// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/crankshaft/x87/lithium-x87.h" #include #if V8_TARGET_ARCH_X87 #include "src/crankshaft/hydrogen-osr.h" #include "src/crankshaft/lithium-inl.h" #include "src/crankshaft/x87/lithium-codegen-x87.h" namespace v8 { namespace internal { #define DEFINE_COMPILE(type) \ void L##type::CompileToNative(LCodeGen* generator) { \ generator->Do##type(this); \ } LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE) #undef DEFINE_COMPILE #ifdef DEBUG void LInstruction::VerifyCall() { // Call instructions can use only fixed registers as temporaries and // outputs because all registers are blocked by the calling convention. // Inputs operands must use a fixed register or use-at-start policy or // a non-register policy. DCHECK(Output() == NULL || LUnallocated::cast(Output())->HasFixedPolicy() || !LUnallocated::cast(Output())->HasRegisterPolicy()); for (UseIterator it(this); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); DCHECK(operand->HasFixedPolicy() || operand->IsUsedAtStart()); } for (TempIterator it(this); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); DCHECK(operand->HasFixedPolicy() ||!operand->HasRegisterPolicy()); } } #endif bool LInstruction::HasDoubleRegisterResult() { return HasResult() && result()->IsDoubleRegister(); } bool LInstruction::HasDoubleRegisterInput() { for (int i = 0; i < InputCount(); i++) { LOperand* op = InputAt(i); if (op != NULL && op->IsDoubleRegister()) { return true; } } return false; } bool LInstruction::IsDoubleInput(X87Register reg, LCodeGen* cgen) { for (int i = 0; i < InputCount(); i++) { LOperand* op = InputAt(i); if (op != NULL && op->IsDoubleRegister()) { if (cgen->ToX87Register(op).is(reg)) return true; } } return false; } void LInstruction::PrintTo(StringStream* stream) { stream->Add("%s ", this->Mnemonic()); PrintOutputOperandTo(stream); PrintDataTo(stream); if (HasEnvironment()) { stream->Add(" "); environment()->PrintTo(stream); } if (HasPointerMap()) { stream->Add(" "); pointer_map()->PrintTo(stream); } } void LInstruction::PrintDataTo(StringStream* stream) { stream->Add("= "); for (int i = 0; i < InputCount(); i++) { if (i > 0) stream->Add(" "); if (InputAt(i) == NULL) { stream->Add("NULL"); } else { InputAt(i)->PrintTo(stream); } } } void LInstruction::PrintOutputOperandTo(StringStream* stream) { if (HasResult()) result()->PrintTo(stream); } void LLabel::PrintDataTo(StringStream* stream) { LGap::PrintDataTo(stream); LLabel* rep = replacement(); if (rep != NULL) { stream->Add(" Dead block replaced with B%d", rep->block_id()); } } bool LGap::IsRedundant() const { for (int i = 0; i < 4; i++) { if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) { return false; } } return true; } void LGap::PrintDataTo(StringStream* stream) { for (int i = 0; i < 4; i++) { stream->Add("("); if (parallel_moves_[i] != NULL) { parallel_moves_[i]->PrintDataTo(stream); } stream->Add(") "); } } const char* LArithmeticD::Mnemonic() const { switch (op()) { case Token::ADD: return "add-d"; case Token::SUB: return "sub-d"; case Token::MUL: return "mul-d"; case Token::DIV: return "div-d"; case Token::MOD: return "mod-d"; default: UNREACHABLE(); return NULL; } } const char* LArithmeticT::Mnemonic() const { switch (op()) { case Token::ADD: return "add-t"; case Token::SUB: return "sub-t"; case Token::MUL: return "mul-t"; case Token::MOD: return "mod-t"; case Token::DIV: return "div-t"; case Token::BIT_AND: return "bit-and-t"; case Token::BIT_OR: return "bit-or-t"; case Token::BIT_XOR: return "bit-xor-t"; case Token::ROR: return "ror-t"; case Token::SHL: return "sal-t"; case Token::SAR: return "sar-t"; case Token::SHR: return "shr-t"; default: UNREACHABLE(); return NULL; } } bool LGoto::HasInterestingComment(LCodeGen* gen) const { return !gen->IsNextEmittedBlock(block_id()); } void LGoto::PrintDataTo(StringStream* stream) { stream->Add("B%d", block_id()); } void LBranch::PrintDataTo(StringStream* stream) { stream->Add("B%d | B%d on ", true_block_id(), false_block_id()); value()->PrintTo(stream); } void LCompareNumericAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if "); left()->PrintTo(stream); stream->Add(" %s ", Token::String(op())); right()->PrintTo(stream); stream->Add(" then B%d else B%d", true_block_id(), false_block_id()); } void LIsStringAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_string("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LIsSmiAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_smi("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LIsUndetectableAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_undetectable("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LStringCompareAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if string_compare("); left()->PrintTo(stream); right()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if has_instance_type("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if class_of_test("); value()->PrintTo(stream); stream->Add(", \"%o\") then B%d else B%d", *hydrogen()->class_name(), true_block_id(), false_block_id()); } void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if typeof "); value()->PrintTo(stream); stream->Add(" == \"%s\" then B%d else B%d", hydrogen()->type_literal()->ToCString().get(), true_block_id(), false_block_id()); } void LStoreCodeEntry::PrintDataTo(StringStream* stream) { stream->Add(" = "); function()->PrintTo(stream); stream->Add(".code_entry = "); code_object()->PrintTo(stream); } void LInnerAllocatedObject::PrintDataTo(StringStream* stream) { stream->Add(" = "); base_object()->PrintTo(stream); stream->Add(" + "); offset()->PrintTo(stream); } void LCallWithDescriptor::PrintDataTo(StringStream* stream) { for (int i = 0; i < InputCount(); i++) { InputAt(i)->PrintTo(stream); stream->Add(" "); } stream->Add("#%d / ", arity()); } void LLoadContextSlot::PrintDataTo(StringStream* stream) { context()->PrintTo(stream); stream->Add("[%d]", slot_index()); } void LStoreContextSlot::PrintDataTo(StringStream* stream) { context()->PrintTo(stream); stream->Add("[%d] <- ", slot_index()); value()->PrintTo(stream); } void LInvokeFunction::PrintDataTo(StringStream* stream) { stream->Add("= "); context()->PrintTo(stream); stream->Add(" "); function()->PrintTo(stream); stream->Add(" #%d / ", arity()); } void LCallNewArray::PrintDataTo(StringStream* stream) { stream->Add("= "); context()->PrintTo(stream); stream->Add(" "); constructor()->PrintTo(stream); stream->Add(" #%d / ", arity()); ElementsKind kind = hydrogen()->elements_kind(); stream->Add(" (%s) ", ElementsKindToString(kind)); } void LAccessArgumentsAt::PrintDataTo(StringStream* stream) { arguments()->PrintTo(stream); stream->Add(" length "); length()->PrintTo(stream); stream->Add(" index "); index()->PrintTo(stream); } int LPlatformChunk::GetNextSpillIndex(RegisterKind kind) { // Skip a slot if for a double-width slot. if (kind == DOUBLE_REGISTERS) { current_frame_slots_++; current_frame_slots_ |= 1; num_double_slots_++; } return current_frame_slots_++; } LOperand* LPlatformChunk::GetNextSpillSlot(RegisterKind kind) { int index = GetNextSpillIndex(kind); if (kind == DOUBLE_REGISTERS) { return LDoubleStackSlot::Create(index, zone()); } else { DCHECK(kind == GENERAL_REGISTERS); return LStackSlot::Create(index, zone()); } } void LStoreNamedField::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); std::ostringstream os; os << hydrogen()->access() << " <- "; stream->Add(os.str().c_str()); value()->PrintTo(stream); } void LLoadKeyed::PrintDataTo(StringStream* stream) { elements()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); if (hydrogen()->IsDehoisted()) { stream->Add(" + %d]", base_offset()); } else { stream->Add("]"); } } void LStoreKeyed::PrintDataTo(StringStream* stream) { elements()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); if (hydrogen()->IsDehoisted()) { stream->Add(" + %d] <-", base_offset()); } else { stream->Add("] <- "); } if (value() == NULL) { DCHECK(hydrogen()->IsConstantHoleStore() && hydrogen()->value()->representation().IsDouble()); stream->Add(""); } else { value()->PrintTo(stream); } } void LTransitionElementsKind::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add(" %p -> %p", *original_map(), *transitioned_map()); } LPlatformChunk* LChunkBuilder::Build() { DCHECK(is_unused()); chunk_ = new(zone()) LPlatformChunk(info(), graph()); LPhase phase("L_Building chunk", chunk_); status_ = BUILDING; // If compiling for OSR, reserve space for the unoptimized frame, // which will be subsumed into this frame. if (graph()->has_osr()) { for (int i = graph()->osr()->UnoptimizedFrameSlots(); i > 0; i--) { chunk_->GetNextSpillIndex(GENERAL_REGISTERS); } } const ZoneList* blocks = graph()->blocks(); for (int i = 0; i < blocks->length(); i++) { HBasicBlock* next = NULL; if (i < blocks->length() - 1) next = blocks->at(i + 1); DoBasicBlock(blocks->at(i), next); if (is_aborted()) return NULL; } status_ = DONE; return chunk_; } LUnallocated* LChunkBuilder::ToUnallocated(Register reg) { return new (zone()) LUnallocated(LUnallocated::FIXED_REGISTER, reg.code()); } LUnallocated* LChunkBuilder::ToUnallocated(X87Register reg) { return new (zone()) LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER, reg.code()); } LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) { return Use(value, ToUnallocated(fixed_register)); } LOperand* LChunkBuilder::UseRegister(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER, LUnallocated::USED_AT_START)); } LOperand* LChunkBuilder::UseTempRegister(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::WRITABLE_REGISTER)); } LOperand* LChunkBuilder::Use(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::NONE)); } LOperand* LChunkBuilder::UseAtStart(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::NONE, LUnallocated::USED_AT_START)); } static inline bool CanBeImmediateConstant(HValue* value) { return value->IsConstant() && HConstant::cast(value)->NotInNewSpace(); } LOperand* LChunkBuilder::UseOrConstant(HValue* value) { return CanBeImmediateConstant(value) ? chunk_->DefineConstantOperand(HConstant::cast(value)) : Use(value); } LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) { return CanBeImmediateConstant(value) ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseAtStart(value); } LOperand* LChunkBuilder::UseFixedOrConstant(HValue* value, Register fixed_register) { return CanBeImmediateConstant(value) ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseFixed(value, fixed_register); } LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) { return CanBeImmediateConstant(value) ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegister(value); } LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) { return CanBeImmediateConstant(value) ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegisterAtStart(value); } LOperand* LChunkBuilder::UseConstant(HValue* value) { return chunk_->DefineConstantOperand(HConstant::cast(value)); } LOperand* LChunkBuilder::UseAny(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : Use(value, new(zone()) LUnallocated(LUnallocated::ANY)); } LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) { if (value->EmitAtUses()) { HInstruction* instr = HInstruction::cast(value); VisitInstruction(instr); } operand->set_virtual_register(value->id()); return operand; } LInstruction* LChunkBuilder::Define(LTemplateResultInstruction<1>* instr, LUnallocated* result) { result->set_virtual_register(current_instruction_->id()); instr->set_result(result); return instr; } LInstruction* LChunkBuilder::DefineAsRegister( LTemplateResultInstruction<1>* instr) { return Define(instr, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } LInstruction* LChunkBuilder::DefineAsSpilled( LTemplateResultInstruction<1>* instr, int index) { return Define(instr, new(zone()) LUnallocated(LUnallocated::FIXED_SLOT, index)); } LInstruction* LChunkBuilder::DefineSameAsFirst( LTemplateResultInstruction<1>* instr) { return Define(instr, new(zone()) LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT)); } LInstruction* LChunkBuilder::DefineFixed(LTemplateResultInstruction<1>* instr, Register reg) { return Define(instr, ToUnallocated(reg)); } LInstruction* LChunkBuilder::DefineFixed(LTemplateResultInstruction<1>* instr, X87Register reg) { return Define(instr, ToUnallocated(reg)); } LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) { HEnvironment* hydrogen_env = current_block_->last_environment(); return LChunkBuilderBase::AssignEnvironment(instr, hydrogen_env); } LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr, HInstruction* hinstr, CanDeoptimize can_deoptimize) { info()->MarkAsNonDeferredCalling(); #ifdef DEBUG instr->VerifyCall(); #endif instr->MarkAsCall(); instr = AssignPointerMap(instr); // If instruction does not have side-effects lazy deoptimization // after the call will try to deoptimize to the point before the call. // Thus we still need to attach environment to this call even if // call sequence can not deoptimize eagerly. bool needs_environment = (can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) || !hinstr->HasObservableSideEffects(); if (needs_environment && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); // We can't really figure out if the environment is needed or not. instr->environment()->set_has_been_used(); } return instr; } LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) { DCHECK(!instr->HasPointerMap()); instr->set_pointer_map(new(zone()) LPointerMap(zone())); return instr; } LUnallocated* LChunkBuilder::TempRegister() { LUnallocated* operand = new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER); int vreg = allocator_->GetVirtualRegister(); if (!allocator_->AllocationOk()) { Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister); vreg = 0; } operand->set_virtual_register(vreg); return operand; } LOperand* LChunkBuilder::FixedTemp(Register reg) { LUnallocated* operand = ToUnallocated(reg); DCHECK(operand->HasFixedPolicy()); return operand; } LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) { return new(zone()) LLabel(instr->block()); } LInstruction* LChunkBuilder::DoDummyUse(HDummyUse* instr) { return DefineAsRegister(new(zone()) LDummyUse(UseAny(instr->value()))); } LInstruction* LChunkBuilder::DoEnvironmentMarker(HEnvironmentMarker* instr) { UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) { return AssignEnvironment(new(zone()) LDeoptimize); } LInstruction* LChunkBuilder::DoShift(Token::Value op, HBitwiseBinaryOperation* instr) { if (instr->representation().IsSmiOrInteger32()) { DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* left = UseRegisterAtStart(instr->left()); HValue* right_value = instr->right(); LOperand* right = NULL; int constant_value = 0; bool does_deopt = false; if (right_value->IsConstant()) { HConstant* constant = HConstant::cast(right_value); right = chunk_->DefineConstantOperand(constant); constant_value = constant->Integer32Value() & 0x1f; // Left shifts can deoptimize if we shift by > 0 and the result cannot be // truncated to smi. if (instr->representation().IsSmi() && constant_value > 0) { does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi); } } else { right = UseFixed(right_value, ecx); } // Shift operations can only deoptimize if we do a logical shift by 0 and // the result cannot be truncated to int32. if (op == Token::SHR && constant_value == 0) { does_deopt = !instr->CheckFlag(HInstruction::kUint32); } LInstruction* result = DefineSameAsFirst(new(zone()) LShiftI(op, left, right, does_deopt)); return does_deopt ? AssignEnvironment(result) : result; } else { return DoArithmeticT(op, instr); } } LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op, HArithmeticBinaryOperation* instr) { DCHECK(instr->representation().IsDouble()); DCHECK(instr->left()->representation().IsDouble()); DCHECK(instr->right()->representation().IsDouble()); if (op == Token::MOD) { LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand()); LOperand* right = UseRegisterAtStart(instr->BetterRightOperand()); LArithmeticD* result = new(zone()) LArithmeticD(op, left, right); return MarkAsCall(DefineSameAsFirst(result), instr); } else { LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand()); LOperand* right = UseRegisterAtStart(instr->BetterRightOperand()); LArithmeticD* result = new(zone()) LArithmeticD(op, left, right); return DefineSameAsFirst(result); } } LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op, HBinaryOperation* instr) { HValue* left = instr->left(); HValue* right = instr->right(); DCHECK(left->representation().IsTagged()); DCHECK(right->representation().IsTagged()); LOperand* context = UseFixed(instr->context(), esi); LOperand* left_operand = UseFixed(left, edx); LOperand* right_operand = UseFixed(right, eax); LArithmeticT* result = new(zone()) LArithmeticT(op, context, left_operand, right_operand); return MarkAsCall(DefineFixed(result, eax), instr); } void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) { DCHECK(is_building()); current_block_ = block; next_block_ = next_block; if (block->IsStartBlock()) { block->UpdateEnvironment(graph_->start_environment()); argument_count_ = 0; } else if (block->predecessors()->length() == 1) { // We have a single predecessor => copy environment and outgoing // argument count from the predecessor. DCHECK(block->phis()->length() == 0); HBasicBlock* pred = block->predecessors()->at(0); HEnvironment* last_environment = pred->last_environment(); DCHECK(last_environment != NULL); // Only copy the environment, if it is later used again. if (pred->end()->SecondSuccessor() == NULL) { DCHECK(pred->end()->FirstSuccessor() == block); } else { if (pred->end()->FirstSuccessor()->block_id() > block->block_id() || pred->end()->SecondSuccessor()->block_id() > block->block_id()) { last_environment = last_environment->Copy(); } } block->UpdateEnvironment(last_environment); DCHECK(pred->argument_count() >= 0); argument_count_ = pred->argument_count(); } else { // We are at a state join => process phis. HBasicBlock* pred = block->predecessors()->at(0); // No need to copy the environment, it cannot be used later. HEnvironment* last_environment = pred->last_environment(); for (int i = 0; i < block->phis()->length(); ++i) { HPhi* phi = block->phis()->at(i); if (phi->HasMergedIndex()) { last_environment->SetValueAt(phi->merged_index(), phi); } } for (int i = 0; i < block->deleted_phis()->length(); ++i) { if (block->deleted_phis()->at(i) < last_environment->length()) { last_environment->SetValueAt(block->deleted_phis()->at(i), graph_->GetConstantUndefined()); } } block->UpdateEnvironment(last_environment); // Pick up the outgoing argument count of one of the predecessors. argument_count_ = pred->argument_count(); } HInstruction* current = block->first(); int start = chunk_->instructions()->length(); while (current != NULL && !is_aborted()) { // Code for constants in registers is generated lazily. if (!current->EmitAtUses()) { VisitInstruction(current); } current = current->next(); } int end = chunk_->instructions()->length() - 1; if (end >= start) { block->set_first_instruction_index(start); block->set_last_instruction_index(end); } block->set_argument_count(argument_count_); next_block_ = NULL; current_block_ = NULL; } void LChunkBuilder::VisitInstruction(HInstruction* current) { HInstruction* old_current = current_instruction_; current_instruction_ = current; LInstruction* instr = NULL; if (current->CanReplaceWithDummyUses()) { if (current->OperandCount() == 0) { instr = DefineAsRegister(new(zone()) LDummy()); } else { DCHECK(!current->OperandAt(0)->IsControlInstruction()); instr = DefineAsRegister(new(zone()) LDummyUse(UseAny(current->OperandAt(0)))); } for (int i = 1; i < current->OperandCount(); ++i) { if (current->OperandAt(i)->IsControlInstruction()) continue; LInstruction* dummy = new(zone()) LDummyUse(UseAny(current->OperandAt(i))); dummy->set_hydrogen_value(current); chunk_->AddInstruction(dummy, current_block_); } } else { HBasicBlock* successor; if (current->IsControlInstruction() && HControlInstruction::cast(current)->KnownSuccessorBlock(&successor) && successor != NULL) { // Always insert a fpu register barrier here when branch is optimized to // be a direct goto. // TODO(weiliang): require a better solution. if (!current->IsGoto()) { LClobberDoubles* clobber = new (zone()) LClobberDoubles(isolate()); clobber->set_hydrogen_value(current); chunk_->AddInstruction(clobber, current_block_); } instr = new(zone()) LGoto(successor); } else { instr = current->CompileToLithium(this); } } argument_count_ += current->argument_delta(); DCHECK(argument_count_ >= 0); if (instr != NULL) { AddInstruction(instr, current); } current_instruction_ = old_current; } void LChunkBuilder::AddInstruction(LInstruction* instr, HInstruction* hydrogen_val) { // Associate the hydrogen instruction first, since we may need it for // the ClobbersRegisters() or ClobbersDoubleRegisters() calls below. instr->set_hydrogen_value(hydrogen_val); #if DEBUG // Make sure that the lithium instruction has either no fixed register // constraints in temps or the result OR no uses that are only used at // start. If this invariant doesn't hold, the register allocator can decide // to insert a split of a range immediately before the instruction due to an // already allocated register needing to be used for the instruction's fixed // register constraint. In this case, The register allocator won't see an // interference between the split child and the use-at-start (it would if // the it was just a plain use), so it is free to move the split child into // the same register that is used for the use-at-start. // See https://code.google.com/p/chromium/issues/detail?id=201590 if (!(instr->ClobbersRegisters() && instr->ClobbersDoubleRegisters(isolate()))) { int fixed = 0; int used_at_start = 0; for (UseIterator it(instr); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); if (operand->IsUsedAtStart()) ++used_at_start; } if (instr->Output() != NULL) { if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed; } for (TempIterator it(instr); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); if (operand->HasFixedPolicy()) ++fixed; } DCHECK(fixed == 0 || used_at_start == 0); } #endif if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) { instr = AssignPointerMap(instr); } if (FLAG_stress_environments && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); } if (instr->IsGoto() && (LGoto::cast(instr)->jumps_to_join() || next_block_->is_osr_entry())) { // TODO(olivf) Since phis of spilled values are joined as registers // (not in the stack slot), we need to allow the goto gaps to keep one // x87 register alive. To ensure all other values are still spilled, we // insert a fpu register barrier right before. LClobberDoubles* clobber = new(zone()) LClobberDoubles(isolate()); clobber->set_hydrogen_value(hydrogen_val); chunk_->AddInstruction(clobber, current_block_); } chunk_->AddInstruction(instr, current_block_); CreateLazyBailoutForCall(current_block_, instr, hydrogen_val); } LInstruction* LChunkBuilder::DoPrologue(HPrologue* instr) { LInstruction* result = new (zone()) LPrologue(); if (info_->scope()->NeedsContext()) { result = MarkAsCall(result, instr); } return result; } LInstruction* LChunkBuilder::DoGoto(HGoto* instr) { return new(zone()) LGoto(instr->FirstSuccessor()); } LInstruction* LChunkBuilder::DoBranch(HBranch* instr) { HValue* value = instr->value(); Representation r = value->representation(); HType type = value->type(); ToBooleanHints expected = instr->expected_input_types(); if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; bool easy_case = !r.IsTagged() || type.IsBoolean() || type.IsSmi() || type.IsJSArray() || type.IsHeapNumber() || type.IsString(); LOperand* temp = !easy_case && (expected & ToBooleanHint::kNeedsMap) ? TempRegister() : NULL; LInstruction* branch = temp != NULL ? new (zone()) LBranch(UseRegister(value), temp) : new (zone()) LBranch(UseRegisterAtStart(value), temp); if (!easy_case && ((!(expected & ToBooleanHint::kSmallInteger) && (expected & ToBooleanHint::kNeedsMap)) || expected != ToBooleanHint::kAny)) { branch = AssignEnvironment(branch); } return branch; } LInstruction* LChunkBuilder::DoDebugBreak(HDebugBreak* instr) { return new(zone()) LDebugBreak(); } LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) { DCHECK(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return new(zone()) LCmpMapAndBranch(value); } LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) { info()->MarkAsRequiresFrame(); return DefineAsRegister(new(zone()) LArgumentsLength(Use(length->value()))); } LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) { info()->MarkAsRequiresFrame(); return DefineAsRegister(new(zone()) LArgumentsElements); } LInstruction* LChunkBuilder::DoHasInPrototypeChainAndBranch( HHasInPrototypeChainAndBranch* instr) { LOperand* object = UseRegister(instr->object()); LOperand* prototype = UseRegister(instr->prototype()); LOperand* temp = TempRegister(); LHasInPrototypeChainAndBranch* result = new (zone()) LHasInPrototypeChainAndBranch(object, prototype, temp); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoWrapReceiver(HWrapReceiver* instr) { LOperand* receiver = UseRegister(instr->receiver()); LOperand* function = UseRegister(instr->function()); LOperand* temp = TempRegister(); LWrapReceiver* result = new(zone()) LWrapReceiver(receiver, function, temp); return AssignEnvironment(DefineSameAsFirst(result)); } LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) { LOperand* function = UseFixed(instr->function(), edi); LOperand* receiver = UseFixed(instr->receiver(), eax); LOperand* length = UseFixed(instr->length(), ebx); LOperand* elements = UseFixed(instr->elements(), ecx); LApplyArguments* result = new(zone()) LApplyArguments(function, receiver, length, elements); return MarkAsCall(DefineFixed(result, eax), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoPushArguments(HPushArguments* instr) { int argc = instr->OperandCount(); for (int i = 0; i < argc; ++i) { LOperand* argument = UseAny(instr->argument(i)); AddInstruction(new(zone()) LPushArgument(argument), instr); } return NULL; } LInstruction* LChunkBuilder::DoStoreCodeEntry( HStoreCodeEntry* store_code_entry) { LOperand* function = UseRegister(store_code_entry->function()); LOperand* code_object = UseTempRegister(store_code_entry->code_object()); return new(zone()) LStoreCodeEntry(function, code_object); } LInstruction* LChunkBuilder::DoInnerAllocatedObject( HInnerAllocatedObject* instr) { LOperand* base_object = UseRegisterAtStart(instr->base_object()); LOperand* offset = UseRegisterOrConstantAtStart(instr->offset()); return DefineAsRegister( new(zone()) LInnerAllocatedObject(base_object, offset)); } LInstruction* LChunkBuilder::DoThisFunction(HThisFunction* instr) { return