// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Declares a Simulator for MIPS instructions if we are not generating a native // MIPS binary. This Simulator allows us to run and debug MIPS code generation // on regular desktop machines. // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, // which will start execution in the Simulator or forwards to the real entry // on a MIPS HW platform. #ifndef V8_MIPS_SIMULATOR_MIPS_H_ #define V8_MIPS_SIMULATOR_MIPS_H_ #include "src/allocation.h" #include "src/mips64/constants-mips64.h" #if !defined(USE_SIMULATOR) // Running without a simulator on a native mips platform. namespace v8 { namespace internal { // When running without a simulator we call the entry directly. #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \ entry(p0, p1, p2, p3, p4) // Call the generated regexp code directly. The code at the entry address // should act as a function matching the type arm_regexp_matcher. // The fifth (or ninth) argument is a dummy that reserves the space used for // the return address added by the ExitFrame in native calls. typedef int (*mips_regexp_matcher)(String* input, int64_t start_offset, const byte* input_start, const byte* input_end, int* output, int64_t output_size, Address stack_base, int64_t direct_call, void* return_address, Isolate* isolate); #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \ p7, p8) \ (FUNCTION_CAST(entry)(p0, p1, p2, p3, p4, p5, p6, p7, \ NULL, p8)) // The stack limit beyond which we will throw stack overflow errors in // generated code. Because generated code on mips uses the C stack, we // just use the C stack limit. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(Isolate* isolate, uintptr_t c_limit) { return c_limit; } static inline uintptr_t RegisterCTryCatch(Isolate* isolate, uintptr_t try_catch_address) { USE(isolate); return try_catch_address; } static inline void UnregisterCTryCatch(Isolate* isolate) { USE(isolate); } }; } // namespace internal } // namespace v8 // Calculated the stack limit beyond which we will throw stack overflow errors. // This macro must be called from a C++ method. It relies on being able to take // the address of "this" to get a value on the current execution stack and then // calculates the stack limit based on that value. // NOTE: The check for overflow is not safe as there is no guarantee that the // running thread has its stack in all memory up to address 0x00000000. #define GENERATED_CODE_STACK_LIMIT(limit) \ (reinterpret_cast(this) >= limit ? \ reinterpret_cast(this) - limit : 0) #else // !defined(USE_SIMULATOR) // Running with a simulator. #include "src/assembler.h" #include "src/base/hashmap.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Utility functions class CachePage { public: static const int LINE_VALID = 0; static const int LINE_INVALID = 1; static const int kPageShift = 12; static const int kPageSize = 1 << kPageShift; static const int kPageMask = kPageSize - 1; static const int kLineShift = 2; // The cache line is only 4 bytes right now. static const int kLineLength = 1 << kLineShift; static const int kLineMask = kLineLength - 1; CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } char* ValidityByte(int offset) { return &validity_map_[offset >> kLineShift]; } char* CachedData(int offset) { return &data_[offset]; } private: char data_[kPageSize]; // The cached data. static const int kValidityMapSize = kPageSize >> kLineShift; char validity_map_[kValidityMapSize]; // One byte per line. }; class SimInstructionBase : public InstructionBase { public: Type InstructionType() const { return type_; } inline Instruction* instr() const { return instr_; } inline int32_t operand() const { return operand_; } protected: SimInstructionBase() : operand_(-1), instr_(nullptr), type_(kUnsupported) {} explicit SimInstructionBase(Instruction* instr) {} int32_t operand_; Instruction* instr_; Type type_; private: DISALLOW_ASSIGN(SimInstructionBase); }; class SimInstruction : public InstructionGetters { public: SimInstruction() {} explicit SimInstruction(Instruction* instr) { *this = instr; } SimInstruction& operator=(Instruction* instr) { operand_ = *reinterpret_cast(instr); instr_ = instr; type_ = InstructionBase::InstructionType(); DCHECK(reinterpret_cast(&operand_) == this); return *this; } }; class Simulator { public: friend class MipsDebugger; // Registers are declared in order. See SMRL chapter 2. enum Register { no_reg = -1, zero_reg = 0, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3, s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, s8, ra, // LO, HI, and pc. LO, HI, pc, // pc must be the last register. kNumSimuRegisters, // aliases fp = s8 }; // Coprocessor registers. // Generated code will always use doubles. So we will only use even registers. enum FPURegister { f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters. f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31, kNumFPURegisters }; explicit Simulator(Isolate* isolate); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. static Simulator* current(v8::internal::Isolate* isolate); // Accessors for register state. Reading the pc value adheres to the MIPS // architecture specification and is off by a 8 from the currently executing // instruction. void set_register(int reg, int64_t value); void set_register_word(int reg, int32_t value); void set_dw_register(int dreg, const int* dbl); int64_t get_register(int reg) const; double get_double_from_register_pair(int reg); // Same for FPURegisters. void set_fpu_register(int fpureg, int64_t value); void set_fpu_register_word(int fpureg, int32_t value); void set_fpu_register_hi_word(int fpureg, int32_t value); void set_fpu_register_float(int fpureg, float value); void set_fpu_register_double(int fpureg, double value); void set_fpu_register_invalid_result64(float original, float rounded); void set_fpu_register_invalid_result(float original, float rounded); void set_fpu_register_word_invalid_result(float original, float rounded); void set_fpu_register_invalid_result64(double original, double rounded); void set_fpu_register_invalid_result(double original, double rounded); void set_fpu_register_word_invalid_result(double original, double rounded); int64_t get_fpu_register(int fpureg) const; int32_t get_fpu_register_word(int fpureg) const; int32_t get_fpu_register_signed_word(int fpureg) const; int32_t get_fpu_register_hi_word(int fpureg) const; float get_fpu_register_float(int fpureg) const; double get_fpu_register_double(int fpureg) const; void set_fcsr_bit(uint32_t cc, bool value); bool test_fcsr_bit(uint32_t cc); bool set_fcsr_round_error(double original, double rounded); bool set_fcsr_round64_error(double original, double rounded); bool set_fcsr_round_error(float original, float rounded); bool set_fcsr_round64_error(float original, float rounded); void round_according_to_fcsr(double toRound, double& rounded, int32_t& rounded_int, double fs); void round64_according_to_fcsr(double toRound, double& rounded, int64_t& rounded_int, double fs); void round_according_to_fcsr(float toRound, float& rounded, int32_t& rounded_int, float fs); void round64_according_to_fcsr(float toRound, float& rounded, int64_t& rounded_int, float fs); void set_fcsr_rounding_mode(FPURoundingMode mode); unsigned int get_fcsr_rounding_mode(); // Special case of set_register and get_register to access the raw PC value. void set_pc(int64_t value); int64_t get_pc() const; Address get_sp() const { return reinterpret_cast
(static_cast(get_register(sp))); } // Accessor to the internal simulator stack area. uintptr_t StackLimit(uintptr_t c_limit) const; // Executes MIPS instructions until the PC reaches end_sim_pc. void Execute(); // Call on program start. static void Initialize(Isolate* isolate); static void TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first); // V8 generally calls into generated JS code with 5 parameters and into // generated RegExp code with 7 parameters. This is a convenience function, // which sets up the simulator state and grabs the result on return. int64_t Call(byte* entry, int argument_count, ...); // Alternative: call a 2-argument double function. double CallFP(byte* entry, double d0, double d1); // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); // Debugger input. void set_last_debugger_input(char* input); char* last_debugger_input() { return last_debugger_input_; } // ICache checking. static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, size_t size); // Returns true if pc register contains one of the 'special_values' defined // below (bad_ra, end_sim_pc). bool has_bad_pc() const; private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_ra = -1, // A pc value used to signal the simulator to stop execution. Generally // the ra is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2, // Unpredictable value. Unpredictable = 0xbadbeaf }; // Unsupported instructions use Format to print an error and stop execution. void Format(Instruction* instr, const char* format); // Read and write memory. inline uint32_t ReadBU(int64_t addr); inline int32_t ReadB(int64_t addr); inline void WriteB(int64_t addr, uint8_t value); inline void WriteB(int64_t addr, int8_t value); inline uint16_t ReadHU(int64_t addr, Instruction* instr); inline int16_t ReadH(int64_t addr, Instruction* instr); // Note: Overloaded on the sign of the value. inline void WriteH(int64_t addr, uint16_t value, Instruction* instr); inline void WriteH(int64_t addr, int16_t value, Instruction* instr); inline uint32_t ReadWU(int64_t addr, Instruction* instr); inline int32_t ReadW(int64_t addr, Instruction* instr); inline void WriteW(int64_t addr, int32_t value, Instruction* instr); inline int64_t Read2W(int64_t addr, Instruction* instr); inline void Write2W(int64_t addr, int64_t value, Instruction* instr); inline double ReadD(int64_t addr, Instruction* instr); inline void WriteD(int64_t addr, double value, Instruction* instr); // Helper for debugging memory access. inline void DieOrDebug(); // Helpers for data value tracing. enum TraceType { BYTE, HALF, WORD, DWORD // DFLOAT - Floats may have printing issues due to paired lwc1's }; void TraceRegWr(int64_t value); void TraceMemWr(int64_t addr, int64_t value, TraceType t); void TraceMemRd(int64_t addr, int64_t value); // Operations depending on endianness. // Get Double Higher / Lower word. inline int32_t GetDoubleHIW(double* addr); inline int32_t GetDoubleLOW(double* addr); // Set Double Higher / Lower word. inline int32_t SetDoubleHIW(double* addr); inline int32_t SetDoubleLOW(double* addr); SimInstruction instr_; // functions called from DecodeTypeRegister. void DecodeTypeRegisterCOP1(); void DecodeTypeRegisterCOP1X(); void DecodeTypeRegisterSPECIAL(); void DecodeTypeRegisterSPECIAL2(); void DecodeTypeRegisterSPECIAL3(); void DecodeTypeRegisterSRsType(); void DecodeTypeRegisterDRsType(); void DecodeTypeRegisterWRsType(); void DecodeTypeRegisterLRsType(); // Executing is handled based on the instruction type. void DecodeTypeRegister(); inline int32_t rs_reg() const { return instr_.RsValue(); } inline int64_t rs() const { return get_register(rs_reg()); } inline uint64_t rs_u() const { return static_cast(get_register(rs_reg())); } inline int32_t rt_reg() const { return instr_.RtValue(); } inline int64_t rt() const { return get_register(rt_reg()); } inline uint64_t rt_u() const { return static_cast(get_register(rt_reg())); } inline int32_t rd_reg() const { return instr_.RdValue(); } inline int32_t fr_reg() const { return instr_.FrValue(); } inline int32_t fs_reg() const { return instr_.FsValue(); } inline int32_t ft_reg() const { return instr_.FtValue(); } inline int32_t fd_reg() const { return instr_.FdValue(); } inline int32_t sa() const { return instr_.SaValue(); } inline int32_t lsa_sa() const { return instr_.LsaSaValue(); } inline void SetResult(const int32_t rd_reg, const int64_t alu_out) { set_register(rd_reg, alu_out); TraceRegWr(alu_out); } void DecodeTypeImmediate(); void DecodeTypeJump(); // Used for breakpoints and traps. void SoftwareInterrupt(); // Compact branch guard. void CheckForbiddenSlot(int64_t current_pc) { Instruction* instr_after_compact_branch = reinterpret_cast(current_pc + Instruction::kInstrSize); if (instr_after_compact_branch->IsForbiddenAfterBranch()) { V8_Fatal(__FILE__, __LINE__, "Error: Unexpected instruction 0x%08x immediately after a " "compact branch instruction.", *reinterpret_cast(instr_after_compact_branch)); } } // Stop helper functions. bool IsWatchpoint(uint64_t code); void PrintWatchpoint(uint64_t code); void HandleStop(uint64_t code, Instruction* instr); bool IsStopInstruction(Instruction* instr); bool IsEnabledStop(uint64_t code); void EnableStop(uint64_t code); void DisableStop(uint64_t code); void IncreaseStopCounter(uint64_t code); void PrintStopInfo(uint64_t code); // Executes one instruction. void InstructionDecode(Instruction* instr); // Execute one instruction placed in a branch delay slot. void BranchDelayInstructionDecode(Instruction* instr) { if (instr->InstructionBits() == nopInstr) { // Short-cut generic nop instructions. They are always valid and they // never change the simulator state. return; } if (instr->IsForbiddenAfterBranch()) { V8_Fatal(__FILE__, __LINE__, "Eror:Unexpected %i opcode in a branch delay slot.", instr->OpcodeValue()); } InstructionDecode(instr); SNPrintF(trace_buf_, " "); } // ICache. static void CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr); static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, size_t size); static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, void* page); enum Exception { none, kIntegerOverflow, kIntegerUnderflow, kDivideByZero, kNumExceptions }; // Exceptions. void SignalException(Exception e); // Runtime call support. static void* RedirectExternalReference(Isolate* isolate, void* external_function, ExternalReference::Type type); // Handle arguments and return value for runtime FP functions. void GetFpArgs(double* x, double* y, int32_t* z); void SetFpResult(const double& result); void CallInternal(byte* entry); // Architecture state. // Registers. int64_t registers_[kNumSimuRegisters]; // Coprocessor Registers. int64_t FPUregisters_[kNumFPURegisters]; // FPU control register. uint32_t FCSR_; // Simulator support. // Allocate 1MB for stack. size_t stack_size_; char* stack_; bool pc_modified_; int64_t icount_; int break_count_; EmbeddedVector trace_buf_; // Debugger input. char* last_debugger_input_; // Icache simulation. base::CustomMatcherHashMap* i_cache_; v8::internal::Isolate* isolate_; // Registered breakpoints. Instruction* break_pc_; Instr break_instr_; // Stop is disabled if bit 31 is set. static const uint32_t kStopDisabledBit = 1 << 31; // A stop is enabled, meaning the simulator will stop when meeting the // instruction, if bit 31 of watched_stops_[code].count is unset. // The value watched_stops_[code].count & ~(1 << 31) indicates how many times // the breakpoint was hit or gone through. struct StopCountAndDesc { uint32_t count; char* desc; }; StopCountAndDesc watched_stops_[kMaxStopCode + 1]; }; // When running with the simulator transition into simulated execution at this // point. #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \ reinterpret_cast(Simulator::current(isolate)->Call( \ FUNCTION_ADDR(entry), 5, reinterpret_cast(p0), \ reinterpret_cast(p1), reinterpret_cast(p2), \ reinterpret_cast(p3), reinterpret_cast(p4))) #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \ p7, p8) \ static_cast(Simulator::current(isolate)->Call( \ entry, 10, p0, p1, p2, p3, p4, reinterpret_cast(p5), p6, p7, \ NULL, p8)) // The simulator has its own stack. Thus it has a different stack limit from // the C-based native code. The JS-based limit normally points near the end of // the simulator stack. When the C-based limit is exhausted we reflect that by // lowering the JS-based limit as well, to make stack checks trigger. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(Isolate* isolate, uintptr_t c_limit) { return Simulator::current(isolate)->StackLimit(c_limit); } static inline uintptr_t RegisterCTryCatch(Isolate* isolate, uintptr_t try_catch_address) { Simulator* sim = Simulator::current(isolate); return sim->PushAddress(try_catch_address); } static inline void UnregisterCTryCatch(Isolate* isolate) { Simulator::current(isolate)->PopAddress(); } }; } // namespace internal } // namespace v8 #endif // !defined(USE_SIMULATOR) #endif // V8_MIPS_SIMULATOR_MIPS_H_