->SuccessorCount() == 1); DCHECK(!code() ->InstructionAt(pred->last_instruction_index()) ->HasReferenceMap()); gap_index = pred->last_instruction_index(); position = Instruction::END; } data()->AddGapMove(gap_index, position, pred_op, cur_op); return gap_index; } void LiveRangeConnector::ConnectRanges(Zone* local_zone) { DelayedInsertionMap delayed_insertion_map(local_zone); for (TopLevelLiveRange* top_range : data()->live_ranges()) { if (top_range == nullptr) continue; bool connect_spilled = top_range->IsSpilledOnlyInDeferredBlocks(); LiveRange* first_range = top_range; for (LiveRange *second_range = first_range->next(); second_range != nullptr; first_range = second_range, second_range = second_range->next()) { LifetimePosition pos = second_range->Start(); // Add gap move if the two live ranges touch and there is no block // boundary. if (second_range->spilled()) continue; if (first_range->End() != pos) continue; if (data()->IsBlockBoundary(pos) && !CanEagerlyResolveControlFlow(GetInstructionBlock(code(), pos))) { continue; } InstructionOperand prev_operand = first_range->GetAssignedOperand(); InstructionOperand cur_operand = second_range->GetAssignedOperand(); if (prev_operand.Equals(cur_operand)) continue; bool delay_insertion = false; Instruction::GapPosition gap_pos; int gap_index = pos.ToInstructionIndex(); if (connect_spilled && !prev_operand.IsAnyRegister() && cur_operand.IsAnyRegister()) { const InstructionBlock* block = code()->GetInstructionBlock(gap_index); DCHECK(block->IsDeferred()); // Performing a reload in this block, meaning the spill operand must // be defined here. top_range->GetListOfBlocksRequiringSpillOperands()->Add( block->rpo_number().ToInt()); } if (pos.IsGapPosition()) { gap_pos = pos.IsStart() ? Instruction::START : Instruction::END; } else { if (pos.IsStart()) { delay_insertion = true; } else { gap_index++; } gap_pos = delay_insertion ? Instruction::END : Instruction::START; } // Reloads or spills for spilled in deferred blocks ranges must happen // only in deferred blocks. DCHECK_IMPLIES( connect_spilled && !(prev_operand.IsAnyRegister() && cur_operand.IsAnyRegister()), code()->GetInstructionBlock(gap_index)->IsDeferred()); ParallelMove* move = code()->InstructionAt(gap_index)->GetOrCreateParallelMove( gap_pos, code_zone()); if (!delay_insertion) { move->AddMove(prev_operand, cur_operand); } else { delayed_insertion_map.insert( std::make_pair(std::make_pair(move, prev_operand), cur_operand)); } } } if (delayed_insertion_map.empty()) return; // Insert all the moves which should occur after the stored move. ZoneVector to_insert(local_zone); ZoneVector to_eliminate(local_zone); to_insert.reserve(4); to_eliminate.reserve(4); ParallelMove* moves = delayed_insertion_map.begin()->first.first; for (auto it = delayed_insertion_map.begin();; ++it) { bool done = it == delayed_insertion_map.end(); if (done || it->first.first != moves) { // Commit the MoveOperands for current ParallelMove. for (MoveOperands* move : to_eliminate) { move->Eliminate(); } for (MoveOperands* move : to_insert) { moves->push_back(move); } if (done) break; // Reset state. to_eliminate.clear(); to_insert.clear(); moves = it->first.first; } // Gather all MoveOperands for a single ParallelMove. MoveOperands* move = new (code_zone()) MoveOperands(it->first.second, it->second); moves->PrepareInsertAfter(move, &to_eliminate); to_insert.push_back(move); } } void LiveRangeConnector::CommitSpillsInDeferredBlocks( TopLevelLiveRange* range, LiveRangeBoundArray* array, Zone* temp_zone) { DCHECK(range->IsSpilledOnlyInDeferredBlocks()); DCHECK(!range->spilled()); InstructionSequence* code = data()->code(); InstructionOperand spill_operand = range->GetSpillRangeOperand(); TRACE("Live Range %d will be spilled only in deferred blocks.\n", range->vreg()); // If we have ranges that aren't spilled but require the operand on the stack, // make sure we insert the spill. for (const LiveRange* child = range; child != nullptr; child = child->next()) { for (const UsePosition* pos = child->first_pos(); pos != nullptr; pos = pos->next()) { if (pos->type() != UsePositionType::kRequiresSlot && !child->spilled()) continue; range->AddBlockRequiringSpillOperand( code->GetInstructionBlock(pos->pos().ToInstructionIndex()) ->rpo_number()); } } ZoneQueue worklist(temp_zone); for (BitVector::Iterator iterator( range->GetListOfBlocksRequiringSpillOperands()); !iterator.Done(); iterator.Advance()) { worklist.push(iterator.Current()); } ZoneSet> done_moves(temp_zone); // Seek the deferred blocks that dominate locations requiring spill operands, // and spill there. We only need to spill at the start of such blocks. BitVector done_blocks( range->GetListOfBlocksRequiringSpillOperands()->length(), temp_zone); while (!worklist.empty()) { int block_id = worklist.front(); worklist.pop(); if (done_blocks.Contains(block_id)) continue; done_blocks.Add(block_id); InstructionBlock* spill_block = code->InstructionBlockAt(RpoNumber::FromInt(block_id)); for (const RpoNumber& pred : spill_block->predecessors()) { const InstructionBlock* pred_block = code->InstructionBlockAt(pred); if (pred_block->IsDeferred()) { worklist.push(pred_block->rpo_number().ToInt()); } else { LifetimePosition pred_end = LifetimePosition::InstructionFromInstructionIndex( pred_block->last_instruction_index()); LiveRangeBound* bound = array->Find(pred_end); InstructionOperand pred_op = bound->range_->GetAssignedOperand(); RpoNumber spill_block_number = spill_block->rpo_number(); if (done_moves.find(std::make_pair( spill_block_number, range->vreg())) == done_moves.end()) { data()->AddGapMove(spill_block->first_instruction_index(), Instruction::GapPosition::START, pred_op, spill_operand); done_moves.insert(std::make_pair(spill_block_number, range->vreg())); spill_block->mark_needs_frame(); } } } } } } // namespace compiler } // namespace internal } // namespace v8