instr->HasNoUses() ? NULL : DefineAsRegister(new(zone()) LThisFunction); } LInstruction* LChunkBuilder::DoContext(HContext* instr) { if (instr->HasNoUses()) return NULL; if (info()->IsStub()) { return DefineFixed(new(zone()) LContext, esi); } return DefineAsRegister(new(zone()) LContext); } LInstruction* LChunkBuilder::DoDeclareGlobals(HDeclareGlobals* instr) { LOperand* context = UseFixed(instr->context(), esi); return MarkAsCall(new(zone()) LDeclareGlobals(context), instr); } LInstruction* LChunkBuilder::DoCallWithDescriptor( HCallWithDescriptor* instr) { CallInterfaceDescriptor descriptor = instr->descriptor(); DCHECK_EQ(descriptor.GetParameterCount() + LCallWithDescriptor::kImplicitRegisterParameterCount, instr->OperandCount()); LOperand* target = UseRegisterOrConstantAtStart(instr->target()); ZoneList ops(instr->OperandCount(), zone()); // Target ops.Add(target, zone()); // Context LOperand* op = UseFixed(instr->OperandAt(1), esi); ops.Add(op, zone()); // Load register parameters. int i = 0; for (; i < descriptor.GetRegisterParameterCount(); i++) { op = UseFixed(instr->OperandAt( i + LCallWithDescriptor::kImplicitRegisterParameterCount), descriptor.GetRegisterParameter(i)); ops.Add(op, zone()); } // Push stack parameters. for (; i < descriptor.GetParameterCount(); i++) { op = UseAny(instr->OperandAt( i + LCallWithDescriptor::kImplicitRegisterParameterCount)); AddInstruction(new (zone()) LPushArgument(op), instr); } LCallWithDescriptor* result = new(zone()) LCallWithDescriptor( descriptor, ops, zone()); if (instr->syntactic_tail_call_mode() == TailCallMode::kAllow) { result->MarkAsSyntacticTailCall(); } return MarkAsCall(DefineFixed(result, eax), instr, CANNOT_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoInvokeFunction(HInvokeFunction* instr) { LOperand* context = UseFixed(instr->context(), esi); LOperand* function = UseFixed(instr->function(), edi); LInvokeFunction* result = new(zone()) LInvokeFunction(context, function); if (instr->syntactic_tail_call_mode() == TailCallMode::kAllow) { result->MarkAsSyntacticTailCall(); } return MarkAsCall(DefineFixed(result, eax), instr, CANNOT_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) { switch (instr->op()) { case kMathCos: return DoMathCos(instr); case kMathFloor: return DoMathFloor(instr); case kMathRound: return DoMathRound(instr); case kMathFround: return DoMathFround(instr); case kMathAbs: return DoMathAbs(instr); case kMathLog: return DoMathLog(instr); case kMathExp: return DoMathExp(instr); case kMathSqrt: return DoMathSqrt(instr); case kMathPowHalf: return DoMathPowHalf(instr); case kMathClz32: return DoMathClz32(instr); case kMathSin: return DoMathSin(instr); default: UNREACHABLE(); return NULL; } } LInstruction* LChunkBuilder::DoMathFloor(HUnaryMathOperation* instr) { LOperand* input = UseRegisterAtStart(instr->value()); LMathFloor* result = new(zone()) LMathFloor(input); return AssignEnvironment(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoMathRound(HUnaryMathOperation* instr) { LOperand* input = UseRegisterAtStart(instr->value()); LInstruction* result = DefineAsRegister(new (zone()) LMathRound(input)); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoMathFround(HUnaryMathOperation* instr) { LOperand* input = UseRegister(instr->value()); LMathFround* result = new (zone()) LMathFround(input); return DefineSameAsFirst(result); } LInstruction* LChunkBuilder::DoMathAbs(HUnaryMathOperation* instr) { LOperand* context = UseAny(instr->context()); // Deferred use. LOperand* input = UseRegisterAtStart(instr->value()); LInstruction* result = DefineSameAsFirst(new(zone()) LMathAbs(context, input)); Representation r = instr->value()->representation(); if (!r.IsDouble() && !r.IsSmiOrInteger32()) result = AssignPointerMap(result); if (!r.IsDouble()) result = AssignEnvironment(result); return result; } LInstruction* LChunkBuilder::DoMathLog(HUnaryMathOperation* instr) { DCHECK(instr->representation().IsDouble()); DCHECK(instr->value()->representation().IsDouble()); LOperand* input = UseRegisterAtStart(instr->value()); return MarkAsCall(DefineSameAsFirst(new(zone()) LMathLog(input)), instr); } LInstruction* LChunkBuilder::DoMathClz32(HUnaryMathOperation* instr) { LOperand* input = UseRegisterAtStart(instr->value()); LMathClz32* result = new(zone()) LMathClz32(input); return DefineAsRegister(result); } LInstruction* LChunkBuilder::DoMathCos(HUnaryMathOperation* instr) { DCHECK(instr->representation().IsDouble()); DCHECK(instr->value()->representation().IsDouble()); LOperand* input = UseRegisterAtStart(instr->value()); return MarkAsCall(DefineSameAsFirst(new (zone()) LMathCos(input)), instr); } LInstruction* LChunkBuilder::DoMathSin(HUnaryMathOperation* instr) { DCHECK(instr->representation().IsDouble()); DCHECK(instr->value()->representation().IsDouble()); LOperand* input = UseRegisterAtStart(instr->value()); return MarkAsCall(DefineSameAsFirst(new (zone()) LMathSin(input)), instr); } LInstruction* LChunkBuilder::DoMathExp(HUnaryMathOperation* instr) { DCHECK(instr->representation().IsDouble()); DCHECK(instr->value()->representation().IsDouble()); LOperand* input = UseRegisterAtStart(instr->value()); return MarkAsCall(DefineSameAsFirst(new (zone()) LMathExp(input)), instr); } LInstruction* LChunkBuilder::DoMathSqrt(HUnaryMathOperation* instr) { LOperand* input = UseRegisterAtStart(instr->value()); LOperand* temp1 = FixedTemp(ecx); LOperand* temp2 = FixedTemp(edx); LMathSqrt* result = new(zone()) LMathSqrt(input, temp1, temp2); return MarkAsCall(DefineSameAsFirst(result), instr); } LInstruction* LChunkBuilder::DoMathPowHalf(HUnaryMathOperation* instr) { LOperand* input = UseRegisterAtStart(instr->value()); LMathPowHalf* result = new (zone()) LMathPowHalf(input); return DefineSameAsFirst(result); } LInstruction* LChunkBuilder::DoCallNewArray(HCallNewArray* instr) { LOperand* context = UseFixed(instr->context(), esi); LOperand* constructor = UseFixed(instr->constructor(), edi); LCallNewArray* result = new(zone()) LCallNewArray(context, constructor); return MarkAsCall(DefineFixed(result, eax), instr); } LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) { LOperand* context = UseFixed(instr->context(), esi); return MarkAsCall(DefineFixed(new(zone()) LCallRuntime(context), eax), instr); } LInstruction* LChunkBuilder::DoRor(HRor* instr) { return DoShift(Token::ROR, instr); } LInstruction* LChunkBuilder::DoShr(HShr* instr) { return DoShift(Token::SHR, instr); } LInstruction* LChunkBuilder::DoSar(HSar* instr) { return DoShift(Token::SAR, instr); } LInstruction* LChunkBuilder::DoShl(HShl* instr) { return DoShift(Token::SHL, instr); } LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) { if (instr->representation().IsSmiOrInteger32()) { DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); DCHECK(instr->CheckFlag(HValue::kTruncatingToInt32)); LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand()); LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand()); return DefineSameAsFirst(new(zone()) LBitI(left, right)); } else { return DoArithmeticT(instr->op(), instr); } } LInstruction* LChunkBuilder::DoDivByPowerOf2I(HDiv* instr) { DCHECK(instr->representation().IsSmiOrInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseRegister(instr->left()); int32_t divisor = instr->right()->GetInteger32Constant(); LInstruction* result = DefineAsRegister(new(zone()) LDivByPowerOf2I( dividend, divisor)); if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) || (instr->CheckFlag(HValue::kCanOverflow) && divisor == -1) || (!instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && divisor != 1 && divisor != -1)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoDivByConstI(HDiv* instr) { DCHECK(instr->representation().IsInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseRegister(instr->left()); int32_t divisor = instr->right()->GetInteger32Constant(); LOperand* temp1 = FixedTemp(eax); LOperand* temp2 = FixedTemp(edx); LInstruction* result = DefineFixed(new(zone()) LDivByConstI( dividend, divisor, temp1, temp2), edx); if (divisor == 0 || (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) || !instr->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoDivI(HDiv* instr) { DCHECK(instr->representation().IsSmiOrInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseFixed(instr->left(), eax); LOperand* divisor = UseRegister(instr->right()); LOperand* temp = FixedTemp(edx); LInstruction* result = DefineFixed(new(zone()) LDivI( dividend, divisor, temp), eax); if (instr->CheckFlag(HValue::kCanBeDivByZero) || instr->CheckFlag(HValue::kBailoutOnMinusZero) || instr->CheckFlag(HValue::kCanOverflow) || !instr->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoDiv(HDiv* instr) { if (instr->representation().IsSmiOrInteger32()) { if (instr->RightIsPowerOf2()) { return DoDivByPowerOf2I(instr); } else if (instr->right()->IsConstant()) { return