// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/heap.h" #include "src/accessors.h" #include "src/api.h" #include "src/ast/context-slot-cache.h" #include "src/base/bits.h" #include "src/base/once.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h" #include "src/conversions.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/heap/array-buffer-tracker-inl.h" #include "src/heap/code-stats.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/mark-compact.h" #include "src/heap/memory-reducer.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/remembered-set.h" #include "src/heap/scavenge-job.h" #include "src/heap/scavenger-inl.h" #include "src/heap/store-buffer.h" #include "src/interpreter/interpreter.h" #include "src/regexp/jsregexp.h" #include "src/runtime-profiler.h" #include "src/snapshot/natives.h" #include "src/snapshot/serializer-common.h" #include "src/snapshot/snapshot.h" #include "src/tracing/trace-event.h" #include "src/type-feedback-vector.h" #include "src/utils.h" #include "src/v8.h" #include "src/v8threads.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { struct Heap::StrongRootsList { Object** start; Object** end; StrongRootsList* next; }; class IdleScavengeObserver : public AllocationObserver { public: IdleScavengeObserver(Heap& heap, intptr_t step_size) : AllocationObserver(step_size), heap_(heap) {} void Step(int bytes_allocated, Address, size_t) override { heap_.ScheduleIdleScavengeIfNeeded(bytes_allocated); } private: Heap& heap_; }; Heap::Heap() : external_memory_(0), external_memory_limit_(kExternalAllocationSoftLimit), external_memory_at_last_mark_compact_(0), isolate_(nullptr), code_range_size_(0), // semispace_size_ should be a power of 2 and old_generation_size_ should // be a multiple of Page::kPageSize. max_semi_space_size_(8 * (kPointerSize / 4) * MB), initial_semispace_size_(MB), max_old_generation_size_(700ul * (kPointerSize / 4) * MB), initial_old_generation_size_(max_old_generation_size_ / kInitalOldGenerationLimitFactor), old_generation_size_configured_(false), max_executable_size_(256ul * (kPointerSize / 4) * MB), // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap. // Will be 4 * reserved_semispace_size_ to ensure that young // generation can be aligned to its size. maximum_committed_(0), survived_since_last_expansion_(0), survived_last_scavenge_(0), always_allocate_scope_count_(0), memory_pressure_level_(MemoryPressureLevel::kNone), contexts_disposed_(0), number_of_disposed_maps_(0), global_ic_age_(0), new_space_(nullptr), old_space_(NULL), code_space_(NULL), map_space_(NULL), lo_space_(NULL), gc_state_(NOT_IN_GC), gc_post_processing_depth_(0), allocations_count_(0), raw_allocations_hash_(0), ms_count_(0), gc_count_(0), remembered_unmapped_pages_index_(0), #ifdef DEBUG allocation_timeout_(0), #endif // DEBUG old_generation_allocation_limit_(initial_old_generation_size_), inline_allocation_disabled_(false), total_regexp_code_generated_(0), tracer_(nullptr), promoted_objects_size_(0), promotion_ratio_(0), semi_space_copied_object_size_(0), previous_semi_space_copied_object_size_(0), semi_space_copied_rate_(0), nodes_died_in_new_space_(0), nodes_copied_in_new_space_(0), nodes_promoted_(0), maximum_size_scavenges_(0), last_idle_notification_time_(0.0), last_gc_time_(0.0), scavenge_collector_(nullptr), mark_compact_collector_(nullptr), memory_allocator_(nullptr), store_buffer_(nullptr), incremental_marking_(nullptr), gc_idle_time_handler_(nullptr), memory_reducer_(nullptr), live_object_stats_(nullptr), dead_object_stats_(nullptr), scavenge_job_(nullptr), idle_scavenge_observer_(nullptr), full_codegen_bytes_generated_(0), crankshaft_codegen_bytes_generated_(0), new_space_allocation_counter_(0), old_generation_allocation_counter_at_last_gc_(0), old_generation_size_at_last_gc_(0), gcs_since_last_deopt_(0), global_pretenuring_feedback_(nullptr), ring_buffer_full_(false), ring_buffer_end_(0), promotion_queue_(this), configured_(false), current_gc_flags_(Heap::kNoGCFlags), current_gc_callback_flags_(GCCallbackFlags::kNoGCCallbackFlags), external_string_table_(this), gc_callbacks_depth_(0), deserialization_complete_(false), strong_roots_list_(NULL), heap_iterator_depth_(0), embedder_heap_tracer_(nullptr), force_oom_(false), delay_sweeper_tasks_for_testing_(false) { // Allow build-time customization of the max semispace size. Building // V8 with snapshots and a non-default max semispace size is much // easier if you can define it as part of the build environment. #if defined(V8_MAX_SEMISPACE_SIZE) max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; #endif // Ensure old_generation_size_ is a multiple of kPageSize. DCHECK((max_old_generation_size_ & (Page::kPageSize - 1)) == 0); memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); set_native_contexts_list(NULL); set_allocation_sites_list(Smi::kZero); set_encountered_weak_collections(Smi::kZero); set_encountered_weak_cells(Smi::kZero); set_encountered_transition_arrays(Smi::kZero); // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(NULL, false); } size_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; return new_space_->Capacity() + OldGenerationCapacity(); } size_t Heap::OldGenerationCapacity() { if (!HasBeenSetUp()) return 0; return old_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity() + lo_space_->SizeOfObjects(); } size_t Heap::CommittedOldGenerationMemory() { if (!HasBeenSetUp()) return 0; return old_space_->CommittedMemory() + code_space_->CommittedMemory() + map_space_->CommittedMemory() + lo_space_->Size(); } size_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; return new_space_->CommittedMemory() + CommittedOldGenerationMemory(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; return new_space_->CommittedPhysicalMemory() + old_space_->CommittedPhysicalMemory() + code_space_->CommittedPhysicalMemory() + map_space_->CommittedPhysicalMemory() + lo_space_->CommittedPhysicalMemory(); } size_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return static_cast(memory_allocator()->SizeExecutable()); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; const size_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } size_t Heap::Available() { if (!HasBeenSetUp()) return 0; size_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->Available(); } return total; } bool Heap::HasBeenSetUp() { return old_space_ != NULL && code_space_ != NULL && map_space_ != NULL && lo_space_ != NULL; } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, const char** reason) { // Is global GC requested? if (space != NEW_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return MARK_COMPACTOR; } if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { *reason = "GC in old space forced by flags"; return MARK_COMPACTOR; } if (incremental_marking()->NeedsFinalization() && AllocationLimitOvershotByLargeMargin()) { *reason = "Incremental marking needs finalization"; return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (memory_allocator()->MaxAvailable() <= new_space_->Size()) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "scavenge might not succeed"; return MARK_COMPACTOR; } // Default *reason = NULL; return YoungGenerationCollector(); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled --log-gc is set. The following logic is used to avoid // double logging. #ifdef DEBUG if (FLAG_heap_stats || FLAG_log_gc) new_space_->CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_->ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_->ClearHistograms(); #else if (FLAG_log_gc) { new_space_->CollectStatistics(); new_space_->ReportStatistics(); new_space_->ClearHistograms(); } #endif // DEBUG } void Heap::PrintShortHeapStatistics() { if (!FLAG_trace_gc_verbose) return; PrintIsolate(isolate_, "Memory allocator, used: %6" PRIuS " KB," " available: %6" PRIuS " KB\n", memory_allocator()->Size() / KB, memory_allocator()->Available() / KB); PrintIsolate(isolate_, "New space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", new_space_->Size() / KB, new_space_->Available() / KB, new_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Old space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", old_space_->SizeOfObjects() / KB, old_space_->Available() / KB, old_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Code space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS "KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, code_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Map space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", map_space_->SizeOfObjects() / KB, map_space_->Available() / KB, map_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Large object space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "All spaces, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS "KB\n", this->SizeOfObjects() / KB, this->Available() / KB, this->CommittedMemory() / KB); PrintIsolate(isolate_, "External memory reported: %6" PRId64 " KB\n", external_memory_ / KB); PrintIsolate(isolate_, "Total time spent in GC : %.1f ms\n", total_gc_time_ms_); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) if (FLAG_heap_stats) { new_space_->CollectStatistics(); ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_->ReportStatistics(); } #else if (FLAG_log_gc) new_space_->ReportStatistics(); #endif // DEBUG for (int i = 0; i < static_cast(v8::Isolate::kUseCounterFeatureCount); ++i) { int count = deferred_counters_[i]; deferred_counters_[i] = 0; while (count > 0) { count--; isolate()->CountUsage(static_cast(i)); } } } void Heap::IncrementDeferredCount(v8::Isolate::UseCounterFeature feature) { deferred_counters_[feature]++; } bool Heap::UncommitFromSpace() { return new_space_->UncommitFromSpace(); } void