// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_S390 #include "src/ic/handler-compiler.h" #include "src/api-arguments.h" #include "src/field-type.h" #include "src/ic/call-optimization.h" #include "src/ic/ic.h" #include "src/isolate-inl.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void NamedLoadHandlerCompiler::GenerateLoadViaGetter( MacroAssembler* masm, Handle map, Register receiver, Register holder, int accessor_index, int expected_arguments, Register scratch) { // ----------- S t a t e ------------- // -- r2 : receiver // -- r4 : name // -- lr : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Save context register __ push(cp); if (accessor_index >= 0) { DCHECK(!holder.is(scratch)); DCHECK(!receiver.is(scratch)); // Call the JavaScript getter with the receiver on the stack. if (map->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ LoadP(scratch, FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); receiver = scratch; } __ Push(receiver); __ LoadAccessor(r3, holder, accessor_index, ACCESSOR_GETTER); __ LoadImmP(r2, Operand::Zero()); __ Call(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ pop(cp); } __ Ret(); } void NamedStoreHandlerCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle map, Register receiver, Register holder, int accessor_index, int expected_arguments, Register scratch) { // ----------- S t a t e ------------- // -- lr : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Save context register // Save value register, so we can restore it later. __ Push(cp, value()); if (accessor_index >= 0) { DCHECK(!holder.is(scratch)); DCHECK(!receiver.is(scratch)); DCHECK(!value().is(scratch)); // Call the JavaScript setter with receiver and value on the stack. if (map->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ LoadP(scratch, FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); receiver = scratch; } __ Push(receiver, value()); __ LoadAccessor(r3, holder, accessor_index, ACCESSOR_SETTER); __ LoadImmP(r2, Operand(1)); __ Call(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. // Restore context register. __ Pop(cp, r2); } __ Ret(); } void PropertyHandlerCompiler::PushVectorAndSlot(Register vector, Register slot) { MacroAssembler* masm = this->masm(); STATIC_ASSERT(LoadWithVectorDescriptor::kSlot < LoadWithVectorDescriptor::kVector); STATIC_ASSERT(StoreWithVectorDescriptor::kSlot < StoreWithVectorDescriptor::kVector); STATIC_ASSERT(StoreTransitionDescriptor::kSlot < StoreTransitionDescriptor::kVector); __ Push(slot, vector); } void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) { MacroAssembler* masm = this->masm(); __ Pop(slot, vector); } void PropertyHandlerCompiler::DiscardVectorAndSlot() { MacroAssembler* masm = this->masm(); // Remove vector and slot. __ la(sp, MemOperand(sp, 2 * kPointerSize)); } void PropertyHandlerCompiler::PushReturnAddress(Register tmp) { // No-op. Return address is in lr register. } void PropertyHandlerCompiler::PopReturnAddress(Register tmp) { // No-op. Return address is in lr register. } void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup( MacroAssembler* masm, Label* miss_label, Register receiver, Handle name, Register scratch0, Register scratch1) { DCHECK(name->IsUniqueName()); DCHECK(!receiver.is(scratch0)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1); __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); Label done; const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. Register map = scratch1; __ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ LoadlB(scratch0, FieldMemOperand(map, Map::kBitFieldOffset)); __ AndP(r0, scratch0, Operand(kInterceptorOrAccessCheckNeededMask)); __ bne(miss_label); // Check that receiver is a JSObject. // TODO(joransiu): Merge into SI compare __ LoadlB(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ CmpP(scratch0, Operand(FIRST_JS_RECEIVER_TYPE)); __ blt(miss_label); // Load properties array. Register properties = scratch0; __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ LoadP(map, FieldMemOperand(properties, HeapObject::kMapOffset)); __ CompareRoot(map, Heap::kHashTableMapRootIndex); __ bne(miss_label); // Restore the temporarily used register. __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); NameDictionaryLookupStub::GenerateNegativeLookup( masm, miss_label, &done, receiver, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); } void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register