DoDivByConstI(instr); } else { return DoDivI(instr); } } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::DIV, instr); } else { return DoArithmeticT(Token::DIV, instr); } } LInstruction* LChunkBuilder::DoFlooringDivByPowerOf2I(HMathFloorOfDiv* instr) { LOperand* dividend = UseRegisterAtStart(instr->left()); int32_t divisor = instr->right()->GetInteger32Constant(); LInstruction* result = DefineSameAsFirst(new(zone()) LFlooringDivByPowerOf2I( dividend, divisor)); if ((instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) || (instr->CheckFlag(HValue::kLeftCanBeMinInt) && divisor == -1)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoFlooringDivByConstI(HMathFloorOfDiv* instr) { DCHECK(instr->representation().IsInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseRegister(instr->left()); int32_t divisor = instr->right()->GetInteger32Constant(); LOperand* temp1 = FixedTemp(eax); LOperand* temp2 = FixedTemp(edx); LOperand* temp3 = ((divisor > 0 && !instr->CheckFlag(HValue::kLeftCanBeNegative)) || (divisor < 0 && !instr->CheckFlag(HValue::kLeftCanBePositive))) ? NULL : TempRegister(); LInstruction* result = DefineFixed(new(zone()) LFlooringDivByConstI(dividend, divisor, temp1, temp2, temp3), edx); if (divisor == 0 || (instr->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoFlooringDivI(HMathFloorOfDiv* instr) { DCHECK(instr->representation().IsSmiOrInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseFixed(instr->left(), eax); LOperand* divisor = UseRegister(instr->right()); LOperand* temp = FixedTemp(edx); LInstruction* result = DefineFixed(new(zone()) LFlooringDivI( dividend, divisor, temp), eax); if (instr->CheckFlag(HValue::kCanBeDivByZero) || instr->CheckFlag(HValue::kBailoutOnMinusZero) || instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) { if (instr->RightIsPowerOf2()) { return DoFlooringDivByPowerOf2I(instr); } else if (instr->right()->IsConstant()) { return DoFlooringDivByConstI(instr); } else { return DoFlooringDivI(instr); } } LInstruction* LChunkBuilder::DoModByPowerOf2I(HMod* instr) { DCHECK(instr->representation().IsSmiOrInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseRegisterAtStart(instr->left()); int32_t divisor = instr->right()->GetInteger32Constant(); LInstruction* result = DefineSameAsFirst(new(zone()) LModByPowerOf2I( dividend, divisor)); if (instr->CheckFlag(HValue::kLeftCanBeNegative) && instr->CheckFlag(HValue::kBailoutOnMinusZero)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoModByConstI(HMod* instr) { DCHECK(instr->representation().IsSmiOrInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseRegister(instr->left()); int32_t divisor = instr->right()->GetInteger32Constant(); LOperand* temp1 = FixedTemp(eax); LOperand* temp2 = FixedTemp(edx); LInstruction* result = DefineFixed(new(zone()) LModByConstI( dividend, divisor, temp1, temp2), eax); if (divisor == 0 || instr->CheckFlag(HValue::kBailoutOnMinusZero)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoModI(HMod* instr) { DCHECK(instr->representation().IsSmiOrInteger32()); DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* dividend = UseFixed(instr->left(), eax); LOperand* divisor = UseRegister(instr->right()); LOperand* temp = FixedTemp(edx); LInstruction* result = DefineFixed(new(zone()) LModI( dividend, divisor, temp), edx); if (instr->CheckFlag(HValue::kCanBeDivByZero) || instr->CheckFlag(HValue::kBailoutOnMinusZero)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoMod(HMod* instr) { if (instr->representation().IsSmiOrInteger32()) { if (instr->RightIsPowerOf2()) { return DoModByPowerOf2I(instr); } else if (instr->right()->IsConstant()) { return DoModByConstI(instr); } else { return DoModI(instr); } } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::MOD, instr); } else { return DoArithmeticT(Token::MOD, instr); } } LInstruction* LChunkBuilder::DoMul(HMul* instr) { if (instr->representation().IsSmiOrInteger32()) { DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand()); HValue* h_right = instr->BetterRightOperand(); LOperand* right = UseOrConstant(h_right); LOperand* temp = NULL; if (instr->CheckFlag(HValue::kBailoutOnMinusZero)) { temp = TempRegister(); } LMulI* mul = new(zone()) LMulI(left, right, temp); int constant_value = h_right->IsConstant() ? HConstant::cast(h_right)->Integer32Value() : 0; // |needs_environment| must mirror the cases where LCodeGen::DoMulI calls // |DeoptimizeIf|. bool needs_environment = instr->CheckFlag(HValue::kCanOverflow) || (instr->CheckFlag(HValue::kBailoutOnMinusZero) && (!right->IsConstantOperand() || constant_value <= 0)); if (needs_environment) { AssignEnvironment(mul); } return DefineSameAsFirst(mul); } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::MUL, instr); } else { return DoArithmeticT(Token::MUL, instr); } } LInstruction* LChunkBuilder::DoSub(HSub* instr) { if (instr->representation().IsSmiOrInteger32()) { DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseOrConstantAtStart(instr->right()); LSubI* sub = new(zone()) LSubI(left, right); LInstruction* result = DefineSameAsFirst(sub); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::SUB, instr); } else { return DoArithmeticT(Token::SUB, instr); } } LInstruction* LChunkBuilder::DoAdd(HAdd* instr) { if (instr->representation().IsSmiOrInteger32()) { DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); // Check to see if it would be advantageous to use an lea instruction rather // than an add. This is the case when no overflow check is needed and there // are multiple uses of the add's inputs, so using a 3-register add will // preserve all input values for later uses. bool use_lea = LAddI::UseLea(instr); LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand()); HValue* right_candidate = instr->BetterRightOperand(); LOperand* right = use_lea ? UseRegisterOrConstantAtStart(right_candidate) : UseOrConstantAtStart(right_candidate); LAddI* add = new(zone()) LAddI(left, right); bool can_overflow = instr->CheckFlag(HValue::kCanOverflow); LInstruction* result = use_lea ? DefineAsRegister(add) : DefineSameAsFirst(add); if (can_overflow) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::ADD, instr); } else if (instr->representation().IsExternal()) { DCHECK(instr->IsConsistentExternalRepresentation()); DCHECK(!instr->CheckFlag(HValue::kCanOverflow)); bool use_lea = LAddI::UseLea(instr); LOperand* left = UseRegisterAtStart(instr->left()); HValue* right_candidate = instr->right(); LOperand* right = use_lea ? UseRegisterOrConstantAtStart(right_candidate) : UseOrConstantAtStart(right_candidate); LAddI* add = new(zone()) LAddI(left, right); LInstruction* result = use_lea ? DefineAsRegister(add) : DefineSameAsFirst(add); return result; } else { return DoArithmeticT(Token::ADD, instr); } } LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) { LOperand* left = NULL; LOperand* right = NULL; LOperand* scratch = TempRegister(); if (instr->representation().IsSmiOrInteger32()) { DCHECK(instr->left()->representation().Equals(instr->representation())); DCHECK(instr->right()->representation().Equals(instr->representation())); left = UseRegisterAtStart(instr->BetterLeftOperand()); right = UseOrConstantAtStart(instr->BetterRightOperand()); } else { DCHECK(instr->representation().IsDouble()); DCHECK(instr->left()->representation().IsDouble()); DCHECK(instr->right()->representation().IsDouble()); left = UseRegisterAtStart(instr->left()); right = UseRegisterAtStart(instr->right()); } LMathMinMax* minmax = new (zone()) LMathMinMax(left, right, scratch); return DefineSameAsFirst(minmax); } LInstruction* LChunkBuilder::DoPower(HPower* instr) { // Unlike ia32, we don't have a MathPowStub and directly call c function. DCHECK(instr->representation().IsDouble()); DCHECK(instr->left()->representation().IsDouble()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); LPower* result = new (zone()) LPower(left, right); return MarkAsCall(DefineSameAsFirst(result), instr); } LInstruction* LChunkBuilder::DoCompareGeneric(HCompareGeneric* instr) { DCHECK(instr->left()->representation().IsSmiOrTagged()); DCHECK(instr->right()->representation().IsSmiOrTagged()); LOperand* context = UseFixed(instr->context(), esi); LOperand* left = UseFixed(instr->left(), edx); LOperand* right = UseFixed(instr->right(), eax); LCmpT* result = new(zone()) LCmpT(context, left, right); return MarkAsCall(DefineFixed(result, eax), instr); } LInstruction* LChunkBuilder::DoCompareNumericAndBranch( HCompareNumericAndBranch* instr) { Representation r = instr->representation(); if (r.IsSmiOrInteger32()) { DCHECK(instr->left()->representation().Equals(r)); DCHECK(instr->right()->representation().Equals(r)); LOperand* left = UseRegisterOrConstantAtStart(instr->left()); LOperand* right = UseOrConstantAtStart(instr->right()); return new(zone()) LCompareNumericAndBranch(left, right); } else { DCHECK(r.IsDouble()); DCHECK(instr->left()->representation().IsDouble()); DCHECK(instr->right()->representation().IsDouble()); LOperand* left; LOperand* right; if (CanBeImmediateConstant(instr->left()) && CanBeImmediateConstant(instr->right())) { // The code generator requires either both inputs to be constant // operands, or neither. left = UseConstant(instr->left()); right = UseConstant(instr->right()); } else { left = UseRegisterAtStart(instr->left()); right = UseRegisterAtStart(instr->right()); } return new(zone()) LCompareNumericAndBranch(left, right); } } LInstruction* LChunkBuilder::DoCompareObjectEqAndBranch( HCompareObjectEqAndBranch* instr) { LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseOrConstantAtStart(instr->right()); return new(zone()) LCmpObjectEqAndBranch(left, right); } LInstruction* LChunkBuilder::DoCompareHoleAndBranch( HCompareHoleAndBranch* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return new (zone()) LCmpHoleAndBranch(value); } LInstruction* LChunkBuilder::DoIsStringAndBranch(HIsStringAndBranch* instr) { DCHECK(instr->value()->representation().IsTagged()); LOperand* temp = TempRegister(); return new(zone()) LIsStringAndBranch(UseRegister(instr->value()), temp); } LInstruction* LChunkBuilder::DoIsSmiAndBranch(HIsSmiAndBranch* instr) { DCHECK(instr->value()->representation().IsTagged()); return new(zone()) LIsSmiAndBranch(Use(instr->value())); } LInstruction* LChunkBuilder::DoIsUndetectableAndBranch( HIsUndetectableAndBranch* instr) { DCHECK(instr->value()->representation().IsTagged()); return new(zone()) LIsUndetectableAndBranch( UseRegisterAtStart(instr->value()), TempRegister()); } LInstruction* LChunkBuilder::DoStringCompareAndBranch( HStringCompareAndBranch* instr) { DCHECK(instr->left()->representation().IsTagged()); DCHECK(instr->right()->representation().IsTagged()); LOperand* context = UseFixed(instr->context(), esi); LOperand* left = UseFixed(instr->left(), edx); LOperand* right = UseFixed(instr->right(), eax); LStringCompareAndBranch* result = new(zone()) LStringCompareAndBranch(context, left, right); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoHasInstanceTypeAndBranch( HHasInstanceTypeAndBranch* instr) { DCHECK(instr->value()->representation().IsTagged()); return new(zone()) LHasInstanceTypeAndBranch( UseRegisterAtStart(instr->value()), TempRegister()); } LInstruction* LChunkBuilder::DoClassOfTestAndBranch( HClassOfTestAndBranch* instr) { DCHECK(instr->value()->representation().IsTagged()); return new(zone()) LClassOfTestAndBranch(UseRegister(instr->value()), TempRegister(), TempRegister()); } LInstruction* LChunkBuilder::DoSeqStringGetChar(HSeqStringGetChar* instr) { LOperand* string = UseRegisterAtStart(instr->string()); LOperand* index = UseRegisterOrConstantAtStart(instr->index()); return DefineAsRegister(new(zone()) LSeqStringGetChar(string, index)); } LOperand* LChunkBuilder::GetSeqStringSetCharOperand(HSeqStringSetChar* instr) { if (instr->encoding() == String::ONE_BYTE_ENCODING) { if (FLAG_debug_code) { return UseFixed(instr->value(), eax); } else { return UseFixedOrConstant(instr->value(), eax); } } else { if (FLAG_debug_code) { return UseRegisterAtStart(instr->value()); } else { return UseRegisterOrConstantAtStart(instr->value()); } } } LInstruction* LChunkBuilder::DoSeqStringSetChar(HSeqStringSetChar* instr) { LOperand* string = UseRegisterAtStart(instr->string()); LOperand* index = FLAG_debug_code ? UseRegisterAtStart(instr->index()) : UseRegisterOrConstantAtStart(instr->index()); LOperand* value = GetSeqStringSetCharOperand(instr); LOperand* context = FLAG_debug_code ? UseFixed(instr->context(), esi) : NULL; LInstruction* result = new(zone()) LSeqStringSetChar(context, string, index, value); if (FLAG_debug_code) { result = MarkAsCall(result, instr); } return result; } LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) { if (!FLAG_debug_code && instr->skip_check()) return NULL; LOperand* index = UseRegisterOrConstantAtStart(instr->index()); LOperand* length = !index->IsConstantOperand() ? UseOrConstantAtStart(instr->length()) : UseAtStart(instr->length()); LInstruction* result = new(zone()) LBoundsCheck(index, length); if (!FLAG_debug_code || !instr->skip_check()) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) { // The control instruction marking the end of a block that completed // abruptly (e.g., threw an exception). There is nothing specific to do. return NULL; } LInstruction* LChunkBuilder::DoUseConst(HUseConst* instr) { return NULL; } LInstruction* LChunkBuilder::DoForceRepresentation(HForceRepresentation* bad) { // All HForceRepresentation instructions should be eliminated in the // representation change phase of Hydrogen. UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoChange(HChange* instr) { Representation from = instr->from(); Representation to = instr->to(); HValue* val = instr->value(); if (from.IsSmi()) { if (to.IsTagged()) { LOperand* value = UseRegister(val); return DefineSameAsFirst(new(zone()) LDummyUse(value)); } from = Representation::Tagged(); } if (from.IsTagged()) { if (to.IsDouble()) { LOperand* value = UseRegister(val); LOperand* temp = TempRegister(); LInstruction* result = DefineAsRegister(new(zone()) LNumberUntagD(value, temp)); if (!val->representation().IsSmi()) result = AssignEnvironment(result); return result; } else if (to.IsSmi()) { LOperand* value = UseRegister(val); if (val->type().IsSmi()) { return DefineSameAsFirst(new(zone()) LDummyUse(value)); } return AssignEnvironment(DefineSameAsFirst(new(zone()) LCheckSmi(value))); } else { DCHECK(to.IsInteger32()); if (val->type().IsSmi() || val->representation().IsSmi()) { LOperand* value = UseRegister(val); return DefineSameAsFirst(new(zone()) LSmiUntag(value, false)); } else { LOperand* value = UseRegister(val); LInstruction* result = DefineSameAsFirst(new(zone()) LTaggedToI(value)); if (!val->representation().IsSmi()) result = AssignEnvironment(result); return result; } } } else if (from.IsDouble()) { if (to.IsTagged()) { info()->MarkAsDeferredCalling(); LOperand* value = UseRegisterAtStart(val); LOperand* temp = FLAG_inline_new ? TempRegister() : NULL; LUnallocated* result_temp = TempRegister(); LNumberTagD* result = new(zone()) LNumberTagD(value, temp); return AssignPointerMap(Define(result, result_temp)); } else if (to.IsSmi()) { LOperand* value = UseRegister(val); return AssignEnvironment( DefineAsRegister(new(zone()) LDoubleToSmi(value))); } else { DCHECK(to.IsInteger32()); bool truncating = instr->CanTruncateToInt32(); LOperand* value = UseRegister(val); LInstruction* result = DefineAsRegister(new(zone()) LDoubleToI(value)); if (!truncating) result = AssignEnvironment(result); return result; } } else if (from.IsInteger32()) { info()->MarkAsDeferredCalling(); if (to.IsTagged()) { if (!instr->CheckFlag(HValue::kCanOverflow)) { LOperand* value = UseRegister(val); return DefineSameAsFirst(new(zone()) LSmiTag(value)); } else if (val->CheckFlag(HInstruction::kUint32)) { LOperand* value = UseRegister(val); LOperand* temp = TempRegister(); LNumberTagU* result = new(zone()) LNumberTagU(value, temp); return AssignPointerMap(DefineSameAsFirst(result)); } else { LOperand* value = UseRegister(val); LOperand* temp = TempRegister(); LNumberTagI* result = new(zone()) LNumberTagI(value, temp); return AssignPointerMap(DefineSameAsFirst(result)); } } else if (to.IsSmi()) { LOperand* value = UseRegister(val); LInstruction* result = DefineSameAsFirst(new(zone()) LSmiTag(value)); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else { DCHECK(to.IsDouble()); if (val->CheckFlag(HInstruction::kUint32)) { return DefineAsRegister(new(zone()) LUint32ToDouble(UseRegister(val))); } else { return DefineAsRegister(new(zone()) LInteger32ToDouble(Use(val))); } } } UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoCheckHeapObject(HCheckHeapObject* instr) { LOperand* value = UseAtStart(instr->value()); LInstruction* result = new(zone()) LCheckNonSmi(value); if (!instr->value()->type().IsHeapObject()) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new(zone()) LCheckSmi(value)); } LInstruction* LChunkBuilder::DoCheckArrayBufferNotNeutered( HCheckArrayBufferNotNeutered* instr) { LOperand* view = UseRegisterAtStart(instr->value()); LOperand* scratch = TempRegister(); LCheckArrayBufferNotNeutered* result = new (zone()) LCheckArrayBufferNotNeutered(view, scratch); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LOperand* temp = TempRegister(); LCheckInstanceType* result = new(zone()) LCheckInstanceType(value, temp); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoCheckValue(HCheckValue* instr) { // If the object is in new space, we'll emit a global cell compare and so // want the value in a register. If the object gets promoted before we // emit code, we will still get the register but will do an immediate // compare instead of the cell compare. This is safe. LOperand* value = instr->object_in_new_space() ? UseRegisterAtStart(instr->value()) : UseAtStart(instr->value()); return AssignEnvironment(new(zone()) LCheckValue(value)); } LInstruction* LChunkBuilder::DoCheckMaps(HCheckMaps* instr) { if (instr->IsStabilityCheck()) return new(zone()) LCheckMaps; LOperand* value = UseRegisterAtStart(instr->value()); LInstruction* result = AssignEnvironment(new(zone()) LCheckMaps(value)); if (instr->HasMigrationTarget()) { info()->MarkAsDeferredCalling(); result = AssignPointerMap(result); } return result; } LInstruction* LChunkBuilder::DoClampToUint8(HClampToUint8* instr) { HValue* value = instr->value(); Representation input_rep = value->representation(); if (input_rep.IsDouble()) { LOperand* reg = UseRegister(value); return DefineFixed(new (zone()) LClampDToUint8(reg), eax); } else if (input_rep.IsInteger32()) { LOperand* reg = UseFixed(value, eax); return DefineFixed(new(zone()) LClampIToUint8(reg), eax); } else { DCHECK(input_rep.IsSmiOrTagged()); LOperand* value = UseRegister(instr->value()); LClampTToUint8NoSSE2* res = new(zone()) LClampTToUint8NoSSE2(value, TempRegister(), TempRegister(), TempRegister()); return AssignEnvironment(DefineFixed(res, ecx)); } } LInstruction* LChunkBuilder::DoReturn(HReturn* instr) { LOperand* context = info()->IsStub() ? UseFixed(instr->context(), esi) : NULL; LOperand* parameter_count = UseRegisterOrConstant(instr->parameter_count()); return new(zone()) LReturn( UseFixed(instr->value(), eax), context, parameter_count); } LInstruction* LChunkBuilder::DoConstant(HConstant* instr) { Representation r = instr->representation(); if (r.IsSmi()) { return DefineAsRegister(new(zone()) LConstantS); } else if (r.IsInteger32()) { return DefineAsRegister(new(zone()) LConstantI); } else if (r.IsDouble()) { return DefineAsRegister(new (zone()) LConstantD); } else if (r.IsExternal()) { return DefineAsRegister(new(zone()) LConstantE); } else if (r.IsTagged()) { return DefineAsRegister(new(zone()) LConstantT); } else { UNREACHABLE(); return NULL; } } LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) { LOperand* context = UseRegisterAtStart(instr->value()); LInstruction* result = DefineAsRegister(new(zone()) LLoadContextSlot(context)); if (instr->RequiresHoleCheck() && instr->DeoptimizesOnHole()) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) { LOperand* value; LOperand* temp; LOperand* context = UseRegister(instr->context()); if (instr->NeedsWriteBarrier()) { value = UseTempRegister(instr->value()); temp = TempRegister(); } else { value = UseRegister(instr->value()); temp = NULL; } LInstruction* result = new(zone()) LStoreContextSlot(context, value, temp); if (instr->RequiresHoleCheck() && instr->DeoptimizesOnHole()) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) { LOperand* obj = (instr->access().IsExternalMemory() && instr->access().offset() == 0) ? UseRegisterOrConstantAtStart(instr->object()) : UseRegisterAtStart(instr->object()); return DefineAsRegister(new(zone()) LLoadNamedField(obj)); } LInstruction* LChunkBuilder::DoLoadFunctionPrototype( HLoadFunctionPrototype* instr) { return AssignEnvironment(DefineAsRegister( new(zone()) LLoadFunctionPrototype(UseRegister(instr->function()), TempRegister()))); } LInstruction* LChunkBuilder::DoLoadRoot(HLoadRoot* instr) { return DefineAsRegister(new(zone()) LLoadRoot); } LInstruction* LChunkBuilder::DoLoadKeyed(HLoadKeyed* instr) { DCHECK(instr->key()->representation().IsSmiOrInteger32()); ElementsKind elements_kind = instr->elements_kind(); bool clobbers_key = ExternalArrayOpRequiresTemp( instr->key()->representation(), elements_kind); LOperand* key = clobbers_key ? UseTempRegister(instr->key()) : UseRegisterOrConstantAtStart(instr->key()); LInstruction* result = NULL; if (!instr->is_fixed_typed_array()) { LOperand* obj = UseRegisterAtStart(instr->elements()); result = DefineAsRegister(new (zone()) LLoadKeyed(obj, key, nullptr)); } else { DCHECK( (instr->representation().IsInteger32() && !(IsDoubleOrFloatElementsKind(instr->elements_kind()))) || (instr->representation().IsDouble() && (IsDoubleOrFloatElementsKind(instr->elements_kind())))); LOperand* backing_store = UseRegister(instr->elements()); LOperand* backing_store_owner = UseAny(instr->backing_store_owner()); result = DefineAsRegister( new (zone()) LLoadKeyed(backing_store, key, backing_store_owner)); } bool needs_environment; if (instr->is_fixed_typed_array()) { // see LCodeGen::DoLoadKeyedExternalArray needs_environment = elements_kind == UINT32_ELEMENTS && !instr->CheckFlag(HInstruction::kUint32); } else { // see LCodeGen::DoLoadKeyedFixedDoubleArray and // LCodeGen::DoLoadKeyedFixedArray needs_environment = instr->RequiresHoleCheck() || (instr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED && info()->IsStub()); } if (needs_environment) { result = AssignEnvironment(result); } return result; } LOperand* LChunkBuilder::GetStoreKeyedValueOperand(HStoreKeyed* instr) { ElementsKind elements_kind = instr->elements_kind(); // Determine if we need a byte register in this case for the value. bool val_is_fixed_register = elements_kind == UINT8_ELEMENTS || elements_kind == INT8_ELEMENTS || elements_kind == UINT8_CLAMPED_ELEMENTS; if (val_is_fixed_register) { return UseFixed(instr->value(), eax); } if (IsDoubleOrFloatElementsKind(elements_kind)) { return UseRegisterAtStart(instr->value()); } return UseRegister(instr->value()); } LInstruction* LChunkBuilder::DoStoreKeyed(HStoreKeyed* instr) { if (!instr->is_fixed_typed_array()) { DCHECK(instr->elements()->representation().IsTagged()); DCHECK(instr->key()->representation().IsInteger32() || instr->key()->representation().IsSmi()); if (instr->value()->representation().IsDouble()) { LOperand* object = UseRegisterAtStart(instr->elements()); // For storing double hole, no fp register required. LOperand* val = instr->IsConstantHoleStore() ? NULL : UseRegisterAtStart(instr->value()); LOperand* key = UseRegisterOrConstantAtStart(instr->key()); return new (zone()) LStoreKeyed(object, key, val, nullptr); } else { DCHECK(instr->value()->representation().IsSmiOrTagged()); bool needs_write_barrier = instr->NeedsWriteBarrier(); LOperand* obj = UseRegister(instr->elements()); LOperand* val; LOperand* key; if (needs_write_barrier) { val = UseTempRegister(instr->value()); key = UseTempRegister(instr->key()); } else { val = UseRegisterOrConstantAtStart(instr->value()); key = UseRegisterOrConstantAtStart(instr->key()); } return new (zone()) LStoreKeyed(obj, key, val, nullptr); } } ElementsKind elements_kind = instr->elements_kind(); DCHECK( (instr->value()->representation().IsInteger32() && !IsDoubleOrFloatElementsKind(elements_kind)) || (instr->value()->representation().IsDouble() && IsDoubleOrFloatElementsKind(elements_kind))); DCHECK(instr->elements()->representation().IsExternal()); LOperand* backing_store = UseRegister(instr->elements()); LOperand* val = GetStoreKeyedValueOperand(instr); bool clobbers_key = ExternalArrayOpRequiresTemp( instr->key()->representation(), elements_kind); LOperand* key = clobbers_key ? UseTempRegister(instr->key()) : UseRegisterOrConstantAtStart(instr->key()); LOperand* backing_store_owner = UseAny(instr->backing_store_owner()); return new (zone()) LStoreKeyed(backing_store, key, val, backing_store_owner); } LInstruction* LChunkBuilder::DoTransitionElementsKind( HTransitionElementsKind* instr) { if (IsSimpleMapChangeTransition(instr->from_kind(), instr->to_kind())) { LOperand* object = UseRegister(instr->object()); LOperand* new_map_reg = TempRegister(); LOperand* temp_reg = TempRegister(); LTransitionElementsKind* result = new(zone()) LTransitionElementsKind(object, NULL, new_map_reg, temp_reg); return result; } else { LOperand* object = UseFixed(instr->object(), eax); LOperand* context = UseFixed(instr->context(), esi); LTransitionElementsKind* result = new(zone()) LTransitionElementsKind(object, context, NULL, NULL); return MarkAsCall(result, instr); } } LInstruction* LChunkBuilder::DoTrapAllocationMemento( HTrapAllocationMemento* instr) { LOperand* object = UseRegister(instr->object()); LOperand* temp = TempRegister(); LTrapAllocationMemento* result = new(zone()) LTrapAllocationMemento(object, temp); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoMaybeGrowElements(HMaybeGrowElements* instr) { info()->MarkAsDeferredCalling(); LOperand* context = UseFixed(instr->context(), esi); LOperand* object = Use(instr->object()); LOperand* elements = Use(instr->elements()); LOperand* key = UseRegisterOrConstant(instr->key()); LOperand* current_capacity = UseRegisterOrConstant(instr->current_capacity()); LMaybeGrowElements* result = new (zone()) LMaybeGrowElements(context, object, elements, key, current_capacity); DefineFixed(result, eax); return AssignPointerMap(AssignEnvironment(result)); } LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) { bool is_in_object = instr->access().IsInobject(); bool is_external_location = instr->access().IsExternalMemory() && instr->access().offset() == 0; bool needs_write_barrier = instr->NeedsWriteBarrier(); bool