Heap::GarbageCollectionPrologue() { { AllowHeapAllocation for_the_first_part_of_prologue; gc_count_++; #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } // Reset GC statistics. promoted_objects_size_ = 0; previous_semi_space_copied_object_size_ = semi_space_copied_object_size_; semi_space_copied_object_size_ = 0; nodes_died_in_new_space_ = 0; nodes_copied_in_new_space_ = 0; nodes_promoted_ = 0; UpdateMaximumCommitted(); #ifdef DEBUG DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); if (FLAG_gc_verbose) Print(); ReportStatisticsBeforeGC(); #endif // DEBUG if (new_space_->IsAtMaximumCapacity()) { maximum_size_scavenges_++; } else { maximum_size_scavenges_ = 0; } CheckNewSpaceExpansionCriteria(); UpdateNewSpaceAllocationCounter(); store_buffer()->MoveAllEntriesToRememberedSet(); } size_t Heap::SizeOfObjects() { size_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->SizeOfObjects(); } return total; } const char* Heap::GetSpaceName(int idx) { switch (idx) { case NEW_SPACE: return "new_space"; case OLD_SPACE: return "old_space"; case MAP_SPACE: return "map_space"; case CODE_SPACE: return "code_space"; case LO_SPACE: return "large_object_space"; default: UNREACHABLE(); } return nullptr; } void Heap::RepairFreeListsAfterDeserialization() { PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->RepairFreeListsAfterDeserialization(); } } void Heap::MergeAllocationSitePretenuringFeedback( const base::HashMap& local_pretenuring_feedback) { AllocationSite* site = nullptr; for (base::HashMap::Entry* local_entry = local_pretenuring_feedback.Start(); local_entry != nullptr; local_entry = local_pretenuring_feedback.Next(local_entry)) { site = reinterpret_cast(local_entry->key); MapWord map_word = site->map_word(); if (map_word.IsForwardingAddress()) { site = AllocationSite::cast(map_word.ToForwardingAddress()); } // We have not validated the allocation site yet, since we have not // dereferenced the site during collecting information. // This is an inlined check of AllocationMemento::IsValid. if (!site->IsAllocationSite() || site->IsZombie()) continue; int value = static_cast(reinterpret_cast(local_entry->value)); DCHECK_GT(value, 0); if (site->IncrementMementoFoundCount(value)) { global_pretenuring_feedback_->LookupOrInsert(site, ObjectHash(site->address())); } } } class Heap::PretenuringScope { public: explicit PretenuringScope(Heap* heap) : heap_(heap) { heap_->global_pretenuring_feedback_ = new base::HashMap(kInitialFeedbackCapacity); } ~PretenuringScope() { delete heap_->global_pretenuring_feedback_; heap_->global_pretenuring_feedback_ = nullptr; } private: Heap* heap_; }; void Heap::ProcessPretenuringFeedback() { bool trigger_deoptimization = false; if (FLAG_allocation_site_pretenuring) { int tenure_decisions = 0; int dont_tenure_decisions = 0; int allocation_mementos_found = 0; int allocation_sites = 0; int active_allocation_sites = 0; AllocationSite* site = nullptr; // Step 1: Digest feedback for recorded allocation sites. bool maximum_size_scavenge = MaximumSizeScavenge(); for (base::HashMap::Entry* e = global_pretenuring_feedback_->Start(); e != nullptr; e = global_pretenuring_feedback_->Next(e)) { allocation_sites++; site = reinterpret_cast(e->key); int found_count = site->memento_found_count(); // An entry in the storage does not imply that the count is > 0 because // allocation sites might have been reset due to too many objects dying // in old space. if (found_count > 0) { DCHECK(site->IsAllocationSite()); active_allocation_sites++; allocation_mementos_found += found_count; if (site->DigestPretenuringFeedback(maximum_size_scavenge)) { trigger_deoptimization = true; } if (site->GetPretenureMode() == TENURED) { tenure_decisions++; } else { dont_tenure_decisions++; } } } // Step 2: Deopt maybe tenured allocation sites if necessary. bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites(); if (deopt_maybe_tenured) { Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { site = AllocationSite::cast(list_element); DCHECK(site->IsAllocationSite()); allocation_sites++; if (site->IsMaybeTenure()) { site->set_deopt_dependent_code(true); trigger_deoptimization = true; } list_element = site->weak_next(); } } if (trigger_deoptimization) { isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } if (FLAG_trace_pretenuring_statistics && (allocation_mementos_found > 0 || tenure_decisions > 0 || dont_tenure_decisions > 0)) { PrintIsolate(isolate(), "pretenuring: deopt_maybe_tenured=%d visited_sites=%d " "active_sites=%d " "mementos=%d tenured=%d not_tenured=%d\n", deopt_maybe_tenured ? 1 : 0, allocation_sites, active_allocation_sites, allocation_mementos_found, tenure_decisions, dont_tenure_decisions); } } } void Heap::DeoptMarkedAllocationSites() { // TODO(hpayer): If iterating over the allocation sites list becomes a // performance issue, use a cache data structure in heap instead. Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(list_element); if (site->deopt_dependent_code()) { site->dependent_code()->MarkCodeForDeoptimization( isolate_, DependentCode::kAllocationSiteTenuringChangedGroup); site->set_deopt_dependent_code(false); } list_element = site->weak_next(); } Deoptimizer::DeoptimizeMarkedCode(isolate_); } void Heap::GarbageCollectionEpilogue() { // In release mode, we only zap the from space under heap verification. if (Heap::ShouldZapGarbage()) { ZapFromSpace(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif AllowHeapAllocation for_the_rest_of_the_epilogue; #ifdef DEBUG if (FLAG_print_global_handles) isolate_->global_handles()->Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); if (FLAG_check_handle_count) CheckHandleCount(); #endif if (FLAG_deopt_every_n_garbage_collections > 0) { // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that // the topmost optimized frame can be deoptimized safely, because it // might not have a lazy bailout point right after its current PC. if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) { Deoptimizer::DeoptimizeAll(isolate()); gcs_since_last_deopt_ = 0; } } UpdateMaximumCommitted(); isolate_->counters()->alive_after_last_gc()->Set( static_cast(SizeOfObjects())); isolate_->counters()->string_table_capacity()->Set( string_table()->Capacity()); isolate_->counters()->number_of_symbols()->Set( string_table()->NumberOfElements()); if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_new_space()->AddSample(static_cast( (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_space()->AddSample(static_cast( (old_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_code_space()->AddSample( static_cast((code_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_map_space()->AddSample(static_cast( (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_lo_space()->AddSample(static_cast( (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_map_space_committed()->AddSample( static_cast(map_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast(MaximumCommittedMemory() / KB)); } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast(100 - \ (space()->SizeOfObjects() * 100.0) / \ space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) UPDATE_COUNTERS_FOR_SPACE(new_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #ifdef DEBUG ReportStatisticsAfterGC(); #endif // DEBUG // Remember the last top pointer so that we can later find out // whether we allocated in new space since the last GC. new_space_top_after_last_gc_ = new_space()->top(); last_gc_time_ = MonotonicallyIncreasingTimeInMs(); ReduceNewSpaceSize(); } void Heap::PreprocessStackTraces() { WeakFixedArray::Iterator iterator(weak_stack_trace_list()); FixedArray* elements; while ((elements = iterator.Next())) { for (int j = 1; j < elements->length(); j += 4) { Object* maybe_code = elements->get(j + 2); // If GC happens while adding a stack trace to the weak fixed array, // which has been copied into a larger backing store, we may run into // a stack trace that has already been preprocessed. Guard against this. if (!maybe_code->IsAbstractCode()) break; AbstractCode* abstract_code = AbstractCode::cast(maybe_code); int offset = Smi::cast(elements->get(j + 3))->value(); int pos = abstract_code->SourcePosition(offset); elements->set(j + 2, Smi::FromInt(pos)); } } // We must not compact the weak fixed list here, as we may be in the middle // of writing to it, when the GC triggered. Instead, we reset the root value. set_weak_stack_trace_list(Smi::kZero); } class GCCallbacksScope { public: explicit GCCallbacksScope(Heap* heap) : heap_(heap) { heap_->gc_callbacks_depth_++; } ~GCCallbacksScope() { heap_->gc_callbacks_depth_--; } bool CheckReenter() { return heap_->gc_callbacks_depth_ == 1; } private: Heap* heap_; }; void Heap::HandleGCRequest() { if (HighMemoryPressure()) { incremental_marking()->reset_request_type(); CheckMemoryPressure(); } else if (incremental_marking()->request_type() == IncrementalMarking::COMPLETE_MARKING) { incremental_marking()->reset_request_type(); CollectAllGarbage(current_gc_flags_, GarbageCollectionReason::kFinalizeMarkingViaStackGuard, current_gc_callback_flags_); } else if (incremental_marking()->request_type() == IncrementalMarking::FINALIZATION && incremental_marking()->IsMarking() && !incremental_marking()->finalize_marking_completed()) { incremental_marking()->reset_request_type(); FinalizeIncrementalMarking( GarbageCollectionReason::kFinalizeMarkingViaStackGuard); } } void Heap::ScheduleIdleScavengeIfNeeded(int bytes_allocated) { scavenge_job_->ScheduleIdleTaskIfNeeded(this, bytes_allocated); } void Heap::FinalizeIncrementalMarking(GarbageCollectionReason gc_reason) { if (FLAG_trace_incremental_marking) { isolate()->PrintWithTimestamp( "[IncrementalMarking] (%s).