result, Label* miss) { __ LoadNativeContextSlot(index, result); // Load its initial map. The global functions all have initial maps. __ LoadP(result, FieldMemOperand(result, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset)); } void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype( MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ LoadRR(r2, scratch1); __ Ret(); } // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. void PropertyHandlerCompiler::GenerateCheckPropertyCell( MacroAssembler* masm, Handle global, Handle name, Register scratch, Label* miss) { Handle cell = JSGlobalObject::EnsureEmptyPropertyCell( global, name, PropertyCellType::kInvalidated); Isolate* isolate = masm->isolate(); DCHECK(cell->value()->IsTheHole(isolate)); Handle weak_cell = isolate->factory()->NewWeakCell(cell); __ LoadWeakValue(scratch, weak_cell, miss); __ LoadP(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex); __ bne(miss); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 1); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 2); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 3); __ Push(name); __ Push(receiver); __ Push(holder); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj, Runtime::FunctionId id) { DCHECK(NamedLoadHandlerCompiler::kInterceptorArgsLength == Runtime::FunctionForId(id)->nargs); PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallRuntime(id); } // Generate call to api function. void PropertyHandlerCompiler::GenerateApiAccessorCall( MacroAssembler* masm, const CallOptimization& optimization, Handle receiver_map, Register receiver, Register scratch_in, bool is_store, Register store_parameter, Register accessor_holder, int accessor_index) { DCHECK(!accessor_holder.is(scratch_in)); DCHECK(!receiver.is(scratch_in)); __ Push(receiver); // Write the arguments to stack frame. if (is_store) { DCHECK(!receiver.is(store_parameter)); DCHECK(!scratch_in.is(store_parameter)); __ Push(store_parameter); } DCHECK(optimization.is_simple_api_call()); // Abi for CallApiCallbackStub. Register callee = r2; Register data = r6; Register holder = r4; Register api_function_address = r3; // Put callee in place. __ LoadAccessor(callee, accessor_holder, accessor_index, is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER); // Put holder in place. CallOptimization::HolderLookup holder_lookup; int holder_depth = 0; optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup, &holder_depth); switch (holder_lookup) { case CallOptimization::kHolderIsReceiver: __ Move(holder, receiver); break; case CallOptimization::kHolderFound: __ LoadP(holder, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ LoadP(holder, FieldMemOperand(holder, Map::kPrototypeOffset)); for (int i = 1; i < holder_depth; i++) { __ LoadP(holder, FieldMemOperand(holder, HeapObject::kMapOffset)); __ LoadP(holder, FieldMemOperand(holder, Map::kPrototypeOffset)); } break; case CallOptimization::kHolderNotFound: UNREACHABLE(); break; } Isolate* isolate = masm->isolate(); Handle api_call_info = optimization.api_call_info(); bool call_data_undefined = false; // Put call data in place. if (api_call_info->data()->IsUndefined(isolate)) { call_data_undefined = true; __ LoadRoot(data, Heap::kUndefinedValueRootIndex); } else { if (optimization.is_constant_call()) { __ LoadP(data, FieldMemOperand(callee, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(data, FieldMemOperand(data, SharedFunctionInfo::kFunctionDataOffset)); __ LoadP(data, FieldMemOperand(data, FunctionTemplateInfo::kCallCodeOffset)); } else { __ LoadP(data, FieldMemOperand(callee, FunctionTemplateInfo::kCallCodeOffset)); } __ LoadP(data, FieldMemOperand(data, CallHandlerInfo::kDataOffset)); } if (api_call_info->fast_handler()->IsCode()) { // Just tail call into the fast handler if present. __ Jump(handle(Code::cast(api_call_info->fast_handler())), RelocInfo::CODE_TARGET); return; } // Put api_function_address in place. Address function_address = v8::ToCData