needs_write_barrier_for_map = instr->has_transition() && instr->NeedsWriteBarrierForMap(); LOperand* obj; if (needs_write_barrier) { obj = is_in_object ? UseRegister(instr->object()) : UseTempRegister(instr->object()); } else if (is_external_location) { DCHECK(!is_in_object); DCHECK(!needs_write_barrier); DCHECK(!needs_write_barrier_for_map); obj = UseRegisterOrConstant(instr->object()); } else { obj = needs_write_barrier_for_map ? UseRegister(instr->object()) : UseRegisterAtStart(instr->object()); } bool can_be_constant = instr->value()->IsConstant() && HConstant::cast(instr->value())->NotInNewSpace() && !instr->field_representation().IsDouble(); LOperand* val; if (instr->field_representation().IsInteger8() || instr->field_representation().IsUInteger8()) { // mov_b requires a byte register (i.e. any of eax, ebx, ecx, edx). // Just force the value to be in eax and we're safe here. val = UseFixed(instr->value(), eax); } else if (needs_write_barrier) { val = UseTempRegister(instr->value()); } else if (can_be_constant) { val = UseRegisterOrConstant(instr->value()); } else if (instr->field_representation().IsDouble()) { val = UseRegisterAtStart(instr->value()); } else { val = UseRegister(instr->value()); } // We only need a scratch register if we have a write barrier or we // have a store into the properties array (not in-object-property). LOperand* temp = (!is_in_object || needs_write_barrier || needs_write_barrier_for_map) ? TempRegister() : NULL; // We need a temporary register for write barrier of the map field. LOperand* temp_map = needs_write_barrier_for_map ? TempRegister() : NULL; return new(zone()) LStoreNamedField(obj, val, temp, temp_map); } LInstruction* LChunkBuilder::DoStringAdd(HStringAdd* instr) { LOperand* context = UseFixed(instr->context(), esi); LOperand* left = UseFixed(instr->left(), edx); LOperand* right = UseFixed(instr->right(), eax); LStringAdd* string_add = new(zone()) LStringAdd(context, left, right); return MarkAsCall(DefineFixed(string_add, eax), instr); } LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) { LOperand* string = UseTempRegister(instr->string()); LOperand* index = UseTempRegister(instr->index()); LOperand* context = UseAny(instr->context()); LStringCharCodeAt* result = new(zone()) LStringCharCodeAt(context, string, index); return AssignPointerMap(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoStringCharFromCode(HStringCharFromCode* instr) { LOperand* char_code = UseRegister(instr->value()); LOperand* context = UseAny(instr->context()); LStringCharFromCode* result = new(zone()) LStringCharFromCode(context, char_code); return AssignPointerMap(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoAllocate(HAllocate* instr) { LOperand* size = instr->size()->IsConstant() ? UseConstant(instr->size()) : UseRegister(instr->size()); if (instr->IsAllocationFolded()) { LOperand* temp = TempRegister(); LFastAllocate* result = new (zone()) LFastAllocate(size, temp); return DefineAsRegister(result); } else { info()->MarkAsDeferredCalling(); LOperand* context = UseAny(instr->context()); LOperand* temp = TempRegister(); LAllocate* result = new (zone()) LAllocate(context, size, temp); return AssignPointerMap(DefineAsRegister(result)); } } LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) { DCHECK(argument_count_ == 0); allocator_->MarkAsOsrEntry(); current_block_->last_environment()->set_ast_id(instr->ast_id()); return AssignEnvironment(new(zone()) LOsrEntry); } LInstruction* LChunkBuilder::DoParameter(HParameter* instr) { LParameter* result = new(zone()) LParameter; if (instr->kind() == HParameter::STACK_PARAMETER) { int spill_index = chunk()->GetParameterStackSlot(instr->index()); return DefineAsSpilled(result, spill_index); } else { DCHECK(info()->IsStub()); CallInterfaceDescriptor descriptor = graph()->descriptor(); int index = static_cast(instr->index()); Register reg = descriptor.GetRegisterParameter(index); return DefineFixed(result, reg); } } LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) { // Use an index that corresponds to the location in the unoptimized frame, // which the optimized frame will subsume. int env_index = instr->index(); int spill_index = 0; if (instr->environment()->is_parameter_index(env_index)) { spill_index = chunk()->GetParameterStackSlot(env_index); } else { spill_index = env_index - instr->environment()->first_local_index(); if (spill_index > LUnallocated::kMaxFixedSlotIndex) { Retry(kNotEnoughSpillSlotsForOsr); spill_index = 0; } spill_index += StandardFrameConstants::kFixedSlotCount; } return DefineAsSpilled(new(zone()) LUnknownOSRValue, spill_index); } LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) { // There are no real uses of the arguments object. // arguments.length and element access are supported directly on // stack arguments, and any real arguments object use causes a bailout. // So this value is never used. return NULL; } LInstruction* LChunkBuilder::DoCapturedObject(HCapturedObject* instr) { instr->ReplayEnvironment(current_block_->last_environment()); // There are no real uses of a captured object. return NULL; } LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) { info()->MarkAsRequiresFrame(); LOperand* args = UseRegister(instr->arguments()); LOperand* length; LOperand* index; if (instr->length()->IsConstant() && instr->index()->IsConstant()) { length = UseRegisterOrConstant(instr->length()); index = UseOrConstant(instr->index()); } else { length = UseTempRegister(instr->length()); index = Use(instr->index()); } return DefineAsRegister(new(zone()) LAccessArgumentsAt(args, length, index)); } LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) { LOperand* context = UseFixed(instr->context(), esi); LOperand* value = UseFixed(instr->value(), ebx); LTypeof* result = new(zone()) LTypeof(context, value); return MarkAsCall(DefineFixed(result, eax), instr); } LInstruction* LChunkBuilder::DoTypeofIsAndBranch(HTypeofIsAndBranch* instr) { return new(zone()) LTypeofIsAndBranch(UseTempRegister(instr->value())); } LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) { instr->ReplayEnvironment(current_block_->last_environment()); return NULL; } LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) { info()->MarkAsDeferredCalling(); if (instr->is_function_entry()) { LOperand* context = UseFixed(instr->context(), esi); return MarkAsCall(new(zone()) LStackCheck(context), instr); } else { DCHECK(instr->is_backwards_branch()); LOperand* context = UseAny(instr->context()); return AssignEnvironment( AssignPointerMap(new(zone()) LStackCheck(context))); } } LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) { HEnvironment* outer = current_block_->last_environment(); outer->set_ast_id(instr->ReturnId()); HConstant* undefined = graph()->GetConstantUndefined(); HEnvironment* inner = outer->CopyForInlining( instr->closure(), instr->arguments_count(), instr->function(), undefined, instr->inlining_kind(), instr->syntactic_tail_call_mode()); // Only replay binding of arguments object if it wasn't removed from graph. if (instr->arguments_var() != NULL && instr->arguments_object()->IsLinked()) { inner->Bind(instr->arguments_var(), instr->arguments_object()); } inner->BindContext(instr->closure_context()); inner->set_entry(instr); current_block_->UpdateEnvironment(inner); return NULL; } LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) { LInstruction* pop = NULL; HEnvironment* env = current_block_->last_environment(); if (env->entry()->arguments_pushed()) { int argument_count = env->arguments_environment()->parameter_count(); pop = new(zone()) LDrop(argument_count); DCHECK(instr->argument_delta() == -argument_count); } HEnvironment* outer = current_block_->last_environment()-> DiscardInlined(false); current_block_->UpdateEnvironment(outer); return pop; } LInstruction* LChunkBuilder::DoForInPrepareMap(HForInPrepareMap* instr) { LOperand* context = UseFixed(instr->context(), esi); LOperand* object = UseFixed(instr->enumerable(), eax); LForInPrepareMap* result = new(zone()) LForInPrepareMap(context, object); return MarkAsCall(DefineFixed(result, eax), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoForInCacheArray(HForInCacheArray* instr) { LOperand* map = UseRegister(instr->map()); return AssignEnvironment(DefineAsRegister( new(zone()) LForInCacheArray(map))); } LInstruction* LChunkBuilder::DoCheckMapValue(HCheckMapValue* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LOperand* map = UseRegisterAtStart(instr->map()); return AssignEnvironment(new(zone()) LCheckMapValue(value, map)); } LInstruction* LChunkBuilder::DoLoadFieldByIndex(HLoadFieldByIndex* instr) { LOperand* object = UseRegister(instr->object()); LOperand* index = UseTempRegister(instr->index()); LLoadFieldByIndex* load = new(zone()) LLoadFieldByIndex(object, index); LInstruction* result = DefineSameAsFirst(load); return AssignPointerMap(result); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X87