\n", Heap::GarbageCollectionReasonToString(gc_reason)); } HistogramTimerScope incremental_marking_scope( isolate()->counters()->gc_incremental_marking_finalize()); TRACE_EVENT0("v8", "V8.GCIncrementalMarkingFinalize"); TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_PROLOGUE); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } incremental_marking()->FinalizeIncrementally(); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_EPILOGUE); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } } HistogramTimer* Heap::GCTypeTimer(GarbageCollector collector) { if (IsYoungGenerationCollector(collector)) { return isolate_->counters()->gc_scavenger(); } else { if (!incremental_marking()->IsStopped()) { if (ShouldReduceMemory()) { return isolate_->counters()->gc_finalize_reduce_memory(); } else { return isolate_->counters()->gc_finalize(); } } else { return isolate_->counters()->gc_compactor(); } } } void Heap::CollectAllGarbage(int flags, GarbageCollectionReason gc_reason, const v8::GCCallbackFlags gc_callback_flags) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. set_current_gc_flags(flags); CollectGarbage(OLD_SPACE, gc_reason, gc_callback_flags); set_current_gc_flags(kNoGCFlags); } void Heap::CollectAllAvailableGarbage(GarbageCollectionReason gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. // Major GC would invoke weak handle callbacks on weakly reachable // handles, but won't collect weakly reachable objects until next // major GC. Therefore if we collect aggressively and weak handle callback // has been invoked, we rerun major GC to release objects which become // garbage. // Note: as weak callbacks can execute arbitrary code, we cannot // hope that eventually there will be no weak callbacks invocations. // Therefore stop recollecting after several attempts. if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compile_dispatcher()->Flush( OptimizingCompileDispatcher::BlockingBehavior::kDontBlock); } isolate()->ClearSerializerData(); set_current_gc_flags(kMakeHeapIterableMask | kReduceMemoryFootprintMask); isolate_->compilation_cache()->Clear(); const int kMaxNumberOfAttempts = 7; const int kMinNumberOfAttempts = 2; for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL, v8::kGCCallbackFlagCollectAllAvailableGarbage) && attempt + 1 >= kMinNumberOfAttempts) { break; } } set_current_gc_flags(kNoGCFlags); new_space_->Shrink(); UncommitFromSpace(); } void Heap::ReportExternalMemoryPressure() { if (external_memory_ > (external_memory_at_last_mark_compact_ + external_memory_hard_limit())) { CollectAllGarbage( kReduceMemoryFootprintMask | kFinalizeIncrementalMarkingMask, GarbageCollectionReason::kExternalMemoryPressure, static_cast(kGCCallbackFlagCollectAllAvailableGarbage | kGCCallbackFlagCollectAllExternalMemory)); return; } if (incremental_marking()->IsStopped()) { if (incremental_marking()->CanBeActivated()) { StartIncrementalMarking( i::Heap::kNoGCFlags, GarbageCollectionReason::kExternalMemoryPressure, static_cast( kGCCallbackFlagSynchronousPhantomCallbackProcessing | kGCCallbackFlagCollectAllExternalMemory)); } else { CollectAllGarbage(i::Heap::kNoGCFlags, GarbageCollectionReason::kExternalMemoryPressure, kGCCallbackFlagSynchronousPhantomCallbackProcessing); } } else { // Incremental marking is turned on an has already been started. const double pressure = static_cast(external_memory_ - external_memory_at_last_mark_compact_ - kExternalAllocationSoftLimit) / external_memory_hard_limit(); DCHECK_GE(1, pressure); const double kMaxStepSizeOnExternalLimit = 25; const double deadline = MonotonicallyIncreasingTimeInMs() + pressure * kMaxStepSizeOnExternalLimit; incremental_marking()->AdvanceIncrementalMarking( deadline, IncrementalMarking::GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_COMPLETION, StepOrigin::kV8); } } void Heap::EnsureFillerObjectAtTop() { // There may be an allocation memento behind objects in new space. Upon // evacuation of a non-full new space (or if we are on the last page) there // may be uninitialized memory behind top. We fill the remainder of the page // with a filler. Address to_top = new_space_->top(); Page* page = Page::FromAddress(to_top - kPointerSize); if (page->Contains(to_top)) { int remaining_in_page = static_cast(page->area_end() - to_top); CreateFillerObjectAt(to_top, remaining_in_page, ClearRecordedSlots::kNo); } } bool Heap::CollectGarbage(GarbageCollector collector, GarbageCollectionReason gc_reason, const char* collector_reason, const v8::GCCallbackFlags gc_callback_flags) { // The VM is in the GC state until exiting this function. VMState state(isolate_); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif EnsureFillerObjectAtTop(); if (IsYoungGenerationCollector(collector) && !incremental_marking()->IsStopped()) { if (FLAG_trace_incremental_marking) { isolate()->PrintWithTimestamp( "[IncrementalMarking] Scavenge during marking.\n"); } } if (collector == MARK_COMPACTOR && FLAG_incremental_marking && !ShouldFinalizeIncrementalMarking() && !ShouldAbortIncrementalMarking() && !incremental_marking()->IsStopped() && !incremental_marking()->should_hurry() && !incremental_marking()->NeedsFinalization() && !IsCloseToOutOfMemory(new_space_->Capacity())) { if (!incremental_marking()->IsComplete() && !mark_compact_collector()->marking_deque()->IsEmpty() && !FLAG_gc_global) { if (FLAG_trace_incremental_marking) { isolate()->PrintWithTimestamp( "[IncrementalMarking] Delaying MarkSweep.\n"); } collector = YoungGenerationCollector(); collector_reason = "incremental marking delaying mark-sweep"; } } bool next_gc_likely_to_collect_more = false; size_t committed_memory_before = 0; if (collector == MARK_COMPACTOR) { committed_memory_before = CommittedOldGenerationMemory(); } { tracer()->Start(collector, gc_reason, collector_reason); DCHECK(AllowHeapAllocation::IsAllowed()); DisallowHeapAllocation no_allocation_during_gc; GarbageCollectionPrologue(); { HistogramTimer* gc_type_timer = GCTypeTimer(collector); HistogramTimerScope histogram_timer_scope(gc_type_timer); TRACE_EVENT0("v8", gc_type_timer->name()); next_gc_likely_to_collect_more = PerformGarbageCollection(collector, gc_callback_flags); } GarbageCollectionEpilogue(); if (collector == MARK_COMPACTOR && FLAG_track_detached_contexts) { isolate()->CheckDetachedContextsAfterGC(); } if (collector == MARK_COMPACTOR) { size_t committed_memory_after = CommittedOldGenerationMemory(); size_t used_memory_after = PromotedSpaceSizeOfObjects(); MemoryReducer::Event event; event.type = MemoryReducer::kMarkCompact; event.time_ms = MonotonicallyIncreasingTimeInMs(); // Trigger one more GC if // - this GC decreased committed memory, // - there is high fragmentation, // - there are live detached contexts. event.next_gc_likely_to_collect_more = (committed_memory_before > committed_memory_after + MB) || HasHighFragmentation(used_memory_after, committed_memory_after) || (detached_contexts()->length() > 0); if (deserialization_complete_) { memory_reducer_->NotifyMarkCompact(event); } memory_pressure_level_.SetValue(MemoryPressureLevel::kNone); } tracer()->Stop(collector); } if (collector == MARK_COMPACTOR && (gc_callback_flags & (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage)) != 0) { isolate()->CountUsage(v8::Isolate::kForcedGC); } // Start incremental marking for the next cycle. The heap snapshot // generator needs incremental marking to stay off after it aborted. // We do this only for scavenger to avoid a loop where mark-compact // causes another mark-compact. if (IsYoungGenerationCollector(collector) && !ShouldAbortIncrementalMarking()) { StartIncrementalMarkingIfAllocationLimitIsReached(kNoGCFlags, kNoGCCallbackFlags); } return next_gc_likely_to_collect_more; } int Heap::NotifyContextDisposed(bool dependant_context) { if (!dependant_context) { tracer()->ResetSurvivalEvents(); old_generation_size_configured_ = false; MemoryReducer::Event event; event.type = MemoryReducer::kPossibleGarbage; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyPossibleGarbage(event); } if (isolate()->concurrent_recompilation_enabled()) { // Flush the queued recompilation tasks. isolate()->optimizing_compile_dispatcher()->Flush( OptimizingCompileDispatcher::BlockingBehavior::kDontBlock); } AgeInlineCaches(); number_of_disposed_maps_ = retained_maps()->Length(); tracer()->AddContextDisposalTime(MonotonicallyIncreasingTimeInMs()); return ++contexts_disposed_; } void Heap::StartIncrementalMarking(int gc_flags, GarbageCollectionReason gc_reason, GCCallbackFlags gc_callback_flags) { DCHECK(incremental_marking()->IsStopped()); set_current_gc_flags(gc_flags); current_gc_callback_flags_ = gc_callback_flags; incremental_marking()->Start(gc_reason); } void Heap::StartIncrementalMarkingIfAllocationLimitIsReached( int gc_flags, const GCCallbackFlags gc_callback_flags) { if (incremental_marking()->IsStopped()) { IncrementalMarkingLimit reached_limit = IncrementalMarkingLimitReached(); if (reached_limit == IncrementalMarkingLimit::kSoftLimit) { incremental_marking()->incremental_marking_job()->ScheduleTask(this); } else if (reached_limit == IncrementalMarkingLimit::kHardLimit) { StartIncrementalMarking(gc_flags, GarbageCollectionReason::kAllocationLimit, gc_callback_flags); } } } void Heap::StartIdleIncrementalMarking(GarbageCollectionReason gc_reason) { gc_idle_time_handler_->ResetNoProgressCounter(); StartIncrementalMarking(kReduceMemoryFootprintMask, gc_reason, kNoGCCallbackFlags); } void Heap::MoveElements(FixedArray* array, int dst_index, int src_index, int len) { if (len == 0) return; DCHECK(array->map() != fixed_cow_array_map()); Object** dst_objects = array->data_start() + dst_index; MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize); FIXED_ARRAY_ELEMENTS_WRITE_BARRIER(this, array, dst_index, len); } #ifdef VERIFY_HEAP // Helper class for verifying the string table. class StringTableVerifier : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) override { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*p); Isolate* isolate = object->GetIsolate(); // Check that the string is actually internalized. CHECK(object->IsTheHole(isolate) || object->IsUndefined(isolate) || object->IsInternalizedString()); } } } }; static void VerifyStringTable(Heap* heap) { StringTableVerifier verifier; heap->string_table()->IterateElements(&verifier); } #endif // VERIFY_HEAP bool Heap::ReserveSpace(Reservation* reservations, List
* maps) { bool gc_performed = true; int counter = 0; static const int kThreshold = 20; while (gc_performed && counter++ < kThreshold) { gc_performed = false; for (int space = NEW_SPACE; space < SerializerDeserializer::kNumberOfSpaces; space++) { Reservation* reservation = &reservations[space]; DCHECK_LE(1, reservation->length()); if (reservation->at(0).size == 0) continue; bool perform_gc = false; if (space == MAP_SPACE) { // We allocate each map individually to avoid fragmentation. maps->Clear(); DCHECK_EQ(1, reservation->length()); int num_maps = reservation->at(0).size / Map::kSize; for (int i = 0; i < num_maps; i++) { // The deserializer will update the skip list. AllocationResult allocation = map_space()->AllocateRawUnaligned( Map::kSize, PagedSpace::IGNORE_SKIP_LIST); HeapObject* free_space = nullptr; if (allocation.To(&free_space)) { // Mark with a free list node, in case we have a GC before // deserializing. Address free_space_address = free_space->address(); CreateFillerObjectAt(free_space_address, Map::kSize, ClearRecordedSlots::kNo, ClearBlackArea::kNo); maps->Add(free_space_address); } else { perform_gc = true; break; } } } else if (space == LO_SPACE) { // Just check that we can allocate during deserialization. DCHECK_EQ(1, reservation->length()); perform_gc = !CanExpandOldGeneration(reservation->at(0).size); } else { for (auto& chunk : *reservation) { AllocationResult allocation; int size = chunk.size; DCHECK_LE(static_cast(size), MemoryAllocator::PageAreaSize( static_cast(space))); if (space == NEW_SPACE) { allocation = new_space()->AllocateRawUnaligned(size); } else { // The deserializer will update the skip list. allocation = paged_space(space)->AllocateRawUnaligned( size, PagedSpace::IGNORE_SKIP_LIST); } HeapObject* free_space = nullptr; if (allocation.To(&free_space)) { // Mark with a free list node, in case we have a GC before // deserializing. Address free_space_address = free_space->address(); CreateFillerObjectAt(free_space_address, size, ClearRecordedSlots::kNo, ClearBlackArea::kNo); DCHECK(space < SerializerDeserializer::kNumberOfPreallocatedSpaces); chunk.start = free_space_address; chunk.end = free_space_address + size; } else { perform_gc = true; break; } } } if (perform_gc) { if (space == NEW_SPACE) { CollectGarbage(NEW_SPACE, GarbageCollectionReason::kDeserializer); } else { if (counter > 1) { CollectAllGarbage( kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, GarbageCollectionReason::kDeserializer); } else { CollectAllGarbage(kAbortIncrementalMarkingMask, GarbageCollectionReason::kDeserializer); } } gc_performed = true; break; // Abort for-loop over spaces and retry. } } } return !gc_performed; } void Heap::EnsureFromSpaceIsCommitted() { if (new_space_->CommitFromSpaceIfNeeded()) return; // Committing memory to from space failed. // Memory is exhausted and we will die. V8::FatalProcessOutOfMemory("Committing semi space failed."); } void Heap::ClearNormalizedMapCaches() { if (isolate_->bootstrapper()->IsActive() && !incremental_marking()->IsMarking()) { return; } Object* context = native_contexts_list(); while (!context->IsUndefined(isolate())) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined(isolate())) { NormalizedMapCache::cast(cache)->Clear(); } context = Context::cast(context)->next_context_link(); } } void Heap::UpdateSurvivalStatistics(int start_new_space_size) { if (start_new_space_size == 0) return; promotion_ratio_ = (static_cast(promoted_objects_size_) / static_cast(start_new_space_size) * 100); if (previous_semi_space_copied_object_size_ > 0) { promotion_rate_ = (static_cast(promoted_objects_size_) / static_cast(previous_semi_space_copied_object_size_) * 100); } else { promotion_rate_ = 0; } semi_space_copied_rate_ = (static_cast(semi_space_copied_object_size_) / static_cast(start_new_space_size) * 100); double survival_rate = promotion_ratio_ + semi_space_copied_rate_; tracer()->AddSurvivalRatio(survival_rate); } bool Heap::PerformGarbageCollection( GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) { int freed_global_handles = 0; if (!IsYoungGenerationCollector(collector)) { PROFILE(isolate_, CodeMovingGCEvent()); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif GCType gc_type = collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::EXTERNAL_PROLOGUE); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); } } EnsureFromSpaceIsCommitted(); int start_new_space_size = static_cast(Heap::new_space()->Size()); { Heap::PretenuringScope pretenuring_scope(this); switch (collector) { case MARK_COMPACTOR: UpdateOldGenerationAllocationCounter(); // Perform mark-sweep with optional compaction. MarkCompact(); old_generation_size_configured_ = true; // This should be updated before PostGarbageCollectionProcessing, which // can cause another GC. Take into account the objects promoted during // GC. old_generation_allocation_counter_at_last_gc_ += static_cast(promoted_objects_size_); old_generation_size_at_last_gc_ = PromotedSpaceSizeOfObjects(); break; case MINOR_MARK_COMPACTOR: MinorMarkCompact(); break; case SCAVENGER: Scavenge(); break; } ProcessPretenuringFeedback(); } UpdateSurvivalStatistics(start_new_space_size); ConfigureInitialOldGenerationSize(); isolate_->counters()->objs_since_last_young()->Set(0); gc_post_processing_depth_++; { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::EXTERNAL_WEAK_GLOBAL_HANDLES); freed_global_handles = isolate_->global_handles()->PostGarbageCollectionProcessing( collector, gc_callback_flags); } gc_post_processing_depth_--; isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); double gc_speed = tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond(); double mutator_speed = tracer()->CurrentOldGenerationAllocationThroughputInBytesPerMillisecond(); size_t old_gen_size = PromotedSpaceSizeOfObjects(); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. external_memory_at_last_mark_compact_ = external_memory_; external_memory_limit_ = external_memory_ + kExternalAllocationSoftLimit; SetOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } else if (HasLowYoungGenerationAllocationRate() && old_generation_size_configured_) { DampenOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::EXTERNAL_EPILOGUE); VMState state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(gc_type, gc_callback_flags); } } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif return freed_global_handles > 0; } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_type & gc_prologue_callbacks_[i].gc_type) { if (!gc_prologue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast( gc_prologue_callbacks_[i].callback); callback(gc_type, flags); } else { v8::Isolate* isolate = reinterpret_cast(this->isolate()); gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); } } } if (FLAG_trace_object_groups && (gc_type == kGCTypeIncrementalMarking || gc_type == kGCTypeMarkSweepCompact)) { isolate_->global_handles()->PrintObjectGroups(); } } void Heap::CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags gc_callback_flags) { for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_type & gc_epilogue_callbacks_[i].gc_type) { if (!gc_epilogue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast( gc_epilogue_callbacks_[i].callback); callback(gc_type, gc_callback_flags); } else { v8::Isolate* isolate = reinterpret_cast(this->isolate()); gc_epilogue_callbacks_[i].callback(isolate, gc_type, gc_callback_flags); } } } } void Heap::MarkCompact() { PauseAllocationObserversScope pause_observers(this); gc_state_ = MARK_COMPACT; LOG(isolate_, ResourceEvent("markcompact", "begin")); uint64_t size_of_objects_before_gc = SizeOfObjects(); mark_compact_collector()->Prepare(); ms_count_++; MarkCompactPrologue(); mark_compact_collector()->CollectGarbage(); LOG(isolate_, ResourceEvent("markcompact", "end")); MarkCompactEpilogue(); if (FLAG_allocation_site_pretenuring) { EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); } } void Heap::MinorMarkCompact() { UNREACHABLE(); } void Heap::MarkCompactEpilogue() { TRACE_GC(tracer(), GCTracer::Scope::MC_EPILOGUE); gc_state_ = NOT_IN_GC; isolate_->counters()->objs_since_last_full()->Set(0); incremental_marking()->Epilogue(); PreprocessStackTraces(); DCHECK(incremental_marking()->IsStopped()); mark_compact_collector()->marking_deque()->StopUsing(); } void Heap::MarkCompactPrologue() { TRACE_GC(tracer(), GCTracer::Scope::MC_PROLOGUE); isolate_->context_slot_cache()->Clear(); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); isolate_->compilation_cache()->MarkCompactPrologue(); CompletelyClearInstanceofCache(); FlushNumberStringCache(); ClearNormalizedMapCaches(); } void Heap::CheckNewSpaceExpansionCriteria() { if (FLAG_experimental_new_space_growth_heuristic) { if (new_space_->TotalCapacity() < new_space_->MaximumCapacity() && survived_last_scavenge_ * 100 / new_space_->TotalCapacity() >= 10) { // Grow the size of new space if there is room to grow, and more than 10% // have survived the last scavenge. new_space_->Grow(); survived_since_last_expansion_ = 0; } } else if (new_space_->TotalCapacity() < new_space_->MaximumCapacity() && survived_since_last_expansion_ > new_space_->TotalCapacity()) { // Grow the size of new space if there is room to grow, and enough data // has survived scavenge since the last expansion. new_space_->Grow(); survived_since_last_expansion_ = 0; } } static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { return heap->InNewSpace(*p) && !HeapObject::cast(*p)->map_word().IsForwardingAddress(); } static bool IsUnmodifiedHeapObject(Object** p) { Object* object = *p; if (object->IsSmi()) return false; HeapObject* heap_object = HeapObject::cast(object); if (!object->IsJSObject()) return false; JSObject* js_object = JSObject::cast(object); if (!js_object->WasConstructedFromApiFunction()) return false; JSFunction* constructor = JSFunction::cast(js_object->map()->GetConstructor()); return constructor->initial_map() == heap_object->map(); } void PromotionQueue::Initialize() { // The last to-space page may be used for promotion queue. On promotion // conflict, we use the emergency stack. DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize) == 0); front_ = rear_ = reinterpret_cast(heap_->new_space()->ToSpaceEnd()); limit_ = reinterpret_cast( Page::FromAllocationAreaAddress(reinterpret_cast
(rear_)) ->area_start()); emergency_stack_ = NULL; } void PromotionQueue::Destroy() { DCHECK(is_empty()); delete emergency_stack_; emergency_stack_ = NULL; } void PromotionQueue::RelocateQueueHead() { DCHECK(emergency_stack_ == NULL); Page* p = Page::FromAllocationAreaAddress(reinterpret_cast
(rear_)); struct Entry* head_start = rear_; struct Entry* head_end = Min(front_, reinterpret_cast(p->area_end())); int entries_count = static_cast(head_end - head_start) / sizeof(struct Entry); emergency_stack_ = new List(2 * entries_count); while (head_start != head_end) { struct Entry* entry = head_start++; // New space allocation in SemiSpaceCopyObject marked the region // overlapping with promotion queue as uninitialized. MSAN_MEMORY_IS_INITIALIZED(entry, sizeof(struct Entry)); emergency_stack_->Add(*entry); } rear_ = head_end; } class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) {} virtual Object* RetainAs(Object* object) { if (!heap_->InFromSpace(object)) { return object; } MapWord map_word = HeapObject::cast(object)->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return NULL; } private: Heap* heap_; }; void Heap::Scavenge() { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE); RelocationLock relocation_lock(this); // There are soft limits in the allocation code, designed to trigger a mark // sweep collection by failing allocations. There is no sense in trying to // trigger one during scavenge: scavenges allocation should always succeed. AlwaysAllocateScope scope(isolate()); // Bump-pointer allocations done during scavenge are not real allocations. // Pause the inline allocation steps. PauseAllocationObserversScope pause_observers(this); mark_compact_collector()->sweeper().EnsureNewSpaceCompleted(); gc_state_ = SCAVENGE; // Implements Cheney's copying algorithm LOG(isolate_, ResourceEvent("scavenge", "begin")); // Used for updating survived_since_last_expansion_ at function end. size_t survived_watermark = PromotedSpaceSizeOfObjects(); scavenge_collector_->SelectScavengingVisitorsTable(); if (UsingEmbedderHeapTracer()) { // Register found wrappers with embedder so it can add them to its marking // deque and correctly manage the case when v8 scavenger collects the // wrappers by either keeping wrappables alive, or cleaning marking deque. RegisterWrappersWithEmbedderHeapTracer(); } // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_->Flip(); new_space_->ResetAllocationInfo(); // We need to sweep newly copied objects which can be either in the // to space or promoted to the old generation. For to-space // objects, we treat the bottom of the to space as a queue. Newly // copied and unswept objects lie between a 'front' mark and the // allocation pointer. // // Promoted objects can go into various old-generation spaces, and // can be allocated internally in the spaces (from the free list). // We treat the top of the to space as a queue of addresses of // promoted objects. The addresses of newly promoted and unswept // objects lie between a 'front' mark and a 'rear' mark that is // updated as a side effect of promoting an object. // // There is guaranteed to be enough room at the top of the to space // for the addresses of promoted objects: every object promoted // frees up its size in bytes from the top of the new space, and // objects are at least one pointer in size. Address new_space_front = new_space_->ToSpaceStart(); promotion_queue_.Initialize(); ScavengeVisitor scavenge_visitor(this); isolate()->global_handles()->IdentifyWeakUnmodifiedObjects( &IsUnmodifiedHeapObject); { // Copy roots. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_ROOTS); IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); } { // Copy objects reachable from the old generation. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_OLD_TO_NEW_POINTERS); RememberedSet::Iterate(this, [this](Address addr) { return Scavenger::CheckAndScavengeObject(this, addr); }); RememberedSet::IterateTyped( this, [this](SlotType type, Address host_addr, Address addr) { return UpdateTypedSlotHelper::UpdateTypedSlot( isolate(), type, addr, [this](Object** addr) { // We expect that objects referenced by code are long living. // If we do not force promotion, then we need to clear // old_to_new slots in dead code objects after mark-compact. return Scavenger::CheckAndScavengeObject( this, reinterpret_cast
(addr)); }); }); } { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_WEAK); // Copy objects reachable from the encountered weak collections list. scavenge_visitor.VisitPointer(&encountered_weak_collections_); } { // Copy objects reachable from the code flushing candidates list. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_CODE_FLUSH_CANDIDATES); MarkCompactCollector* collector = mark_compact_collector(); if (collector->is_code_flushing_enabled()) { collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor); } } { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SEMISPACE); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } isolate()->global_handles()->MarkNewSpaceWeakUnmodifiedObjectsPending( &IsUnscavengedHeapObject); isolate()->global_handles()->IterateNewSpaceWeakUnmodifiedRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); promotion_queue_.Destroy(); incremental_marking()->UpdateMarkingDequeAfterScavenge(); ScavengeWeakObjectRetainer weak_object_retainer(this); ProcessYoungWeakReferences(&weak_object_retainer); DCHECK(new_space_front == new_space_->top()); // Set age mark. new_space_->set_age_mark(new_space_->top()); ArrayBufferTracker::FreeDeadInNewSpace(this); // Update how much has survived scavenge. DCHECK_GE(PromotedSpaceSizeOfObjects(), survived_watermark); IncrementYoungSurvivorsCounter(PromotedSpaceSizeOfObjects() + new_space_->Size() - survived_watermark); LOG(isolate_, ResourceEvent("scavenge", "end")); gc_state_ = NOT_IN_GC; } String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord first_word = HeapObject::cast(*p)->map_word(); if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. heap->FinalizeExternalString(String::cast(*p)); return NULL; } // String is still reachable. return String::cast(first_word.ToForwardingAddress()); } void Heap::UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { if (external_string_table_.new_space_strings_.is_empty()) return; Object** start = &external_string_table_.new_space_strings_[0]; Object** end = start + external_string_table_.new_space_strings_.length(); Object** last = start; for (Object** p = start; p < end; ++p) { String* target = updater_func(this, p); if (target == NULL) continue; DCHECK(target->IsExternalString()); if (InNewSpace(target)) { // String is still in new space. Update the table entry. *last = target; ++last; } else { // String got promoted. Move it to the old string list. external_string_table_.AddOldString(target); } } DCHECK(last <= end); external_string_table_.ShrinkNewStrings(static_cast(last - start)); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { // Update old space string references. if (external_string_table_.old_space_strings_.length() > 0) { Object** start = &external_string_table_.old_space_strings_[0]; Object** end = start + external_string_table_.old_space_strings_.length(); for (Object** p = start; p < end; ++p) *p = updater_func(this, p); } UpdateNewSpaceReferencesInExternalStringTable(updater_func); } void Heap::ProcessAllWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); ProcessAllocationSites(retainer); } void Heap::ProcessYoungWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { Object* head = VisitWeakList(this, native_contexts_list(), retainer); // Update the head of the list of contexts. set_native_contexts_list(head); } void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { Object* allocation_site_obj = VisitWeakList(this, allocation_sites_list(), retainer); set_allocation_sites_list(allocation_site_obj); } void Heap::ProcessWeakListRoots(WeakObjectRetainer* retainer) { set_native_contexts_list(retainer->RetainAs(native_contexts_list())); set_allocation_sites_list(retainer->RetainAs(allocation_sites_list())); } void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) { DisallowHeapAllocation no_allocation_scope; Object* cur = allocation_sites_list(); bool marked = false; while (cur->IsAllocationSite()) { AllocationSite* casted = AllocationSite::cast(cur); if (casted->GetPretenureMode() == flag) { casted->ResetPretenureDecision(); casted->set_deopt_dependent_code(true); marked = true; RemoveAllocationSitePretenuringFeedback(casted); } cur = casted->weak_next(); } if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } void Heap::EvaluateOldSpaceLocalPretenuring( uint64_t size_of_objects_before_gc) { uint64_t size_of_objects_after_gc = SizeOfObjects(); double old_generation_survival_rate = (static_cast(size_of_objects_after_gc) * 100) / static_cast(size_of_objects_before_gc); if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { // Too many objects died in the old generation, pretenuring of wrong // allocation sites may be the cause for that. We have to deopt all // dependent code registered in the allocation sites to re-evaluate // our pretenuring decisions. ResetAllAllocationSitesDependentCode(TENURED); if (FLAG_trace_pretenuring) { PrintF( "Deopt all allocation sites dependent code due to low survival " "rate in the old generation %f\n", old_generation_survival_rate); } } } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowHeapAllocation no_allocation; // All external strings are listed in the external string table. class ExternalStringTableVisitorAdapter : public ObjectVisitor { public: explicit ExternalStringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { DCHECK((*p)->IsExternalString()); visitor_->VisitExternalString( Utils::ToLocal(Handle(String::cast(*p)))); } } private: v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(visitor); external_string_table_.Iterate(&external_string_table_visitor); } Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front) { do { SemiSpace::AssertValidRange(new_space_front, new_space_->top()); // The addresses new_space_front and new_space_.top() define a // queue of unprocessed copied objects. Process them until the // queue is empty. while (new_space_front != new_space_->top()) { if (!Page::IsAlignedToPageSize(new_space_front)) { HeapObject* object = HeapObject::FromAddress(new_space_front); new_space_front += StaticScavengeVisitor::IterateBody(object->map(), object); } else { new_space_front = Page::FromAllocationAreaAddress(new_space_front) ->next_page() ->area_start(); } } // Promote and process all the to-be-promoted objects. { while (!promotion_queue()->is_empty()) { HeapObject* target; int32_t size; bool was_marked_black; promotion_queue()->remove(&target, &size, &was_marked_black); // Promoted object might be already partially visited // during old space pointer iteration. Thus we search specifically // for pointers to from semispace instead of looking for pointers // to new space. DCHECK(!target->IsMap()); IterateAndScavengePromotedObject(target, static_cast(size), was_marked_black); } } // Take another spin if there are now unswept objects in new space // (there are currently no more unswept promoted objects). } while (new_space_front != new_space_->top()); return new_space_front; } STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0); // NOLINT STATIC_ASSERT((FixedTypedArrayBase::kDataOffset & kDoubleAlignmentMask) == 0); // NOLINT #ifdef V8_HOST_ARCH_32_BIT STATIC_ASSERT((HeapNumber::kValueOffset & kDoubleAlignmentMask) != 0); // NOLINT #endif int Heap::GetMaximumFillToAlign(AllocationAlignment alignment) { switch (alignment) { case kWordAligned: return 0; case kDoubleAligned: case kDoubleUnaligned: return kDoubleSize - kPointerSize; case kSimd128Unaligned: return kSimd128Size - kPointerSize; default: UNREACHABLE(); } return 0; } int Heap::GetFillToAlign(Address address, AllocationAlignment alignment) { intptr_t offset = OffsetFrom(address); if (alignment == kDoubleAligned && (offset & kDoubleAlignmentMask) != 0) return kPointerSize; if (alignment == kDoubleUnaligned && (offset & kDoubleAlignmentMask) == 0) return kDoubleSize - kPointerSize; // No fill if double is always aligned. if (alignment == kSimd128Unaligned) { return (kSimd128Size - (static_cast(offset) + kPointerSize)) & kSimd128AlignmentMask; } return 0; } HeapObject* Heap::PrecedeWithFiller(HeapObject* object, int filler_size) { CreateFillerObjectAt(object->address(), filler_size, ClearRecordedSlots::kNo); return HeapObject::FromAddress(object->address() + filler_size); } HeapObject* Heap::AlignWithFiller(HeapObject* object, int object_size, int allocation_size, AllocationAlignment alignment) { int filler_size = allocation_size - object_size; DCHECK(filler_size > 0); int pre_filler = GetFillToAlign(object->address(), alignment); if (pre_filler) { object = PrecedeWithFiller(object, pre_filler); filler_size -= pre_filler; } if (filler_size) CreateFillerObjectAt(object->address() + object_size, filler_size, ClearRecordedSlots::kNo); return object; } HeapObject* Heap::DoubleAlignForDeserialization(HeapObject* object, int size) { return AlignWithFiller(object, size - kPointerSize, size, kDoubleAligned); } void Heap::RegisterNewArrayBuffer(JSArrayBuffer* buffer) { ArrayBufferTracker::RegisterNew(this, buffer); } void Heap::UnregisterArrayBuffer(JSArrayBuffer* buffer) { ArrayBufferTracker::Unregister(this, buffer); } void Heap::ConfigureInitialOldGenerationSize() { if (!old_generation_size_configured_ && tracer()->SurvivalEventsRecorded()) { old_generation_allocation_limit_ = Max(MinimumAllocationLimitGrowingStep(), static_cast( static_cast(old_generation_allocation_limit_) * (tracer()->AverageSurvivalRatio() / 100))); } } AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; // Map::cast cannot be used due to uninitialized map field. reinterpret_cast(result)->set_map( reinterpret_cast(root(kMetaMapRootIndex))); reinterpret_cast(result)->set_instance_type(instance_type); reinterpret_cast(result)->set_instance_size(instance_size); // Initialize to only containing tagged fields. reinterpret_cast(result)->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size, false)); if (FLAG_unbox_double_fields) { reinterpret_cast(result) ->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } reinterpret_cast(result)->clear_unused(); reinterpret_cast(result) ->set_inobject_properties_or_constructor_function_index(0); reinterpret_cast(result)->set_unused_property_fields(0); reinterpret_cast(result)->set_bit_field(0); reinterpret_cast(result)->set_bit_field2(0); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); reinterpret_cast(result)->set_bit_field3(bit_field3); reinterpret_cast(result)->set_weak_cell_cache(Smi::kZero); return result; } AllocationResult Heap::AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind) { HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; isolate()->counters()->maps_created()->Increment(); result->set_map_no_write_barrier(meta_map()); Map* map = Map::cast(result); map->set_instance_type(instance_type); map->set_prototype(null_value(), SKIP_WRITE_BARRIER); map->set_constructor_or_backpointer(null_value(), SKIP_WRITE_BARRIER); map->set_instance_size(instance_size); map->clear_unused(); map->set_inobject_properties_or_constructor_function_index(0); map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); map->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); map->set_weak_cell_cache(Smi::kZero); map->set_raw_transitions(Smi::kZero); map->set_unused_property_fields(0); map->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // Must be called only after |instance_type|, |instance_size| and // |layout_descriptor| are set. map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map)); map->set_bit_field(0); map->set_bit_field2(1 << Map::kIsExtensible); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); map->set_bit_field3(bit_field3); map->set_elements_kind(elements_kind); map->set_new_target_is_base(true); return map; } AllocationResult Heap::AllocateFillerObject(int size, bool double_align, AllocationSpace space) { HeapObject* obj = nullptr; { AllocationAlignment align = double_align ? kDoubleAligned : kWordAligned; AllocationResult allocation = AllocateRaw(size, space, align); if (!allocation.To(&obj)) return allocation; } #ifdef DEBUG MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(chunk->owner()->identity() == space); #endif CreateFillerObjectAt(obj->address(), size, ClearRecordedSlots::kNo, ClearBlackArea::kNo); return obj; } const Heap::StringTypeTable Heap::string_type_table[] = { #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ { type, size, k##camel_name##MapRootIndex } \ , STRING_TYPE_LIST(STRING_TYPE_ELEMENT) #undef STRING_TYPE_ELEMENT }; const Heap::ConstantStringTable Heap::constant_string_table[] = { {"", kempty_stringRootIndex}, #define CONSTANT_STRING_ELEMENT(name, contents) \ { contents, k##name##RootIndex } \ , INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) #undef CONSTANT_STRING_ELEMENT }; const Heap::StructTable Heap::struct_table[] = { #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex } \ , STRUCT_LIST(STRUCT_TABLE_ELEMENT) #undef STRUCT_TABLE_ELEMENT }; namespace { void FinalizePartialMap(Heap* heap, Map* map) { map->set_code_cache(heap->empty_fixed_array()); map->set_dependent_code(DependentCode::cast(heap->empty_fixed_array())); map->set_raw_transitions(Smi::kZero); map->set_instance_descriptors(heap->empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } map->set_prototype(heap->null_value()); map->set_constructor_or_backpointer(heap->null_value()); } } // namespace bool Heap::CreateInitialMaps() { HeapObject* obj = nullptr; { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize); if (!allocation.To(&obj)) return false; } // Map::cast cannot be used due to uninitialized map field. Map* new_meta_map = reinterpret_cast(obj); set_meta_map(new_meta_map); new_meta_map->set_map(new_meta_map); { // Partial map allocation #define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \ set_##field_name##_map(map); \ } ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array); fixed_array_map()->set_elements_kind(FAST_HOLEY_ELEMENTS); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole); #undef ALLOCATE_PARTIAL_MAP } // Allocate the empty array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_fixed_array(FixedArray::cast(obj)); { AllocationResult allocation = Allocate(null_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_null_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kNull); { AllocationResult allocation = Allocate(undefined_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_undefined_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kUndefined); DCHECK(!InNewSpace(undefined_value())); { AllocationResult allocation = Allocate(the_hole_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_the_hole_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kTheHole); // Set preliminary exception sentinel value before actually initializing it. set_exception(null_value()); // Allocate the empty descriptor array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_descriptor_array(DescriptorArray::cast(obj)); // Fix the instance_descriptors for the existing maps. FinalizePartialMap(this, meta_map()); FinalizePartialMap(this, fixed_array_map()); FinalizePartialMap(this, undefined_map()); undefined_map()->set_is_undetectable(); FinalizePartialMap(this, null_map()); null_map()->set_is_undetectable(); FinalizePartialMap(this, the_hole_map()); { // Map allocation #define ALLOCATE_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocateMap((instance_type), size).To(&map)) return false; \ set_##field_name##_map(map); \ } #define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \ ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name) #define ALLOCATE_PRIMITIVE_MAP(instance_type, size, field_name, \ constructor_function_index) \ { \ ALLOCATE_MAP((instance_type), (size), field_name); \ field_name##_map()->SetConstructorFunctionIndex( \ (constructor_function_index)); \ } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array) fixed_cow_array_map()->set_elements_kind(FAST_HOLEY_ELEMENTS); DCHECK_NE(fixed_array_map(), fixed_cow_array_map()); ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_info) ALLOCATE_PRIMITIVE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number, Context::NUMBER_FUNCTION_INDEX) ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number) ALLOCATE_PRIMITIVE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol, Context::SYMBOL_FUNCTION_INDEX) #define ALLOCATE_SIMD128_MAP(TYPE, Type, type, lane_count, lane_type) \ ALLOCATE_PRIMITIVE_MAP(SIMD128_VALUE_TYPE, Type::kSize, type, \ Context::TYPE##_FUNCTION_INDEX) SIMD128_TYPES(ALLOCATE_SIMD128_MAP) #undef ALLOCATE_SIMD128_MAP ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign) ALLOCATE_PRIMITIVE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean, Context::BOOLEAN_FUNCTION_INDEX); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, optimized_out); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, stale_register); for (unsigned i = 0; i < arraysize(string_type_table); i++) { const StringTypeTable& entry = string_type_table[i]; { AllocationResult allocation = AllocateMap(entry.type, entry.size); if (!allocation.To(&obj)) return false; } Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); // Mark cons string maps as unstable, because their objects can change // maps during GC. if (StringShape(entry.type).IsCons()) map->mark_unstable(); roots_[entry.index] = map; } { // Create a separate external one byte string map for native sources. AllocationResult allocation = AllocateMap(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize); if (!allocation.To(&obj)) return false; Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); set_native_source_string_map(map); } ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array) fixed_double_array_map()->set_elements_kind(FAST_HOLEY_DOUBLE_ELEMENTS); ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array) ALLOCATE_VARSIZE_MAP(BYTECODE_ARRAY_TYPE, bytecode_array) ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space) #define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \ ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array) TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP) #undef ALLOCATE_FIXED_TYPED_ARRAY_MAP ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements) ALLOCATE_VARSIZE_MAP(CODE_TYPE, code) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell) ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell) ALLOCATE_MAP(WEAK_CELL_TYPE, WeakCell::kSize, weak_cell) ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler) ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler) ALLOCATE_VARSIZE_MAP(TRANSITION_ARRAY_TYPE, transition_array) for (unsigned i = 0; i < arraysize(struct_table); i++) { const StructTable& entry = struct_table[i]; Map* map; if (!AllocateMap(entry.type, entry.size).To(&map)) return false; roots_[entry.index] = map; } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, unseeded_number_dictionary) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, debug_evaluate_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context) native_context_map()->set_dictionary_map(true); native_context_map()->set_visitor_id( StaticVisitorBase::kVisitNativeContext); ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize, shared_function_info) ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object) ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external) external_map()->set_is_extensible(false); #undef ALLOCATE_PRIMITIVE_MAP #undef ALLOCATE_VARSIZE_MAP #undef ALLOCATE_MAP } { AllocationResult allocation = AllocateEmptyScopeInfo(); if (!allocation.To(&obj)) return false; } set_empty_scope_info(ScopeInfo::cast(obj)); { AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_true_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kTrue); { AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_false_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kFalse); { // Empty arrays { ByteArray* byte_array; if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false; set_empty_byte_array(byte_array); } #define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ { \ FixedTypedArrayBase* obj; \ if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \ return false; \ set_empty_fixed_##type##_array(obj); \ } TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY) #undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY } DCHECK(!InNewSpace(empty_fixed_array())); return true; } AllocationResult Heap::AllocateHeapNumber(double value, MutableMode mode, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. int size = HeapNumber::kSize; STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space, kDoubleUnaligned); if (!allocation.To(&result)) return allocation; } Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); HeapObject::cast(result)->set_map_no_write_barrier(map); HeapNumber::cast(result)->set_value(value); return result; } #define SIMD_ALLOCATE_DEFINITION(TYPE, Type, type, lane_count, lane_type) \ AllocationResult Heap::Allocate##Type(lane_type lanes[lane_count], \ PretenureFlag pretenure) { \ int size = Type::kSize; \ STATIC_ASSERT(Type::kSize <= kMaxRegularHeapObjectSize); \ \ AllocationSpace space = SelectSpace(pretenure); \ \ HeapObject* result = nullptr; \ { \ AllocationResult allocation = \ AllocateRaw(size, space, kSimd128Unaligned); \ if (!allocation.To(&result)) return allocation; \ } \ \ result->set_map_no_write_barrier(type##_map()); \ Type* instance = Type::cast(result); \ for (int i = 0; i < lane_count; i++) { \ instance->set_lane(i, lanes[i]); \ } \ return result; \ } SIMD128_TYPES(SIMD_ALLOCATE_DEFINITION) #undef SIMD_ALLOCATE_DEFINITION AllocationResult Heap::AllocateCell(Object* value) { int size = Cell::kSize; STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(cell_map()); Cell::cast(result)->set_value(value); return result; } AllocationResult Heap::AllocatePropertyCell() { int size = PropertyCell::kSize; STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize); HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(global_property_cell_map()); PropertyCell* cell = PropertyCell::cast(result); cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); cell->set_property_details(PropertyDetails(Smi::kZero)); cell->set_value(the_hole_value()); return result; } AllocationResult Heap::AllocateWeakCell(HeapObject* value) { int size = WeakCell::kSize; STATIC_ASSERT(WeakCell::kSize <= kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(weak_cell_map()); WeakCell::cast(result)->initialize(value); WeakCell::cast(result)->clear_next(the_hole_value()); return result; } AllocationResult Heap::AllocateTransitionArray(int capacity) { DCHECK(capacity > 0); HeapObject* raw_array = nullptr; { AllocationResult allocation = AllocateRawFixedArray(capacity, TENURED); if (!allocation.To(&raw_array)) return allocation; } raw_array->set_map_no_write_barrier(transition_array_map()); TransitionArray* array = TransitionArray::cast(raw_array); array->set_length(capacity); MemsetPointer(array->data_start(), undefined_value(), capacity); // Transition arrays are tenured. When black allocation is on we have to // add the transition array to the list of encountered_transition_arrays. if (incremental_marking()->black_allocation()) { array->set_next_link(encountered_transition_arrays(), UPDATE_WEAK_WRITE_BARRIER); set_encountered_transition_arrays(array); } else { array->set_next_link(undefined_value(), SKIP_WRITE_BARRIER); } return array; } void Heap::CreateApiObjects() { HandleScope scope(isolate()); set_message_listeners(*TemplateList::New(isolate(), 2)); } void Heap::CreateJSEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY); set_js_entry_code(*stub.GetCode()); } void