(api_call_info->callback()); ApiFunction fun(function_address); ExternalReference::Type type = ExternalReference::DIRECT_API_CALL; ExternalReference ref = ExternalReference(&fun, type, masm->isolate()); __ mov(api_function_address, Operand(ref)); // Jump to stub. CallApiCallbackStub stub(isolate, is_store, call_data_undefined, !optimization.is_constant_call()); __ TailCallStub(&stub); } #undef __ #define __ ACCESS_MASM(masm()) void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label, Handle name) { if (!label->is_unused()) { __ bind(label); __ mov(this->name(), Operand(name)); } } void NamedStoreHandlerCompiler::GenerateRestoreName(Handle name) { __ mov(this->name(), Operand(name)); } void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle transition, Register map_reg, Register scratch, Label* miss) { Handle cell = Map::WeakCellForMap(transition); DCHECK(!map_reg.is(scratch)); __ LoadWeakValue(map_reg, cell, miss); if (transition->CanBeDeprecated()) { __ LoadlW(scratch, FieldMemOperand(map_reg, Map::kBitField3Offset)); __ DecodeField(r0, scratch); __ bne(miss); } } void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg, int descriptor, Register value_reg, Register scratch, Label* miss_label) { DCHECK(!map_reg.is(scratch)); DCHECK(!map_reg.is(value_reg)); DCHECK(!value_reg.is(scratch)); __ LoadInstanceDescriptors(map_reg, scratch); __ CmpP(value_reg, FieldMemOperand( scratch, DescriptorArray::GetValueOffset(descriptor))); __ bne(miss_label); } void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(FieldType* field_type, Register value_reg, Label* miss_label) { Register map_reg = scratch1(); Register scratch = scratch2(); DCHECK(!value_reg.is(map_reg)); DCHECK(!value_reg.is(scratch)); __ JumpIfSmi(value_reg, miss_label); if (field_type->IsClass()) { __ LoadP(map_reg, FieldMemOperand(value_reg, HeapObject::kMapOffset)); __ CmpWeakValue(map_reg, Map::WeakCellForMap(field_type->AsClass()), scratch); __ bne(miss_label); } } void PropertyHandlerCompiler::GenerateAccessCheck( Handle native_context_cell, Register scratch1, Register scratch2, Label* miss, bool compare_native_contexts_only) { Label done; // Load current native context. __ LoadP(scratch1, NativeContextMemOperand()); // Load expected native context. __ LoadWeakValue(scratch2, native_context_cell, miss); __ CmpP(scratch1, scratch2); if (!compare_native_contexts_only) { __ beq(&done); // Compare security tokens of current and expected native contexts. __ LoadP(scratch1, ContextMemOperand(scratch1, Context::SECURITY_TOKEN_INDEX)); __ LoadP(scratch2, ContextMemOperand(scratch2, Context::SECURITY_TOKEN_INDEX)); __ CmpP(scratch1, scratch2); } __ bne(miss); __ bind(&done); } Register PropertyHandlerCompiler::CheckPrototypes( Register object_reg, Register holder_reg, Register scratch1, Register scratch2, Handle name, Label* miss, ReturnHolder return_what) { Handle receiver_map = map(); // Make sure there's no overlap between holder and object registers. DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); Handle validity_cell = Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate()); if (!validity_cell.is_null()) { DCHECK_EQ(Smi::FromInt(Map::kPrototypeChainValid), validity_cell->value()); __ mov(scratch1, Operand(validity_cell)); __ LoadP(scratch1, FieldMemOperand(scratch1, Cell::kValueOffset)); __ CmpSmiLiteral(scratch1, Smi::FromInt(Map::kPrototypeChainValid), r0); __ bne(miss); } // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; Handle current = Handle::null(); if (receiver_map->IsJSGlobalObjectMap()) { current = isolate()->global_object(); } Handle current_map(receiver_map->GetPrototypeChainRootMap(isolate()), isolate()); Handle holder_map(holder()->map()); // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (!current_map.is_identical_to(holder_map)) { ++depth; if (current_map->IsJSGlobalObjectMap()) { GenerateCheckPropertyCell(masm(), Handle::cast(current), name, scratch2, miss); } else if (current_map->is_dictionary_map()) { DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast. DCHECK(name->IsUniqueName()); DCHECK(current.is_null() || current->property_dictionary()->FindEntry(name) == NameDictionary::kNotFound); if (depth > 1) { Handle weak_cell = Map::GetOrCreatePrototypeWeakCell(current, isolate()); __ LoadWeakValue(reg, weak_cell, miss); } GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); } reg = holder_reg; // From now on the object will be in holder_reg. // Go to the next object in the prototype chain. current = handle(JSObject::cast(current_map->prototype())); current_map = handle(current->map()); } DCHECK(!current_map->IsJSGlobalProxyMap()); // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); bool return_holder = return_what == RETURN_HOLDER; if (return_holder && depth != 0) { Handle weak_cell = Map::GetOrCreatePrototypeWeakCell(current, isolate()); __ LoadWeakValue(reg, weak_cell, miss); } // Return the register containing the holder. return return_holder ? reg : no_reg; } void NamedLoadHandlerCompiler::FrontendFooter(Handle name, Label* miss) { if (!miss->is_unused()) { Label success; __ b(&success); __ bind(miss); if (IC::ICUseVector(kind())) { DCHECK(kind() == Code::LOAD_IC); PopVectorAndSlot(); } TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedStoreHandlerCompiler::FrontendFooter(Handle name, Label* miss) { if (!miss->is_unused()) { Label success; __ b(&success); GenerateRestoreName(miss, name); if (IC::ICUseVector(kind())) PopVectorAndSlot(); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle value) { // Return the constant value. __ Move(r2, value); __ Ret(); } void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup( LookupIterator* it, Register holder_reg) { DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate())); // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1())); // Preserve the receiver register explicitly whenever it is different from the // holder and it is needed should the interceptor return without any result. // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD // case might cause a miss during the prototype check. bool must_perform_prototype_check = !holder().is_identical_to(it->GetHolder()); bool must_preserve_receiver_reg = !receiver().is(holder_reg) && (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ Push(receiver(), holder_reg, this->name()); } else { __ Push(holder_reg, this->name()); } InterceptorVectorSlotPush(holder_reg); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor( masm(), receiver(), holder_reg, this->name(), holder(), Runtime::kLoadPropertyWithInterceptorOnly); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ CompareRoot(r2, Heap::kNoInterceptorResultSentinelRootIndex); __ beq(&interceptor_failed, Label::kNear); frame_scope.GenerateLeaveFrame(); __ Ret(); __ bind(&interceptor_failed); InterceptorVectorSlotPop(holder_reg); __ Pop(this->name()); __ Pop(holder_reg); if (must_preserve_receiver_reg) { __ Pop(receiver()); } // Leave the internal frame. } GenerateLoadPostInterceptor(it, holder_reg); } void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) { // Call the runtime system to load the interceptor. DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined(isolate())); PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(), holder()); __ TailCallRuntime(Runtime::kLoadPropertyWithInterceptor); } void NamedStoreHandlerCompiler::ZapStackArgumentsRegisterAliases() { STATIC_ASSERT(!StoreWithVectorDescriptor::kPassLastArgsOnStack); } Handle NamedStoreHandlerCompiler::CompileStoreCallback( Handle object, Handle name, Handle callback, LanguageMode language_mode) { Register holder_reg = Frontend(name); __ Push(receiver(), holder_reg); // receiver // If the callback cannot leak, then push the callback directly, // otherwise wrap it in a weak cell. if (callback->data()->IsUndefined(isolate()) || callback->data()->IsSmi()) { __ mov(ip, Operand(callback)); } else { Handle cell = isolate()->factory()->NewWeakCell(callback); __ mov(ip, Operand(cell)); } __ Push(ip); __ mov(ip, Operand(name)); __ Push(ip, value()); __ Push(Smi::FromInt(language_mode)); // Do tail-call to the runtime system. __ TailCallRuntime(Runtime::kStoreCallbackProperty); // Return the generated code. return GetCode(kind(), name); } Register NamedStoreHandlerCompiler::value() { return StoreDescriptor::ValueRegister(); } Handle NamedLoadHandlerCompiler::CompileLoadGlobal( Handle cell, Handle name, bool is_configurable) { Label miss; if (IC::ICUseVector(kind())) { PushVectorAndSlot(); } FrontendHeader(receiver(), name, &miss, DONT_RETURN_ANYTHING); // Get the value from the cell. Register result = StoreDescriptor::ValueRegister(); Handle weak_cell = factory()->NewWeakCell(cell); __ LoadWeakValue(result, weak_cell, &miss); __ LoadP(result, FieldMemOperand(result, PropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (is_configurable) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); __ beq(&miss); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->ic_named_load_global_stub(), 1, r3, r5); if (IC::ICUseVector(kind())) { DiscardVectorAndSlot(); } __ Ret(); FrontendFooter(name, &miss); // Return the generated code. return GetCode(kind(), name); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM