// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_X64_ASSEMBLER_X64_INL_H_ #define V8_X64_ASSEMBLER_X64_INL_H_ #include "src/x64/assembler-x64.h" #include "src/base/cpu.h" #include "src/debug/debug.h" #include "src/v8memory.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsCrankshaft() { return true; } bool CpuFeatures::SupportsSimd128() { return false; } // ----------------------------------------------------------------------------- // Implementation of Assembler static const byte kCallOpcode = 0xE8; // The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi). static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17; void Assembler::emitl(uint32_t x) { Memory::uint32_at(pc_) = x; pc_ += sizeof(uint32_t); } void Assembler::emitp(void* x, RelocInfo::Mode rmode) { uintptr_t value = reinterpret_cast(x); Memory::uintptr_at(pc_) = value; if (!RelocInfo::IsNone(rmode)) { RecordRelocInfo(rmode, value); } pc_ += sizeof(uintptr_t); } void Assembler::emitq(uint64_t x) { Memory::uint64_at(pc_) = x; pc_ += sizeof(uint64_t); } void Assembler::emitw(uint16_t x) { Memory::uint16_at(pc_) = x; pc_ += sizeof(uint16_t); } void Assembler::emit_code_target(Handle target, RelocInfo::Mode rmode, TypeFeedbackId ast_id) { DCHECK(RelocInfo::IsCodeTarget(rmode) || rmode == RelocInfo::CODE_AGE_SEQUENCE); if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id.ToInt()); } else { RecordRelocInfo(rmode); } int current = code_targets_.length(); if (current > 0 && code_targets_.last().address() == target.address()) { // Optimization if we keep jumping to the same code target. emitl(current - 1); } else { code_targets_.Add(target); emitl(current); } } void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) { DCHECK(RelocInfo::IsRuntimeEntry(rmode)); RecordRelocInfo(rmode); emitl(static_cast( entry - isolate()->heap()->memory_allocator()->code_range()->start())); } void Assembler::emit_rex_64(Register reg, Register rm_reg) { emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit()); } void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) { emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) { emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } void Assembler::emit_rex_64(Register reg, const Operand& op) { emit(0x48 | reg.high_bit() << 2 | op.rex_); } void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) { emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_); } void Assembler::emit_rex_64(Register rm_reg) { DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code()); emit(0x48 | rm_reg.high_bit()); } void Assembler::emit_rex_64(const Operand& op) { emit(0x48 | op.rex_); } void Assembler::emit_rex_32(Register reg, Register rm_reg) { emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit()); } void Assembler::emit_rex_32(Register reg, const Operand& op) { emit(0x40 | reg.high_bit() << 2 | op.rex_); } void Assembler::emit_rex_32(Register rm_reg) { emit(0x40 | rm_reg.high_bit()); } void Assembler::emit_rex_32(const Operand& op) { emit(0x40 | op.rex_); } void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) { byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit(); if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register reg, const Operand& op) { byte rex_bits = reg.high_bit() << 2 | op.rex_; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) { byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register rm_reg) { if (rm_reg.high_bit()) emit(0x41); } void Assembler::emit_optional_rex_32(XMMRegister rm_reg) { if (rm_reg.high_bit()) emit(0x41); } void Assembler::emit_optional_rex_32(const Operand& op) { if (op.rex_ != 0) emit(0x40 | op.rex_); } // byte 1 of 3-byte VEX void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m) { byte rxb = ~((reg.high_bit() << 2) | rm.high_bit()) << 5; emit(rxb | m); } // byte 1 of 3-byte VEX void Assembler::emit_vex3_byte1(XMMRegister reg, const Operand& rm, LeadingOpcode m) { byte rxb = ~((reg.high_bit() << 2) | rm.rex_) << 5; emit(rxb | m); } // byte 1 of 2-byte VEX void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l, SIMDPrefix pp) { byte rv = ~((reg.high_bit() << 4) | v.code()) << 3; emit(rv | l | pp); } // byte 2 of 3-byte VEX void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l, SIMDPrefix pp) { emit(w | ((~v.code() & 0xf) << 3) | l | pp); } void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg, XMMRegister rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { if (rm.high_bit() || mm != k0F || w != kW0) { emit_vex3_byte0(); emit_vex3_byte1(reg, rm, mm); emit_vex3_byte2(w, vreg, l, pp); } else { emit_vex2_byte0(); emit_vex2_byte1(reg, vreg, l, pp); } } void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { XMMRegister ireg = {reg.code()}; XMMRegister ivreg = {vreg.code()}; XMMRegister irm = {rm.code()}; emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w); } void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg, const Operand& rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { if (rm.rex_ || mm != k0F || w != kW0) { emit_vex3_byte0(); emit_vex3_byte1(reg, rm, mm); emit_vex3_byte2(w, vreg, l, pp); } else { emit_vex2_byte0(); emit_vex2_byte1(reg, vreg, l, pp); } } void Assembler::emit_vex_prefix(Register reg, Register vreg, const Operand& rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { XMMRegister ireg = {reg.code()}; XMMRegister ivreg = {vreg.code()}; emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w); } Address Assembler::target_address_at(Address pc, Address constant_pool) { return Memory::int32_at(pc) + pc + 4; } void Assembler::set_target_address_at(Isolate* isolate, Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { Memory::int32_at(pc) = static_cast(target - pc - 4); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(isolate, pc, sizeof(int32_t)); } } void Assembler::deserialization_set_target_internal_reference_at( Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { Memory::Address_at(pc) = target; } Address Assembler::target_address_from_return_address(Address pc) { return pc - kCallTargetAddressOffset; } Handle Assembler::code_target_object_handle_at(Address pc) { return code_targets_[Memory::int32_at(pc)]; } Address Assembler::runtime_entry_at(Address pc) { return Memory::int32_at(pc) + isolate()->heap()->memory_allocator()->code_range()->start(); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo // The modes possibly affected by apply must be in kApplyMask. void RelocInfo::apply(intptr_t delta) { if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) { Memory::int32_at(pc_) -= static_cast(delta); } else if (IsCodeAgeSequence(rmode_)) { if (*pc_ == kCallOpcode) { int32_t* p = reinterpret_cast(pc_ + 1); *p -= static_cast(delta); // Relocate entry. } } else if (IsInternalReference(rmode_)) { // absolute code pointer inside code object moves with the code object. Memory::Address_at(pc_) += delta; } } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); return Assembler::target_address_at(pc_, host_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); return reinterpret_cast
(pc_); } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); return NULL; } int RelocInfo::target_address_size() { if (IsCodedSpecially()) { return Assembler::kSpecialTargetSize; } else { return kPointerSize; } } Object* RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Memory::Object_at(pc_); } Handle RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); if (rmode_ == EMBEDDED_OBJECT) { return Memory::Object_Handle_at(pc_); } else { return origin->code_target_object_handle_at(pc_); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); return Memory::Address_at(pc_); } Address RelocInfo::target_internal_reference() { DCHECK(rmode_ == INTERNAL_REFERENCE); return Memory::Address_at(pc_); } Address RelocInfo::target_internal_reference_address() { DCHECK(rmode_ == INTERNAL_REFERENCE); return reinterpret_cast
(pc_); } void RelocInfo::set_target_object(Object* target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Memory::Object_at(pc_) = target; if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(isolate_, pc_, sizeof(Address)); } if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && target->IsHeapObject()) { host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target)); host()->GetHeap()->RecordWriteIntoCode(host(), this, target); } } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return origin->runtime_entry_at(pc_); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) { set_target_address(target, write_barrier_mode, icache_flush_mode); } } Handle RelocInfo::target_cell_handle() { DCHECK(rmode_ == RelocInfo::CELL); Address address = Memory::Address_at(pc_); return Handle(reinterpret_cast(address)); } Cell* RelocInfo::target_cell() { DCHECK(rmode_ == RelocInfo::CELL); return Cell::FromValueAddress(Memory::Address_at(pc_)); } void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::CELL); Address address = cell->address() + Cell::kValueOffset; Memory::Address_at(pc_) = address; if (icache_flush_mode != SKIP_ICACHE_FLUSH) { Assembler::FlushICache(isolate_, pc_, sizeof(Address)); } if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this, cell); } } void RelocInfo::WipeOut() { if (IsEmbeddedObject(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_)) { Memory::Address_at(pc_) = NULL; } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) { // Effectively write zero into the relocation. Assembler::set_target_address_at(isolate_, pc_, host_, pc_ + sizeof(int32_t)); } else { UNREACHABLE(); } } Handle RelocInfo::code_age_stub_handle(Assembler* origin) { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); DCHECK(*pc_ == kCallOpcode); return origin->code_target_object_handle_at(pc_ + 1); } Code* RelocInfo::code_age_stub() { DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); DCHECK(*pc_ == kCallOpcode); return Code::GetCodeFromTargetAddress( Assembler::target_address_at(pc_ + 1, host_)); } void RelocInfo::set_code_age_stub(Code* stub, ICacheFlushMode icache_flush_mode) { DCHECK(*pc_ == kCallOpcode); DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); Assembler::set_target_address_at( isolate_, pc_ + 1, host_, stub->instruction_start(), icache_flush_mode); } Address RelocInfo::debug_call_address() { DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); return Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset); } void RelocInfo::set_debug_call_address(Address target) { DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); Memory::Address_at(pc_ + Assembler::kPatchDebugBreakSlotAddressOffset) = target; Assembler::FlushICache(isolate_, pc_ + Assembler::kPatchDebugBreakSlotAddressOffset, sizeof(Address)); if (host() != NULL) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } template void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(this); Assembler::FlushICache(isolate, pc_, sizeof(Address)); } else if (RelocInfo::IsCodeTarget(mode)) { visitor->VisitCodeTarget(this); } else if (mode == RelocInfo::CELL) { visitor->VisitCell(this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { visitor->VisitInternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { visitor->VisitCodeAgeSequence(this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { visitor->VisitDebugTarget(this); } else if (RelocInfo::IsRuntimeEntry(mode)) { visitor->VisitRuntimeEntry(this); } } template void RelocInfo::Visit(Heap* heap) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { StaticVisitor::VisitEmbeddedPointer(heap, this); Assembler::FlushICache(heap->isolate(), pc_, sizeof(Address)); } else if (RelocInfo::IsCodeTarget(mode)) { StaticVisitor::VisitCodeTarget(heap, this); } else if (mode == RelocInfo::CELL) { StaticVisitor::VisitCell(heap, this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { StaticVisitor::VisitExternalReference(this); } else if (mode == RelocInfo::INTERNAL_REFERENCE) { StaticVisitor::VisitInternalReference(this); } else if (RelocInfo::IsCodeAgeSequence(mode)) { StaticVisitor::VisitCodeAgeSequence(heap, this); } else if (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()) { StaticVisitor::VisitDebugTarget(heap, this); } else if (RelocInfo::IsRuntimeEntry(mode)) { StaticVisitor::VisitRuntimeEntry(this); } } // ----------------------------------------------------------------------------- // Implementation of Operand void Operand::set_modrm(int mod, Register rm_reg) { DCHECK(is_uint2(mod)); buf_[0] = mod << 6 | rm_reg.low_bits(); // Set REX.B to the high bit of rm.code(). rex_ |= rm_reg.high_bit(); } void Operand::set_sib(ScaleFactor scale, Register index, Register base) { DCHECK(len_ == 1); DCHECK(is_uint2(scale)); // Use SIB with no index register only for base rsp or r12. Otherwise we // would skip the SIB byte entirely. DCHECK(!index.is(rsp) || base.is(rsp) || base.is(r12)); buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits(); rex_ |= index.high_bit() << 1 | base.high_bit(); len_ = 2; } void Operand::set_disp8(int disp) { DCHECK(is_int8(disp)); DCHECK(len_ == 1 || len_ == 2); int8_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(int8_t); } void Operand::set_disp32(int disp) { DCHECK(len_ == 1 || len_ == 2); int32_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(int32_t); } void Operand::set_disp64(int64_t disp) { DCHECK_EQ(1, len_); int64_t* p = reinterpret_cast(&buf_[len_]); *p = disp; len_ += sizeof(disp); } } // namespace internal } // namespace v8 #endif // V8_X64_ASSEMBLER_X64_INL_H_