Heap::CreateJSConstructEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY_CONSTRUCT); set_js_construct_entry_code(*stub.GetCode()); } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope(isolate()); // Create stubs that should be there, so we don't unexpectedly have to // create them if we need them during the creation of another stub. // Stub creation mixes raw pointers and handles in an unsafe manner so // we cannot create stubs while we are creating stubs. CodeStub::GenerateStubsAheadOfTime(isolate()); // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub // is created. // gcc-4.4 has problem generating correct code of following snippet: // { JSEntryStub stub; // js_entry_code_ = *stub.GetCode(); // } // { JSConstructEntryStub stub; // js_construct_entry_code_ = *stub.GetCode(); // } // To workaround the problem, make separate functions without inlining. Heap::CreateJSEntryStub(); Heap::CreateJSConstructEntryStub(); } void Heap::CreateInitialObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); // The -0 value must be set before NewNumber works. set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED)); DCHECK(std::signbit(minus_zero_value()->Number()) != 0); set_nan_value(*factory->NewHeapNumber( std::numeric_limits::quiet_NaN(), IMMUTABLE, TENURED)); set_hole_nan_value(*factory->NewHeapNumber(bit_cast(kHoleNanInt64), IMMUTABLE, TENURED)); set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED)); set_minus_infinity_value( *factory->NewHeapNumber(-V8_INFINITY, IMMUTABLE, TENURED)); // Allocate initial string table. set_string_table(*StringTable::New(isolate(), kInitialStringTableSize)); // Allocate // Finish initializing oddballs after creating the string table. Oddball::Initialize(isolate(), factory->undefined_value(), "undefined", factory->nan_value(), "undefined", Oddball::kUndefined); // Initialize the null_value. Oddball::Initialize(isolate(), factory->null_value(), "null", handle(Smi::kZero, isolate()), "object", Oddball::kNull); // Initialize the_hole_value. Oddball::Initialize(isolate(), factory->the_hole_value(), "hole", factory->hole_nan_value(), "undefined", Oddball::kTheHole); // Initialize the true_value. Oddball::Initialize(isolate(), factory->true_value(), "true", handle(Smi::FromInt(1), isolate()), "boolean", Oddball::kTrue); // Initialize the false_value. Oddball::Initialize(isolate(), factory->false_value(), "false", handle(Smi::kZero, isolate()), "boolean", Oddball::kFalse); set_uninitialized_value( *factory->NewOddball(factory->uninitialized_map(), "uninitialized", handle(Smi::FromInt(-1), isolate()), "undefined", Oddball::kUninitialized)); set_arguments_marker( *factory->NewOddball(factory->arguments_marker_map(), "arguments_marker", handle(Smi::FromInt(-4), isolate()), "undefined", Oddball::kArgumentsMarker)); set_no_interceptor_result_sentinel(*factory->NewOddball( factory->no_interceptor_result_sentinel_map(), "no_interceptor_result_sentinel", handle(Smi::FromInt(-2), isolate()), "undefined", Oddball::kOther)); set_termination_exception(*factory->NewOddball( factory->termination_exception_map(), "termination_exception", handle(Smi::FromInt(-3), isolate()), "undefined", Oddball::kOther)); set_exception(*factory->NewOddball(factory->exception_map(), "exception", handle(Smi::FromInt(-5), isolate()), "undefined", Oddball::kException)); set_optimized_out(*factory->NewOddball(factory->optimized_out_map(), "optimized_out", handle(Smi::FromInt(-6), isolate()), "undefined", Oddball::kOptimizedOut)); set_stale_register( *factory->NewOddball(factory->stale_register_map(), "stale_register", handle(Smi::FromInt(-7), isolate()), "undefined", Oddball::kStaleRegister)); for (unsigned i = 0; i < arraysize(constant_string_table); i++) { Handle str = factory->InternalizeUtf8String(constant_string_table[i].contents); roots_[constant_string_table[i].index] = *str; } // Create the code_stubs dictionary. The initial size is set to avoid // expanding the dictionary during bootstrapping. set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128)); set_instanceof_cache_function(Smi::kZero); set_instanceof_cache_map(Smi::kZero); set_instanceof_cache_answer(Smi::kZero); { HandleScope scope(isolate()); #define SYMBOL_INIT(name) \ { \ Handle name##d = factory->NewStringFromStaticChars(#name); \ Handle symbol(isolate()->factory()->NewPrivateSymbol()); \ symbol->set_name(*name##d); \ roots_[k##name##RootIndex] = *symbol; \ } PRIVATE_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } { HandleScope scope(isolate()); #define SYMBOL_INIT(name, description) \ Handle name = factory->NewSymbol(); \ Handle name##d = factory->NewStringFromStaticChars(#description); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; PUBLIC_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT #define SYMBOL_INIT(name, description) \ Handle name = factory->NewSymbol(); \ Handle name##d = factory->NewStringFromStaticChars(#description); \ name->set_is_well_known_symbol(true); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; WELL_KNOWN_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } Handle empty_properties_dictionary = NameDictionary::New(isolate(), 0, TENURED); empty_properties_dictionary->SetRequiresCopyOnCapacityChange(); set_empty_properties_dictionary(*empty_properties_dictionary); set_number_string_cache( *factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED)); // Allocate cache for single character one byte strings. set_single_character_string_cache( *factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED)); // Allocate cache for string split and regexp-multiple. set_string_split_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); set_regexp_multiple_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); // Allocate cache for external strings pointing to native source code. set_natives_source_cache( *factory->NewFixedArray(Natives::GetBuiltinsCount())); set_experimental_natives_source_cache( *factory->NewFixedArray(ExperimentalNatives::GetBuiltinsCount())); set_extra_natives_source_cache( *factory->NewFixedArray(ExtraNatives::GetBuiltinsCount())); set_experimental_extra_natives_source_cache( *factory->NewFixedArray(ExperimentalExtraNatives::GetBuiltinsCount())); set_undefined_cell(*factory->NewCell(factory->undefined_value())); // The symbol registry is initialized lazily. set_symbol_registry(Smi::kZero); // Microtask queue uses the empty fixed array as a sentinel for "empty". // Number of queued microtasks stored in Isolate::pending_microtask_count(). set_microtask_queue(empty_fixed_array()); { StaticFeedbackVectorSpec spec; FeedbackVectorSlot slot = spec.AddLoadICSlot(); DCHECK_EQ(slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyLoadICSlot)); slot = spec.AddKeyedLoadICSlot(); DCHECK_EQ(slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot)); slot = spec.AddStoreICSlot(); DCHECK_EQ(slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyStoreICSlot)); slot = spec.AddKeyedStoreICSlot(); DCHECK_EQ(slot, FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot)); Handle dummy_metadata = TypeFeedbackMetadata::New(isolate(), &spec); Handle dummy_vector = TypeFeedbackVector::New(isolate(), dummy_metadata); set_dummy_vector(*dummy_vector); // Now initialize dummy vector's entries. LoadICNexus(isolate()).ConfigureMegamorphic(); StoreICNexus(isolate()).ConfigureMegamorphic(); KeyedLoadICNexus(isolate()).ConfigureMegamorphicKeyed(PROPERTY); KeyedStoreICNexus(isolate()).ConfigureMegamorphicKeyed(PROPERTY); } { // Create a canonical empty TypeFeedbackVector, which is shared by all // functions that don't need actual type feedback slots. Note however // that all these functions will share the same invocation count, but // that shouldn't matter since we only use the invocation count to // relativize the absolute call counts, but we can only have call counts // if we have actual feedback slots. Handle empty_type_feedback_vector = factory->NewFixedArray( TypeFeedbackVector::kReservedIndexCount, TENURED); empty_type_feedback_vector->set(TypeFeedbackVector::kMetadataIndex, empty_fixed_array()); empty_type_feedback_vector->set(TypeFeedbackVector::kInvocationCountIndex, Smi::kZero); set_empty_type_feedback_vector(*empty_type_feedback_vector); // We use a canonical empty LiteralsArray for all functions that neither // have literals nor need a TypeFeedbackVector (besides the invocation // count special slot). Handle empty_literals_array = factory->NewFixedArray(1, TENURED); empty_literals_array->set(0, *empty_type_feedback_vector); set_empty_literals_array(*empty_literals_array); } { Handle empty_sloppy_arguments_elements = factory->NewFixedArray(2, TENURED); empty_sloppy_arguments_elements->set_map(sloppy_arguments_elements_map()); set_empty_sloppy_arguments_elements(*empty_sloppy_arguments_elements); } { Handle cell = factory->NewWeakCell(factory->undefined_value()); set_empty_weak_cell(*cell); cell->clear(); } set_detached_contexts(empty_fixed_array()); set_retained_maps(ArrayList::cast(empty_fixed_array())); set_weak_object_to_code_table( *WeakHashTable::New(isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED)); set_weak_new_space_object_to_code_list( ArrayList::cast(*(factory->NewFixedArray(16, TENURED)))); weak_new_space_object_to_code_list()->SetLength(0); set_script_list(Smi::kZero); Handle slow_element_dictionary = SeededNumberDictionary::New(isolate(), 0, TENURED); slow_element_dictionary->set_requires_slow_elements(); set_empty_slow_element_dictionary(*slow_element_dictionary); set_materialized_objects(*factory->NewFixedArray(0, TENURED)); // Handling of script id generation is in Heap::NextScriptId(). set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId)); set_next_template_serial_number(Smi::kZero); // Allocate the empty script. Handle